
Reverse Engineering with Petri Nets

Walter Keller
PhD student at the Department of Information Technology, University of Zurich, Switzerland

Steinackerweg 33, CH-8304 Wallisellen, email: wkeller@datacomm.ch

Abstract

With the emergence of Petri nets in practical applications

the need to reverse-engineer them arises. Folding based

reverse-engineering techniques are crucial for Petri nets.

But after a translation step they offer novel analysis

capabilities for other systems. Such a translation makes

Petri nets a powerful and intuitive engineering metaphor
outside their traditional strength for concurrency.

We present a folding-based algorithm which transforms

an unstructured flat net into a coloured net. In reverse

engineering terms, it recovers a high-level design, a

structured specification and a data model from an existing

system. Both the algorithm and the translation to Petri
nets allow many variations for adaptation to different

tasks. Moreover, the cost is almost linear, thus ensuring

scalability.

Keywords: Petri nets; coloured nets; folding; reverse

engineering; design recovery; engineering metaphor;

1 Introduction

The effort to understand existing software systems is well
known to be a key contributor to software costs.
Experience has shown that every new programming
technique and design method needs specific reverse
engineering methods. The use of Petri nets was emerging
during the last years and this implies the importance of
reverse engineering methods for Petri nets. This is the
subject of this work.

A prerequisite for reverse engineering is the selection
of the kind of model to recover. We differentiate two
structuring principles: folding and clustering.

In clustering, directly connected entities are grouped
together. Neighbourhoods are collapsed into a single
object which also swallows relationships. Foldings, on the
other hand, merge similar objects and, separately, similar
relationships. A model object stands for similar objects
and hence inherits many properties.

Clustering respects vicinity, is the usual method of
breaking complex systems down into subsystems and is
predominant in reverse engineering. But a clustered node
is neither a transition nor a place and thus incompatible
with the rigorous semantics of Petri nets. Therefore for
Petri nets folding is preferred which finds a very

convenient representation in a coloured Petri net.
Nevertheless, clustering is an indispensable supplement
for practical applications.

This work concentrates on folding-based Petri-net
techniques for reverse engineering - clustering-based ones
share many similarities with well-known methods. This
paper proposes to translate a legacy system to a Petri net
and presents an efficient and flexible algorithm to deduce
a coloured net from it. This yields a novel and powerful
reverse engineering method. It recovers high-level design
and specification information such as the data model.

2 Modelling with Petri Nets

Figure 2 shows a small fragment of a spare-part ordering
system as a Petri net Nu. The author was involved in
implementing it in a 4GL procedural language for a loom
manufacturer. A Petri net consists of transitions painted as

2

2

2

Figure 1. Clustering (top) and folding (bottom).

mailto:wkeller@datacomm.ch

boxes and places painted as circles which may contain
tokens. A transition may occur which removes tokens
from its pre-places and puts tokens on its post-places.
Formally a net is a pair of functions pre and post which
map a transition to its pre and post multiset of places ([6]).

An order consists of positions, each containing a spare
part. After the order has been defined parts get allocated:
An occurrence of the transition allocate moves a token
from oPart to aPart indicating the reservation of this
part in the warehouse. It also moves a token from oPos to
aPos showing the reservation of the corresponding
position. The occurrence of the transition startS
initiates the next phase of order processing.

A colouring of this net reflects that an order may
contain several positions and the system consists of many

orders. It is described by a colouring morphism c: Nf → Nu

from a flat net Nf. Informally c maps places to places,
transitions to transitions and preserves pre and post (e.g.
c pref = preu c). Hence the origins (by c) of oPart and
aPart respectively correspond to the set of spare parts.
Transitions are assigned colours which allow valid state
changes, e.g. ship may move the part belonging to a
specific position of the corresponding order. Nu is a high-
level design and the morphism c a specification which
contains information such as the data model.

If this coloured net is the design, an implementation
may translate places to database tables and transitions to
procedures which update the database as described by the
pre and post-functions. This is straightforward. Hence,
coloured nets qualify as design formalism outside the area
of Petri nets. They show the interplay of structural,
functional and dynamic aspects in a compact and
graphically attractive way.

Reverse - a legacy system may be translated to a net.
This could be done by the above method, but, we get a
more realistic reverse engineering task by translating:

• DB transactions to transitions,

• disk addresses (tuple identifiers) to places and

• the update of tuples by transactions to pre and post.
Again, the translation is straightforward. Reverse-
engineering the colouring of such a net deduces design and
specification from low-level runtime information.

But we want to stress that we have described just two of
many modelling methods and for each of them colourings
express semantics relevant for certain applications. Hence
reverse engineering a colouring is valuable for many tasks.

3 Unique Reduction

The metaphor for the reduction algorithm is another use of
the word folding. Just like folding a shirt, two adjacent
parts which fit together are overlaid. Figure 3 shows how
neighboured transitions and their surrounding places are
overlaid. The algorithm works iteratively: similar subnets
are overlaid when they become adjacent, and it stops when
there are no more such adjacent similar subnets. Here
subnets consist of a single transition and its adjacent
places and they are similar if they are isomorphic.

The reduction algorithm computes the net shown in
Figure 4 from unfolded flat nets of different sizes of the
spare-part order system from Figure 2. It looks quite
similar to the design and gives a clear picture which offers
a good starting point for further analysis. The algorithm
cannot distinguish parts and positions because swapping
them is an automorphism of the subnets of allocate.

allocating

oPos

aPos startS

defining

oPart

aPart

OrderPositionWarehouse

allocate

startA

Figure 2. The design net Nu of the spare-part system.

b

c

e

f
d

a

b,c
e

f
d

a

b,c
e,f

b

a

Figure 3. Reduction by folding.

On this basic level the algorithm may be modified in
three dimensions:

• Similarity: which subnets are merger candidates?
Should subnet isomorphism be weakened or
strengthened by additional requirements?

• Adjacency: how near should two subnets be? Or should
adjacency simply be ignored?

• Choice: which mergers allowed by the above two
criteria are selected?
Internally, the algorithm computes a sequence of

intermediate reductions. In such a reduction, it checks the
arcs around a node. If the origins of these arcs are
connected compatibly to similar transitions they and
corresponding attached places become merged. This yields
the next reduction wherein the arcs around the newly
merged places are recursively checked. For reasons of
performance, it is essential to minimise repetitions of
mergers of an arc caused by successive mergers of its
place. Also, the intermediate reductions are stored in an
incremental way that, nevertheless, allows fast read access.
For this equivalence relations are used.

With such optimisations and with the assumption that
the cardinality of the pre- and post-multisets of transitions
is limited by a constant, the cost of the algorithm is

O(e log(min (maxDeg', |P|)) γ)

with e the number of edges in the source net, maxDeg' the
maximum number of arcs of a place in the reduced net, |P|

the number of places of the source net and γ a slowly

increasing inverse of the Ackermann function, which does
not surpass 3 in any real case.

The details of the algorithm and the proof of the cost
limit may be found in the author's PhD thesis [4]. It also
shows that in terms of category theory the algorithm is an
iteration of universal constructions, so-called coequalisers,
and is itself universal. This, for instance, yields uniqueness
and eases optimisation.

4 Relationship Analysis

The integration of relationship analysis in the reduction
algorithm allows to separate parts and positions and,
furthermore, to recover the colourings.

For the first task we use the fact that although parts and
positions may be swapped by an automorphism of
allocate they are in a 1:n relationship. A tricky method
allows to compute this asymmetry beforehand and to feed
it as the similarity criteria to the algorithm. Because
realistic 1:n relationships contain sporadic 1:1 pairs
arbitrary decisions are needed to avoid that the overall
asymmetry is compromised. The enhanced algorithm
reverse-engineers our example system to the same diagram
as in Figure 2.

Relationship analysis is used again to recover colouring
information by the following steps:

• Compute the relationships from the reduction, i.e.
group the start and end nodes of all arcs in the source
that coincide in the reduction.

• Optionally compose relationships to longer paths. Not
limiting the path length leads to combinatorial
explosion.

• Classify the relationship cardinalities.

• Select the colour sets using relationships. Reduced
nodes in a 1:1 relationship use the same colour-set. This
method relies on stable properties of the analysed net -
not on an accidental equality of cardinalities.

• Colour the arcs using a classification of relationships
between colour-sets. The 1:1 relationships from the
previous step yield identities. The algorithm classifies
relationships in terms of equality, inclusion and
composition.

Figure 5 shows the fruits of these enhancements on the
spare-part system. A colour set is painted as a pattern
inside the node symbol. An arc is inscribed with the name
and cardinalities of the colour relationship:

• rp shows which part belongs to a position

• ra shows which order belongs to a position

allocating

aPart
aPos

allocate

oPart
oPos

defining

startA

Figure 4. Result of the simple reduction.

:1

:n
rp :n

startS

defining

allocating

oPos

aPos

oPart

aPart

allocate

startA

:1ra

:n :1ra:1

:n
rp

Figure 5. The analysis of the enhanced algorithm.

In fact, this diagram is better than the design in Figure
2. The colour-sets are now precise and the colour
relationships are explicitly classified - before this was left
to the application know-how of the analyst. This once
more shows that reverse engineering requires a more
precise understanding than normally goes into a design.
Also it indicates that our Petri net notation is potentially
more precise than the usual design diagrams. It is a
strength of the algorithm presented here to recover such
hidden information.

5 Applicability

Lack of resources prevented the application of the
presented reverse-engineering method to real-world
systems. We had to restrict to small-scale experiments
with a prototypical implementation.

Most experiments were done on a system containing
the fragment from Figure 5. Unfolded nets of up to 40000
arcs (the memory limit of the prototype) were successfully
analysed yielding a reduced net of 27 arcs. If the
complexity of the unfolding was increased the analysis
contained additional nodes. For the running example these
additional nodes have application significance. Also, we
showed how to reduce them by additional heuristics.

Furthermore, we analysed an embedded system built
with a clustering-based component structure which is
completely different from our structuring principles. Still,
the algorithm detected non-trivial components.

Remember that the algorithm has three dimensions of
variations and a preceding translation step which also is
adaptable. From this and the mentioned experiments we
draw the hypothesis that the unchanged algorithm offers a
good starting point for many reverse-engineering tasks and
that it can be integrated with domain-specific heuristics to
produce deeper insights. The latter requires careful
balancing of different factors, as was experienced with the
relationship-analysis technique.

6 Previous Work

Although abundant literature is available about Petri nets
and reverse engineering, the intersection between the two
fields is surprisingly small.

In software engineering, Petri nets are sometimes used
to model dynamic aspects or the software-engineering
process. They appear fairly often in business re-
engineering, but none of the tools we are aware of includes
Petri-net based analyses for reverse engineering. A few
authors model functional or structural aspects with nets,
e.g. [3] and [1]. In [2] universal constructions in algebraic
Petri net categories are used for software engineering.

7 Conclusion

We presented a folding-based Petri-net algorithm which
can recover a high-level design and a structured
specification from an existing system. It revealed the
functional and structural architecture as well as hidden
information not explicitly represented in the design.
Although this excellent result has only been verified at a
few small cases we hope that it may prove useful for real-
world problems. This is backed by three dimensions of
variations which the algorithm allows and a preceding
translation step that turned out to be intuitive and flexible.

The high speed of the algorithm - almost linear in the
input size - represents an attractive feature for reverse
engineering, which is notorious for having to combat
combinatorial explosions. The algorithm is therefore
scalable and may also be used for lightweight analyses.

This work reports some results of the author's PhD
thesis [4]. Among other things it defines Petri net
categories that connect clustering and folding as well as
structure and behaviour (also in [5]). There are many areas
for further research, most obviously, our methods should
be validated and enhanced by tasks from different
domains. Conversely, a rather speculative idea: we used
folding-based Petri-net techniques for reverse engineering
– there must be other such unexpected applications.

The dialectic between static graph and behaviour is one
of the essentials of net theory. Although, obvious
correspondences exist in software engineering this work
could not make use of them. Translating a system to a
bipartite graph offers already powerful modelling and
analysis features. In terms of intuition, however, Petri net
dynamics behind the static structure is the driving force.
This research convinced us that folding-based Petri net
methods are useful in reverse engineering and it is
worthwhile to dedicate further research to them.

8 References

[1] Yi Deng, S. K. Chang, Jorge C.A. de Figueired, Angelo

Perkusich. Integrating Software Engineering Methods and

Petri Nets for the Specification and Prototyping of Complex

Information Systems. 206 – 223 in Application and Theory of

Petri Nets 1993. Springer, LNCS.

[2] Hartmut Ehrig, Maike Gajewsky, Sabine Lembke, Julia

Padberg, Volker Gruhn. Reverse Petri Net Technology

Transfer: On the Boundary of Theory and Applications. TR

97-21. TU Berlin. 1997.

[3] Olaf Fricke. Data Encapsulation and Data Abstraction with

Petri Nets - a Graphical Visualization of Modules. PNSE’97.

Uni Hamburg, Informatik, Bericht Nr. 205. 1997.

[4] Walter Keller. Petri Nets for Reverse Engineering. PhD

Thesis. 1999. For submisson to IfI, University Zürich. 1999.

[5] Walter Keller. Clustering for Petri Nets. 1999. Submitted to

Theoretical Computer Science. Elsevier.

[6] Wolfgang Reisig, Grzegorz Rozenberg (eds.). Lectures on

Petri Nets I: Basic Models. 1998. Springer, LNCS 1491.

	Introduction
	Modelling with Petri Nets
	Unique Reduction
	Relationship Analysis
	Applicability
	Previous Work
	Conclusion
	References

