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Abstract

This work builds a bridge from
• clustering techniques—merging neighbouring nodes which is a key feature for software engi-

neering and the practical applications of Petri nets—to
• folding techniques—merging only transitions with transitions and places with places, preserving

behaviour and allowing theoretical connections to many models of concurrency.
A new category of Petri nets is introduced. Morphisms support clustering, o6ering attractive
properties to software engineering and integrating smoothly with invariants. A computationally
reasonable adjunction connects it to folding-based Petri nets, namely, to two new cocomplete
and complete categories. The dichotomy of structure and behaviour of Petri nets is expressed
as compatible adjunctions to behavioural categories. Finally reachability and process semantics
are attached categorically and a new variant of occurrence nets is proposed as a purer image
of causality and branching. This framework o6ers categorical support for practical applications
of Petri nets.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is a concentrated version of the Petri net theoretical part of the author’s
Ph.D. thesis [10] that explores the potential of Petri nets as a tool for reverse engineer-
ing. The focus on conventional applications means using Petri nets in a Aeld where
they cannot play their natural strength to model concurrency.
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Fig. 1. Clustering (top) and folding (bottom). Fat arrows show net-arcs, (bunches of) thin arrows
morphisms.

The idea to use Petri nets for software engineering was—to say the least—a bit
outside of mainstream research. The task of reverse engineering is to recover soft-
ware structures—ideally reusable components. But the lack of a commonly accepted
compositional semantics (e.g. how do semantics change if two nets are combined or
a token is added to the initial marking?) is generally felt as a weakness of Petri
nets.
In fact the research yielded some surprising results. A manner to express this is

by elaborating the di6erences between two di6erent kinds of modelling: folding and
clustering (see Fig. 1).
In clustering, directly connected entities are grouped together. Neighbourhoods are

collapsed into a single object which also swallows relationships. Foldings, on the other
hand, merge similar objects and, separately, similar relationships. They group function-
ality and not adjacency. A model object stands for similar objects and hence inherits
many properties.
Clustering respects vicinity and is the usual method of breaking complex systems

down into subsystems. This is typical for software engineering (e.g. [21, p. 48]). A web
of collaborating active and passive elements is abstracted as a unit capable of delivering
certain services. Such a unit is called (sub)program, module, object, package, etc. and
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is used as a building block to compose larger systems. But for Petri nets, a clustered
node is neither a transition nor a place and, thus, not a Petri net concept. Folding is,
therefore, preferred for theoretical purposes but clustering is indispensable in practice
and especially for reverse engineering. Furthermore, coloured Petri nets are a very
convenient representation of foldings [10].
In Petri nets both principles are used (Section 1.1) but in separated areas. For our

application of Petri nets to reverse engineering we wanted to combine the practical
relevance of clustering-based approaches with the theoretical attractiveness of folding-
based methods. But we could not And such a combination in literature. Now, the main
results of our Ph.D. thesis are:
• categorical means to bridge from clustering to folding in Petri nets,
• folding-based Petri net algorithms for reverse engineering and Petri nets as an engi-
neering metaphor.

This paper reports results from the Arst point.
Folding-based morphisms transfer behaviour very nicely and a rich set of pow-

erful categorical connections to many models of concurrency have been detected—
giving deep theoretical insights (e.g. [27,16,25,19]). Such connections are missing in
clustering-based categories. The unfolding of a coloured or hierarchical net into the Hat
net (e.g. [9]) is not a contradiction to this statement—it is an internal or deAnitional
transformation rather than semantics.
Hence, the categorical bridge built from clustering to folding in this work is new and

widens the applicability of categorical Petri net theory because it allows the combina-
tion of folding techniques with clustering techniques. First, CPNs (a well-known kind of
coloured nets [9]) are tightly related to comma categories of special foldings. Hence,
we propose to enhance existing Petri Net tools (e.g. using CPN) with the categori-
cal machinery presented here, e.g. morphisms for simulation or implementation=design
relationships, universal constructions for Hexible compositions of subsystems and func-
tors for the transfer of semantics from one environment to another. Secondly, we use
the presented Petri net categories for reverse engineering [11]. An iteration of couni-
versal constructions extracts a high-level design from a net which represents low-level
information of an existing system.
Most Petri net classes use multisets. This is so widely accepted as natural that it

is seldom put in question. But multisets lack universal constructions, which normally
propagate to categories built on top of them. As multiset morphisms, net morphisms
usually map a place to a marking (e.g. [26]). Categories with such morphisms allow a
powerful transfer of behaviour, e.g. by the functors and adjunctions in [19]. However,
they neglect a principle of net theory—the interplay of structure and behaviour. Such
a morphism abstracts places to markings. But for practical work the operations on the
graph (e.g. the places) are essential for graph transformations, for visualisations, etc..
Furthermore, these morphisms map places to markings, but transition to transitions.
This asymmetry is a problem for the clustering of places with transitions. To remedy
these inconveniences we introduce the new category 1S of one-sets (DeAnition 2.2).
It has the same objects as multisets but morphisms are restricted.
Place–transition nets—the objects of the category PTNET (DeAnition 3.8)—are de-

Aned in the standard way but morphisms contain novel features. They are a
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combination of
• 1S morphisms,
• vicinity preserving graph morphisms,
• foldings commuting with the pre- and post-function.
Interpretation of a morphism between graphs as an implementation/speciAcation rela-

tion leads to the interpretation of the origins of a node as a subsystem. For
place–transition morphisms the origins of a transition form a subnet with proper port
transitions—similar to many net classes with compositional features. The origins of a
place form a subnet from which (essentially) only places are connected to the outside.
Hence, there are clustering capabilities useful for both software engineering and net
theory.
Net invariants are an important tool for Petri nets because they allow us to deduce

behavioural properties from the structure. A morphism transfers a place invariant back-
ward from the destination to the source net and a transition invariant forward. A semi-
positive place invariant gets simply a morphism to a net consisting of a single place
while a semi-positive transition invariant is the image of a T-system. Thus, morphisms
integrate well with linear algebraic techniques and yield a convincing reinterpretation
of invariants.
PPNET (DeAnition 4.19) is the key category of our categorical approach. It supports

clustering in a restricted form (places are mapped only to places), and by an adjunction
in the more general form of PTNET. But it is rigorous enough to enjoy nice categorical
features. All limits and colimits exist (Proposition 4.23). Hence, we may compose nets
by universal constructions and use graph transformation techniques, e.g. the simple or
double pushout approach [4,24].
PPNET is the subcategory of PTNET with the same objects but only place-preserving

morphisms which do not map places to transitions. The connecting adjunction (Propo-
sition 4.21) allows to simulate a net of PTNET in PPNET. This is both simple and
computationally reasonable—three nodes are added for every transition in the original
net. A morphism in PPNET yields a simulation that maps markings to markings and
transition-steps to steps (in a compatible way) whereas, in PTNET the phenomenon
of ‘transition in occurrence’ emerges (i.e. a transition has already consumed the inputs
but not yet produced the outputs).
In the dichotomy of clustering and folding, PPNET sits in the middle and so the

adjunction from PTNET looks like the Arst half of a bridge from clustering to folding.
A similar construction yields the second half of the bridge and the two adjunctions
compose to an adjunction from PTNET to FNET the category of nets with foldings
(DeAnition 4.24).
The Arst step to catch the behaviour of a Petri net is to add an initial marking which

enables the token game: transition occurrences consume and produce tokens. Because
morphisms should map enabled steps to enabled steps they have to preserve the initial
marking. Again we deviate from the usual deAnition: the image of the initial marking
may be less or equal than the initial marking in the destination net—not only equal
(categories PTSYS, PPSYS and FSYS in DeAnition 5.27).
This deviation is not a big change for simulation: some tokens of the initial marking

just remain immobile. But it is important for composition. For example, Fig. 2 shows
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Fig. 2. Two systems (top), their parallel composition (bottom left) and selective composition (bottom right).

that morphisms may now model the parallel composition of two systems whereas the
usual deAnition only allows selection.
Furthermore, this generalisation allows an adjunction between nets and systems, the

adjunctions between PTNET, PPNET and FNET lift to adjunctions between the corre-
sponding system categories PTSYS, PPSYS and FSYS and all these adjunctions form
a commutative diagram (Fig. 3). Altogether, this shows an impressive web of categor-
ical connections between behaviour oriented systems and structure oriented nets. This
is the categorical illustration of a basic Petri net principle: the interplay between static
structure and dynamic behaviour. We are not aware of any previous work formulating
this categorically. Especially, the net categories of both [26,16], deAne nets with initial
markings, i.e. systems in our terms. This might seem a small di6erence, but if nets
without initial marking are not formalised, they are not Arst class citizens. E.g. it gets
diMcult to reason about a net with di6erent initial markings which is a basic task for
many applications.
The last two sections show two examples of how the developed framework deals

with semantics. First, step reachability gives a functor from place-preserving systems
to state machines (category SM, DeAnition 6.32). It allows us to transfer proper-
ties like liveness or boundedness (Proposition 6.35). This functor has no adjoint,
the price for our decision that morphisms should keep contact with the underlying
graph.
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Fig. 3. The synopsis of categories and adjunctions.

Process-based semantics (e.g. [3]) At well in the framework because a process is
a kind of morphism. First the unfolding of a system of FSYS to a new category
WOCC of weighted occurrence systems (DeAnition 7.38) is a functor which is part of
a coreHection. The unfolding contains all processes of the system. The unfolding in
the category OCC of (safe) occurrence systems (DeAnition 7.38) yields a functor only
for the subcategory FSYS1 (systems with the initial marking a set, DeAnition 7.44)
and yields a coreHection for the subcategory of semi-weighted systems. Ignoring the
di6erent deAnitions of morphisms, this is similar to [19]. But, we have no adjunction to
OCC corresponding to that in [14] which requires only a restriction on the morphisms.
A comparison of these three semantics Arst shows that the expressive power of

the unfolding into WOCC is strictly stronger than that of the unfolding into OCC
which again is strictly stronger than that of process semantics. Secondly, under the
dichotomy of individual and collective token philosophy [8] process semantics and the
unfolding into OCC uses individual tokens, i.e. each occurrence of a transition produces
new individual tokens. The unfolding into WOCC, however, individualises tokens i6
they have a di6erent causal history. This is neither individual nor collective token
philosophy, rather, it represents a position between these two poles that reHects causality
and branching. In this sense, the unfolding to WOCC gives the pure semantics of
causality and branching for anonymous tokens whereas the unfolding to OCC represents
individual token philosophy.
The diagram of categories, functors and adjunctions in Fig. 3 summarises this work.

Clearly visible are
• the bridge from clustering to folding (PTNET over PPNET to FNET),
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• the dichotomy of structure (∗NET) and behaviour (∗SYS),
• the connections to semantics (SM, OCC and WOCC).

1.1. Literature review

There are many deAnitions of net morphisms in the literature. Let us start with
deAnitions maintaining a strong relationship to the underlying graph and supporting
clustering. Genrich et al. [7] deAne morphisms as a map f :X →X ′ mapping neigh-
bours in X to neighbours in X ′ and retaining the transition=place property, if the nodes
are not collapsed. This deAnition is usual for graphs and it is a special case of our
place–transition morphism. Christodoulakis and Moritz [2] sketch the use of such mor-
phisms for software engineering—we explore another facet of this approach by the
application of place–transition morphisms to clustering. In the outlook of [2] the rela-
tionship between morphisms and invariants is mentioned—a question which we answer
for our Havour of morphism.
A major inspiration for our work was Fehling [6]. Here, the same vicinity respect-

ing homomorphisms are used to deAne reAnement and abstraction. ReAnement is the
source of a morphism which is surjective on the arcs and the nodes whereas the image
is the abstraction. A graph of such reAnements builds a hierarchical net and a collec-
tion of net morphisms forms a hierarchical morphism, turning hierarchical nets into a
category.
Lakos [12] also combines clustering with behaviour transfer. He uses much more

complicated deAnitions for morphisms—partially due to the explicit handling of colours.
There are some similarities with the present work, e.g. the transfer of place invariants,
but the focus is di6erent: Lakos [12] adds many requirements to the morphism deAni-
tions to Anally reach the envisioned properties—whereas the current work uses simple
deAnitions and investigates categorical relationships between them.
The other line of morphism—that we call folding-based—considers a Petri net as

a two sorted algebra—with multisets of places and multisets of transitions—pre and
post as unary operators and the initial marking as a constant. A net morphism then is
simply an algebra morphism which preserves the operators. Winskel [26] introduced
such a deAnition together with safe occurrence systems as the semantics, connecting the
two categories by a coreHection. This needs some restrictions most notably nets have
to be safe. This restriction was softened in [14]. Note, that the deAnition disallows
a node to collapse with its neighbours. Hence clustering is not supported. Further
adjunctions are described in [18,15,25] (see [19] for an overview). They exemplify the
far reaching connections such folding-based morphism allow—very attractive from a
theoretical point of view.
Mukund [16] strengthens the morphism deAnition of Winskel [26]. The multiset

morphism on places must be induced by a partial function in the reverse direction of
the morphism (whereas our morphisms retract to a partial function in forward direction).
This allows a coreHection between Petri nets and step reachability which lacks in our
approach.
But the categorical framework also starts to attack more concrete tasks. For example

Nielsen and Cheng [17] gives an elegant categorical description of many variations of
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bisimulation and other forms of behavioural equivalence. This opens the possibility to
prove such an equivalence of concrete nets in the language of category theory.
Folding-based morphisms easily extend to algebraic high level nets. Padberg et al.

[20] use categorical constructions in such nets to prove safety properties. They are
applied in a real world software project using a combination of Petri nets, algebraic
speciAcation and algebraic graph transformation [4,24].
As predecessors of our bridge from folding to clustering we are only aware of the

following two generalities:
• Although clustering (e.g. decomposition in modules with high cohesion and low
coupling) is predominant in software engineering, foldings are also used, e.g. in
layered models or non-functional requirements.

• Most Petri net tools support di6erent forms of clustering (e.g. hierarchies) and fold-
ings (e.g. colours)—it is simply unavoidable for engineering.

However, most (newer) Petri net categories use morphisms that are pure foldings. The
widespread feeling that category theory is too theoretical for practical work is supported
by the lack of clustering in most Petri net categories. This work aims to reduce both,
this lack and this feeling.

1.2. Notation

For a general introduction to Petri nets refer to [23] for category theory to [13]. The
following summarises the used notation:

Numbers
N the natural numbers including zero
N+ the naturals excluding zero
Z the integers
[x; y] the interval {x; x + 1; x + 2; : : : ; y} of integers from x to y
|s| the cardinality of a set or a multiset for example |x + 2y|=3

Functions
f :X →Y a function, morphism, functor or natural transformation from X to Y
gf x multiplication, function composition and functor application may be

written with or without operator and or brackets. Functions are lifted
to multisets or power sets without special notation.

src(f) the source X for f :X →Y
dst(f) the destination Y
def (f) the elements of src(f) on which the partial function f is deAned
im(f) the image of f, a subset of dst(f)
S the diagonal operator Sx=(x; x)

Sets, relations, multisets
∃! the unique existence quantiAer: there is one and only one
A×B the cartesian product of two sets A and B
eRf (e; f)∈R for a relation R⊆E×F
[x]R the equivalence class of x for the equivalence relation R
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Fig. 4. Symbols for adjunction (top) and coreHection (middle left), reHection (middle right) and mnemonics
(bottom).

eR {f∈F | e Rf} for a relation R⊆E×F or
{e}×R or {er | r ∈R} for a set R

R∗ the reHexive and transitive closure of a relation R
SETP the category of sets and partial functions
Multiset a Anite linear combination of elements of a base set B, written as∑

i �ibi with �i ∈N and bi ∈B. We use the usual addition and
multiplication with a natural. In this paper, the base set may be
inAnite, however, the multisets are always Anite sums

m(b) the cardinality of the element b in a multiset m in function notation
supp(m) {b |m(b)¿0; b∈B} the support of a multiset m over B
Linear a function between two semigroups (e.g. appropriate sets of

multisets) is linear if it fulAls f(m + m′)=f m + f m′ and
consequently f�m= �f m for every natural �

MS the category of multisets. An object consists of all Anite multisets
over a given base set. A morphism is a linear function M →M ′ .

MS The functor SETP→MS maps a set to the multisets over
it and a partial function f to its linear extension by
(MSf)(

∑
i �ibi)=

∑
i �if(bi))

Petri nets
•x the pre-set of a node x
x• the post-set of a node x
m[�¿m′ the occurrence of a step � leading from marking m to m′

Categories: An adjunction is symbolised by two functor arrows connected by a triangle
(Fig. 4 top). The triangle points from the left adjoint L to the right adjoint R and is
also the direction of unit, counit and morphisms which are transferred by the natural
equivalence �.
For a coreHection the adjunction symbol is decorated with a vertical equal sign at

the side of the unit which consists of all isomorphisms (Fig. 4). A reHection gets an
equal sign at the side of the counit.
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Fig. 5. Although P is the pushout for Z-modules, the pushout does not exist in MS. Morphisms are given
by their matrices and elements are column-vectors of appropriate dimension.

2. One-sets

This section deAnes a subcategory of multisets, called one-sets, in which all (co)uni-
versal constructions exist and morphisms keep contact with the underlying graph.
Neither is true for multisets:

Lemma 2.1. Let M ∼=N1; M ′ ∼=M ′′ ∼=N2. Then f′ and f′′ de3ned in Fig. 5 lack a
colimit in MS.

Proof. With M ∼=Q1; M ′ ∼=M ′′ ∼=Q2 and P∼=Q3 Fig. 5 is a diagram in the category
of vector spaces. The proof proceeds in three steps:
(i) (p′; p′′) is the colimit of (f′; f′′) for vector spaces,
(ii) a colimit of (f′; f′′) in MS lifts to vector spaces,
(iii) (p′; p′′) does not transform to MS.
For (i) it suMces to consider morphisms q′ and q′′ to a one-dimensional Q. With

the matrices deAned in Fig. 5 the universal property translates as follows: For any
(four-dimension row vector) q∗ with

q∗(1; 2;−2;−1)T = 0 (1)
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there exists one and only one (four-dimensional row vector) q with

q∗ = qp∗: (2)

For vector spaces this holds by linear algebra because the rows of p∗ are a base of
the solutions q∗ of Eq. (1).
For (ii) we show that if (r′ :M ′ →R; r′′ :M ′′ →R) is a pushout for (f′; f′′) in MS,

then it is also a pushout for vector spaces. Let r∗ be the matrix (r′; r′′). The rows of
p∗ correspond to commutative morphism pairs from M ′ and M ′′ to Q. Thus, there is
a (unique) 3× 3 matrix L with

p∗ = L r∗:

Any commutative vector space morphism pair q∗ =(q′; q′′) is linear dependent on the
rows of p∗, i.e. q∗ = c p∗ for a three-dimensional row vector c. q∗ = c p∗ =(c L) r∗

shows that (c L) is a factorisation of q∗ over R.
To show the uniqueness of the factorisation of q∗, assume by contradiction q∗ = l′r∗

= l′′ r∗ with l′ = l′′. Let l1 be the factorisation of (1; 0; 0; 1)= l1 r∗. For �; !∈N follows
by linearity:

�(1; 0; 0; 1) = � l1 r∗ = (� l1 + !(l′ − l′′))r∗:

For an appropriate choice of � and ! there are two di6erent factorisations of �(1; 0; 0; 1)
in MS. Thus, a pushout in MS lifts to vector spaces.
Now, choose the connecting morphisms s∗ =(2; 0; 1; 0)= (2; 1;−1)p∗. This factori-

sation is valid for Z-modules but invalid in MS. For (iii) it remains to show that this
cannot be Axed by a base transformation T of P. T would transform Eq. (2) to

q∗ = (qT )(T−1p∗):

If q∗ varies over the rows of p∗ then q varies over the base vectors (1; 0; 0); (0; 1; 0)
and (0; 0; 1). Hence, if an entry of T is negative then one of the morphism pairs
(of a row of p∗) does not allow a factorisation in MS. An invertable matrix with
non-negative entries may only permute (and stretch) the base. Therefore, T cannot
transform (2; 1;−1) to a non-negative vector.

Z-modules are (co)complete, but to use them for Petri nets is a dead end. Hiding
the di6erence between an available resource +r and a missing resource −r in a tiny
sign compromises the essence of net theory.

De�nition 2.2. 1S, called one-sets, is the subcategory of MS with multisets over a base
set as objects. A morphism f∈ 1S[M;M ′] is the linear expansion of the product of
two functions, namely the base component f# and the coeMcients f$ with

f
(∑

i
�isi

)
=

∑
i with si∈def f#

�i(f$ si)(f# si) for a multiset
∑
i

�isi�s ∈ M

with f# ∈SETP[S; S ′], f$ : S →N; def f# = {s∈ S |f$ s =0}, S the base set of M , and
S ′ the base set of M ′.
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In other words 1S is a subcategory of MS with the same objects and the restriction
on morphisms that a base element is mapped to a multiple of a base element. This is a
generalisation over partial functions but a specialisation from multisets morphisms. It is
easy to see that the morphisms are compositional. A morphism f uniquely determines
the two factors f$ and f# and we will often use these symbols to designate these
factors of a morphism. Further, we reuse $ for the linear expansion of f$ to M →N.
Let us investigate the relationships of the new category.

De�nition 2.3. 1S : SETP→ 1S is the functor mapping a set S to the one-set with base
S and a partial function f to a 1S morphism with

∀s ∈ S: (1Sf)s =

{
f s (interpreted as a multiset) if s ∈ def f;

0; otherwise:

This functor builds the one-set over a given set. It is well-deAned and compositional
because the 1S morphisms with coeMcients 1 are a direct translation of partial functions
on the base sets.

De�nition 2.4. B : 1S→SETP is the functor that maps an object of 1S to its base set
(i.e. B (1S S)= S) and retracts a morphism f to f#.

B is the inverse to 1S on objects by mapping a one-set to its base set (for morphisms
see Proposition 2.6). This is possible for 1S-morphisms but not in general for MS-
morphisms. Compositionality follows because undeAned values propagate in partial
function composition in the same way as zeros do in products.

De�nition 2.5. BN : 1S→SETP is the functor mapping an object M to the set N+ ×
(BM) and a morphism f∈ 1S[M;M ′] to

def (BN f) = N+ × (def f#);

(BN f)(�; s) = (�f$(s); f#(s)) for (�; s) ∈ def (BN f):

BN maps a one-set to the base skeleton, which is the set of non-zero multiples of
base elements. By the same argument as above BN is well deAned. The three functors
are related as follows:

Proposition 2.6. 1S is left adjoint to BN . There is a natural equivalence ' : IdSETP →B
1S and there are isomorphisms (M :M → 1SBM with B (M = '#M .

1S
SETP 1S

BN

Proof. Let S be a set and M be an object of 1S. )S;M : 1S[1S S;M ]→SETP
[S; BN M ] given by )f=(f$; f#). ) is obviously a bijection between the two
sets of morphisms. Clearly, s∈SETP[S ′; S]; m∈ 1S[M;M ′] and f∈ 1S[1S S;M ]
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implies

)S′ ;M ′(mf 1S s) = (BN m)()S;M f)s:

This is the necessary naturality that turns ) into the claimed adjunction.
The functor 1S maps a set {s∈ S} to {∑i �isi | si ∈ S} which B maps back to {s∈ S}.

Hence 'S = IdS : S →B 1S S is a natural isomorphism. On the other hand (M = IdM : (M)
→ 1SBM is an isomorphism of an object M of 1S. But ( is not a natural transformation
1S B→ ID1S because it changes morphisms (im(1SBf)$ ⊆{0; 1}).

Proposition 2.7. 1S is cocomplete and complete.

Proof. To construct the colimit p :D→P of a given diagram D in 1S we use the col-
imit r :BN D→R in SETP. R exists because it is well-known that SETP is cocomplete.
To And the base elements of P let ∼ be the equivalence relation on the elements of
R generated by

{(qC(1; c); qC(�; c)) |C an object of D; c ∈ BC; � ∈ N+}:
Let .⊆R an equivalence class of ∼ and /(.) the set of functions compatible with
multiplication:

/(.) = {f : . → N+ |f(qC(�; c) = �f(qC(1; c))

for all � ∈ N+; c ∈ BC with qC(1; c) ∈ . and C an object of D}
and let )(.) be the minimal function in /(.) i.e.

)(.) =

{
f ∈ /(.) with /(.) = N+f if such an f exists;

undef ; otherwise:

Now let PB =def ) be the equivalence classes of ∼ with such a function, P the one-set
with basis PB and

pC : C → P linear with ∀c ∈ BN C: pC c = if [c]∼ =∈ PB

then 0 else ()[c]∼)(c)[c]∼:

Clearly these are well deAned 1S morphisms to P. Moreover they are natural transfor-
mations because the restrictions to the base skeletons are.
To show that P has the required universal property let q :D→Q be another natural

transformation as shown in Fig. 6. By the universal property of R there is a unique
qR :R→BN Q making the diagram in SETP commutative. Because each qC is a one-set
morphism the elements of an equivalence class . of ∼ are mapped either all to 0 or
to the multiples of a base element b. of Q and then the function

q. : . → N with q. x = (qR x)b.

is in /(.) and q. is a multiple of )(.). Hence qR lifts in a unique way to a 1S
morphism qP :P→Q. This Anishes the proof that P is the claimed colimit.
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BN p

Q

p

r

q    ∃ ? qP

D

BN D

P

R

BN P

BN Q
BN q

   ∃ ! qR

Fig. 6. The colimit in 1S.

Because BN has a left adjoint it preserves limits. Hence the skeleton of the limit of
a diagram D has to coincide with the limit r :R→BN D. To And a multiplication of
an element x∈R with a �∈N+ use

∀ objects C of D : rC(�x) =

{
� rC x if x ∈ def rC;

undef ; otherwise:

By the universality of R such a �x is unique because the elements of R are in bijection
with the natural transformations from a singleton set to R. On the other hand, if x is
an element of R it corresponds to such a natural transformation and by the linearity
of the morphisms in D also �x as deAned above. Hence �x uniquely exists and by the
same argument there is at most one s with �s= x for any x∈R and �∈N+. The base
in R is simply the set of minimal elements:

BR = {b ∈ R | ∀s ∈ R; � ∈ N+: if b = �s then � = 1):

We claim that any x∈R is the multiple of exactly one b∈BR and hence R=N+ ×BR.
Assume r= b �= b′ �′. If �= �′ then we showed already that b= b′. If � = �′ then r
is divisible by the least common multiple of � and �′. This contradicts that b; b′ ∈BR.
Thus, x is a multiple of at most one b∈BR. Such a b exists if the set D= {s | ∃�∈N+:
�s= x} is Anite. But there is a rC that is deAned on x and it maps D bijectively to
rC D⊆{s′ | ∃�∈N+: �s′ = rC x} and the latter set is Anite.

The computation of a colimit is computationally reasonable—the size of the product
does not exceed the size of the disjoint union that is the size of the input. But this
is not true for limits. Already the product of two one-sets with bases consisting of a
single element has an inAnite base. Although 1S is complete products are of limited
computational value.
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3. Place–transition nets

This section builds the category PTNET of place–transition nets. Its morphisms are
one-set morphisms and combine features from vicinity respecting and behaviour pre-
serving morphisms. They allow clustering, folding and mixtures. From vicinity respect-
ing morphism PTNET inherits a strong relationship with the underlying graph, which is
expressed in a coreHection with 1S. The interpretation of a morphism as an abstraction
relation shows powerful clustering capabilities. Place–transition morphisms integrate
with net-invariants and allow a simple interpretation of semi-positive invariants.

3.1. Basic properties

De�nition 3.8. The category PTNET of place–transition nets consists of objects

N = (preN ; postN ∈ MS[MSTN ;MSPN ])

with disjoint sets TN of transitions and PN of places.

XN = TN ∪ PN

are the nodes of the net N and f is a morphism N →N ′ i6

f ∈ 1S[1SXN ; 1SXN ′ ];

((f# t ∈ TN ′ and f preN t = preN ′ ft) or f preN ′ t = ft) (3)

and

((f# t ∈ TN ′ and f postN t = postN ′ ft) or f postN ′ t = ft) (4)

for all t ∈TN . f is called
• a folding i6 f# PN ⊆PN ′ and f# TN ⊆TN ′ ,
• unitary i6 f$ XN ⊆{1}, and
• binary i6 f$ XN ⊆{0; 1}.

As usual we will replace the index N by other forms of sub- or superscripting or drop
it completely, abbreviate XN ′ to X ′, etc. We deAne the pre-set and post-set of a node
x by

•x =

{
supp(pre x) if x ∈ T

{t ∈ T | x ∈ supp(post t)}; otherwise

x• =

{
supp(post x) if x ∈ T

{t ∈ T | x ∈ supp(pre t)}; otherwise:

The application of a pre or post-function will imply that the argument is a transition
multiset.
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(1)

(3)

(4)

(2)

(5)

(6)

Fig. 7. Examples of PT-Morphisms.

The pre- and post-functions map a transition to a multiset of places. A morphism
maps a node of the source net to a multiple of a node of the destination net and the
pre (post) multiset of a transition is either mapped to the pre (post) multiset of the
image or to the image of the transition itself, as shown in Fig. 7. This means that
the occurrence of a transition t is faithfully reHected by an occurrence of its image
if pref t=f pre t and postf t=f post t. If, on the other hand, pref t=f t=postf t
then an occurrence of the transition is completely invisible in the destination net. The
deAnition further allows that only ‘half ’ of a transition occurrence is visible: either the
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removal of the tokens from the pre-places or the creation of tokens on to post-places.
Such a split of a transition occurrence violates the principle of atomicity of transition
occurrence but is often a helpful concept (e.g. complex markings in [1]). For simpler
deAnitions, DeAnition 4.19, Lemma 4.20 or DeAnition 4.24.
The objects of PTNET are nets with weighted arcs that often occur in the literature,

e.g. in [19]. The morphisms, however, represent a novel combination of commutative
and vicinity respecting deAnitions. With the former (see [19] for an overview) a mor-
phism is the union of a (partial) function from T to T ′ and a multiset morphism from
MSP→MSP′ which respects pre and post (e.g. f pre= pre′ f) plus possibly some
further restrictions. Hence, our deAnition is more restrictive on the mapping of places
to places, but more general by allowing the mapping of transitions to multiples of tran-
sitions and ‘cross mappings’ from transitions to places and vice versa. The requirement
to respect pre and post is reHected in our deAnition by the condition before the ‘or’
in formulas (3) and (4).
Vicinity respecting morphisms (e.g. [7,6]) apply to elementary or condition=event

nets (with pre- and post-sets instead of multisets, i.e. bipartite graphs without multiple
arcs). Here a morphism is a graph morphism that is allowed to map an arc and its
two incident nodes either into a single destination node or to an arc and the incident
transition to the incident transition and the incident place to the incident place (e.g.
f•t=f t or f•t= •ft). The base component f# of our morphism is such a morphism
and f is a generalisation dealing with multiplicities. It is worth mentioning that a
morphism is allowed to map a node to 0.
We still have to show that

Lemma 3.9. PTNET is a well de3ned category with zero object.

Proof. For the composition of two morphisms f :N →N ′ and g :N ′ →N ′′ we get:

gf preN ′ t = g
({

f(t)
preN ′ f t

})
=




gf t
gf t

preN ′′ gf t




all possible combinations end up in gf t or preN ′′ gf t as required. The proof is
complete because of the mentioned convention that the application of a pre function
implies the argument to be a transition multiset. With the analogous calculation for
post this shows that the composition is yet again a morphism. It is associative because
it is in 1S. The identities are obvious and the empty net with neither transitions nor
places is the zero object of the category.

Let us Arst characterise the basic type of morphisms:

Proposition 3.10. A PTNET morphism f :N →N ′ is
epimorphic i9 f# is surjective
monomorphic i9 def (f#)=X and f# injective
an isomorphism i9 f is unitary, f# a bijection between X and X ′ and isolated
places are mapped to places.
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h

g

f
N‘ N“N

Fig. 8. f is epimorphic i6 gf= hf implies g= h. Fig. 9. Mono and epi but not iso.

Proof. If f# is surjective then clearly f is epimorphic. In the other direction we
assume that f# is not surjective and construct g; h :N ′ →N ′′ which contradict that f
is epimorphic (see Fig. 8). In a Arst case let t′ ∈T ′\im(f#). N ′′ is constructed from
N ′ by “doubling t” as follows:
• T ′′ =T ′ ∪{t′′} for a t′′ =∈ X ′,
• pre′′(t)= if t ∈T ′ then pre′(t) else pre′(t′),
• post′′(t)= if t ∈T ′ then post′(t) else post′(t′),
• N ′′ =(pre′′; post′′),
• g(x′)= x′,
• h(x′)= if x′ = t′ then t′′ else x′.
Clearly g = h but gf= hf which is the necessary contradiction to f epimorphic. The
second case is a place p′ instead of t′. If p′ is not isolated it is connected to a transition
t′ that neither can be in im(fB) and the Arst case applies. Otherwise, take N ′′ with
two places and no transitions. g and h are deAned only on p′ and map it to the Arst
respectively the second place of N ′′. As above this contradicts f to be epimorphic.
The second claim is proved similarly. For the last claim if f is iso it must be epi and

mono. Furthermore f$ must equal 1, because this is the only natural with a reciprocal.
But this is not suMcient: Fig. 9 shows a morphism that fulAls all these conditions
but its inverse is not a morphism. If a place is mapped to a transition there exists no
inverse because
• if the transition is not isolated then by bijectivity and commutativity with pre and
post,

• if the transition is isolated then the inverse must map it to an isolated transition too.
For the reverse direction any non-isolated transition must be mapped to a transition—
otherwise, the pre- and post-sets would also map to the image of the transition which
contradicts bijectivity. Consequently, non-isolated places map to places. By the above
and the last condition this is also true for isolated elements. All together this ensures
that the inverse of f also commutes with pre and post and hence is a PTNET morphism.
This proves the last claim.

Remark. The proposition still holds in subcategories of PTNET allowing only foldings
(FNET) or disallowing morphisms to map places to transitions (PPNET).
An isomorphism in PTNET is a bijective unitary folding or equivalently a pair of

bijections, one between the places and one between the transitions. Hence our Petri
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net isomorphisms are exactly the same as in clustering-based [7] or folding-based [19]
approaches. On the other hand, even our foldings are in general no morphisms of [19]
because they are allowed to multiply transitions.

De�nition 3.11. PTNET : 1S→PTNET is the functor that sends an one-set M to the net
with places BM , no transitions and hence empty pre and post functions. A morphism
is mapped to the same morphism. U is the underlying functor which sends a net N to
1SXN .
PTNET interprets the base elements of an object of MS as the places of a net

whereas U forgets the net structure and only keeps the one-set properties.

Proposition 3.12. PTNET : 1S→PTNET is the left adjoint of U . Moreover, they form
a core;ection.

1S PTNET
PTNET

U

Proof. The bijection PTNET [PTNETM;N ′]→ 1S[M;U N ′] translates to

PTNET[PTNET 1SP; N ′] → 1S[1SP; 1SX ′]

by setting M =1SP and U N ′ =1SX ′. Obviously the interpretation of the same mor-
phism once in PTNET and once in 1S is natural. The unit given by

Id ∈ PTNET[PTNETM;PTNETM ] → 'M ∈ 1S[M;U PTNETM ]

is clearly isomorphic and hence the adjunction is a coreHection.

Together with Proposition 2.6 this yields that BN U : PTNET→SETP has a left
adjoint. But probably more important is the functor U U : PTNET→SETP which re-
tracts a net morphism to a partial function of the nodes of the net. This is not far
from an appropriate graph morphism. Such a relationship is an important property of
a clustering-based morphism. It underlines an important Petri net principle: the inter-
play of structure and behaviour. This allows to deduce behavioural properties from the
structure, furthermore, for software engineering and visualisation a tight relationship to
the underlying graph is beneAcial. Multiset-based morphism do not retract so directly
to the nodes, which degrades the net structure to a ‘second class citizen’.

3.2. Clustering

A simple way to use category theory in software engineering is to interpret a mor-
phism f :C →D as the design D of the implementation C. The origins of a node of
D are a subsystem of C. This section investigates such clustering properties of PTNET
morphisms. The naive idea that the origins of a place form a super place and the
origins of a transition a super transition is not bad.



164 W. Keller / Theoretical Computer Science 308 (2003) 145–197

Fig. 10. The origins of a node form a super node.

De�nition 3.13. A subset S of nodes of a net is called transition-bordered i6 any
node in S with an arc to a node not in S is a transition. Place-bordered is deAned
correspondingly as shown in Fig. 10.

Proposition 3.14. Let f :N →N ′; Kf =XN\def (f#) and S ′ ⊆X ′. Then
def (f#) is transition-bordered and Kf place-bordered,

if S ′ is transition-bordered then also f−1
# (S ′) and

if S ′ is place-bordered then also f−1
# (S ′)∪Kf.

Proof. A straightforward application of the deAnitions. E.g. if t ∈Kf ∩T then ft= 0=
f pre t=f post t. Hence, • t⊆Kf ⊇ t• and Kf is place-bordered.

Hence, ignoring Kf—the ‘garbage component’ consisting of the nodes mapped to
0—the origin of a node is a super node of the same type as shown in Fig. 10.
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Looking closer at Fig. 10 one detects that super transitions have proper port tran-
sitions. That is, the post set of a transition is either completely inside or completely
outside of its super node (i.e. the origins of its image). This is easily formalised,
generalised from single nodes to subnets and proved to be correct ‘up to the garbage
component’ (refer to [10]).
In conclusion, PTNET morphisms directly o6er clustering capabilities that are very

attractive for software engineering and are tightly related to di6erent compositional net
classes.

3.3. Invariants

Invariants play an important role in net theory, because they allow you
to deduce behavioural properties from the net structure by linear algebraic
techniques.

De�nition 3.15. A place invariant of net N is a

a map i : PN → Z fulAlling i pre = i post

with i pre : TN → Z; i pre(t) =
∑
p∈P

i(p)pre(t)(p)

and analogously for post

and a transition invariant a

linear map j : TN → Z fulAlling pre j = post j:

with pre j : PN → Z; pre j(p) =
∑
t∈T

pre(t)(p)j(t)

and each such sum Anite:

A transition or place invariant is called positive if its range is in N+ and semi-positive
if its range is in N.

For functions to Z we freely switch between function notation and formal sum
notation and use linear expansion, as we do for multisets. E.g. in the second equation
j must be read as a formal linear combination of transitions. The equations express the
standard properties: a place invariant does not change under transition occurrence and
a transition invariant produces and consumes the “same tokens”. Morphisms transfer
place invariants in the reverse direction:
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0

1

Fig. 11. A place invariant may not transfer because of global (left) or local (right) incompatibility.

Proposition 3.16. Let f :N ′ →N; i a place invariant of N and

i : X → Z with i x =

{
i x if x ∈ P

i pre x; otherwise:

The restriction of i f to P is a place invariant of N ′. Restriction to P is a bijection
from morphisms from N to PTNET N and semi-positive place invariants of N .

Proof. Because i is a place invariant for each transition t ∈T holds i pre t= i post t=
i pre t= i post t= i t.
Hence, if i is semi-positive i is a PTNET-morphism N →PTNETN. On the other

hand, given such a morphism i reading the above proof backwards shows that the
restriction of i to P is a semi-positive place invariant of N . This proves the second
claim.
The composition i f is a morphism from N ′ to PTNET N. Thus, by the above, we

get the Arst claim for semi-positive place invariants. But this implies the general case
because compositionality with semi-positive invariants (i.e. functions to N) generalises
to place invariants (i.e. functions to Z).

Thus, a P-invariant travels from the destination to the source. Surprisingly, the prop-
agation in the direction of the morphism may fail as Fig. 11 shows.

De�nition 3.17. A T-system is Petri net in which the pre-multiset as well as the post-
multiset of any place is a set consisting of a single transition, i.e.

∀p ∈ P:
∑
t∈T

pre(t)(p) = 1 =
∑
t∈T

post(t)(p):

Proposition 3.18. Let f :N →N ′ and j a transition invariant of N . If

j′ =
∑
t∈T

f pre t �=f t

j(t)f(t) =
∑
t∈T

f post t �=f t

j(t)f(t)
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is de3ned (i.e. ∀t′ ∈T ′: j′(t′) is 3nite) then it is a transition invariant of N ′. A
semi-positive transition invariant corresponds to a unitary folding from a T-system.

Proof. Let f and j as above and interpret j as linear combination j=
∑

t∈T j(t)t. In
the following derivation the t ∈T under each summation symbol is omitted:

0 = (post-pre)j

0 = f(post-pre)j

0=f(post-pre)


 ∑

f pre t=f t
f post t=f t

j(t)t +
∑

f pre t=pref t
f post t=f t

j(t)t

+
∑

f pre t=f t
f post t=post f t

j(t)t +
∑

pref t=f t
f post t=post f t

j(t)t




0=
∑

f pre t=f t
f post t=f t

j(t)(f t − f t) +
∑

f pre t=pref t
f post t=f t

j(t)(f t − pref t)

+
∑

f pre t=f t
f post t=post f t

j(t)(postf t − f t)

+
∑

f pre t=pref t
f post t=post f t

j(t)(postf t − pref t)

0=
∑

f pre t=pref t
f post t=f t

j(t)f t − ∑
f pre t=f t

f post t=post f t

j(t)f t

− ∑
f pre t=pref t
f post t=f t

j(t) pref t +
∑

f pre t=f t
f post t=post f t

j(t) postf t

+
∑

f pre t=pref t
f post t=post f t

j(t)(postf t − pref t):
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The term f(post-pre)
∑

f pre t=f t
f post t=post f t

j(t) vanishes ((1) and (2) in Fig. 7) and f maps

the transitions in the remaining terms to transitions only. Thus, in the last equation
above, the Arst two summands are transition multisets whereas the last three are place
multisets. Hence already the sum of the Arst two terms vanishes which may be rewritten
as

∑
f pre t=pref t
f post t=f t

j(t)f t =
∑

f pre t=f t

f post t=post f t

j(t)f t

∑
f pre t=pref t
f post t=f t

j(t)f t +
∑

f pre t=pref t
f post t=post f t

j(t)f t

=
∑

f pre t=pref t
f post t=post f t

j(t)f t +
∑

f pre t=pref t
f post t=post f t

j(t)f t

∑
f pre t �=f t

j(t)f t =
∑

f post t �=f t
j(t)f t = j′

which shows that j′ is well deAned. Similarly the sum of the last three terms vanishes
which yields that j′ is indeed a transition invariant:

∑
f pre t=pref t

j(t) pref t =
∑

f post t=post f t
j(t) postf t

pre
∑

f pre t=pref t
j(t)f t = post

∑
f post t=post f t

j(t)f t

pre j′ = post j′:

For a T-system N holds preT =P=post T , thus T is a transition invariant and by the
above for any folding f :N →N ′ follows that f T is a transition invariant of N ′. If, on
the other hand, j′ is a transition invariant of a net N ′ a transition system N =(pre; post)
and a unitary folding f :N →N ′ may be constructed by ‘unfolding j′ and the arcs’:

T = {(t′; 7) ∈ T ′ ×N+ | 16 7 6 j′(t′)};

P = {((t′; 7); p′; #′) ∈ T × P′ ×N+ | 16 #′ 6 (pre′ t′)(p′)};

pre(t) =
∑

(t;p′ ;#′)∈P
(t; p′; #′):

To construct the post-function the output arcs must be unfolded and a bijection b
between output and input places must be chosen. Such a bijection exists because j′ is
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Fig. 12. The pushout is lacking in the diagram with the three nets in the upper half. Fat arrows show
net-arcs, (bunches of) thin arrows morphisms.

a transition invariant:

Q = {((t′; 7′); p′′; #′′) ∈ T × P′ ×N+ | 16 # 6 (post′ t′)(p′′)};

b : P → Q a bijection with if b(t; p′; #′) = (u; p′′; #′′) then p′ = p′′;

post(t) =
∑

(t;p′′ ;#′′)∈Q
b(t; p′′; #′′);

f : N → N ′ with f(t; 7) = t and f(t; p′; #′) = p′:

The construction ensures that f pre= pre′ f and f post = post′ f thus f is a morphism
and even a unitary folding. Because b is bijective N is a T-system and by construction
f T = j′ which Anishes the proof of the last claim.

The asymmetry between place and transition invariants is a consequence of the break
in transition/place duality in the deAnition of a morphism. A place invariant has a very
concise characterisation: it is just a morphism to a single place net. For a transition
invariant the procedure is more complex—it has to get unfolded in a T-system—which
is neither unique nor small.

3.4. Limitations

A major limitation of PTNET are missing universal constructions. Pushouts exist
only for foldings but not in general as the example in Fig. 12 shows. By commuta-
tivity the black elements map to the same node. Should it be a transition or a place?
For a factorisation to the left bottom net to a place but for the right bottom net to a
transition! Hence the pushout cannot exist. Because there are no restrictions for mor-
phisms to interchange places and transitions the transfer of the bipartite structure fails.
For pullbacks additionally the pre- and post-function may collapse. Furthermore, the
transfer of behaviour is rather complicated. For the token game this may be seen from
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the formula in Proposition 3.18 which preserves the balance of produced and consumed
tokens.

4. From clustering to folding

The simple restriction that morphisms have to map places to places yields the cat-
egory PPNET of place-preserving nets. Here, all (co)universal constructions exist and
additional relationships to one-sets hold. A crucial point is that a place–transition net
can be simulated by a place–preserving net, namely by a functor PP which is part of
an adjunction (Proposition 4.21).
Place-preserving nets are the middle pillar of the bridge from clustering to folding

which is represented by the category FNET. The second half of the bridge is constructed
similarly. This yields an adjunction to FNET which composes to a computationally
reasonable adjunction from PTNET to FNET.

4.1. Place-preserving nets

De�nition 4.19. A PTNET morphism f :N →N ′ is called a place-preserving morphism
i6 f#(P)⊆P′. The category PPNET is the subcategory of PTNET with the same objects
and place-preserving morphisms.

Obviously, the PP in PPNET stands for place-preserving. But the following lemma
gives it another but equivalent sense.

Lemma 4.20. Let Sx=(x; x) and

pp = (pre; post) ∈ (MS[MST;MSP])2 ∼= MS[MST; (MSP)2]

and N and N ′ be Petri nets. For a 1S morphism f : 1SX → 1SX ′ the following are
equivalent in pairs
• f is a place-preserving net morphism

• ∀t ∈ T holds: f pp t =

{
pp ft if t ∈ def f# and f# t ∈ T ′;

ft; otherwise
and ∀p∈P ∩ def f# holds: if •p=p• = {} then f# p∈P′,

• (∀t ∈ T : f pp t = pp′ f t or f pp t = Sf t)
and (∀p∈P ∩ def f#: ∃p′ ∈P with f# p′ ∈P′ such that p and p′ are connected by
an undirected path with all nodes in def (f#)).

Proof. A place-preserving morphism disallows examples (2)–(4) from Fig. 7, and the
remaining cases fulAl the second condition. From the second condition follows the
third, by selecting p=p′ and the path consisting of p and no edges.

Assume the third condition. It implies that f is a PTNET morphism. Furthermore,
f# cannot map a place to a transition, otherwise, on the postulated path from such a
place one could And a transition t connected to places p and q with f# p∈T ′ and
f# q∈P′. But this contradicts both f pp t=Sf t and f pp t=pp′ f t.
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Fig. 13. PP maps a transition to 4 nodes.

This lemma allows us to replace pre and post by the combined function pp. This
simpliAes notation and proofs. For example we may abbreviate a net N =(pre; post)
by N =pp.

4.2. From PTNET to PPNET

Clearly, there is a forgetful functor U : PPNET→PTNET simply forgetting the place-
preserving restriction on morphisms. We construct a functor PP in the reverse direction.
The basic idea is, to replace every transition by three transitions and a place as shown
in Fig. 13. This deals with the four combinations of the image of pre and post of a
transition for a PTNET morphism, shown as cases (2)–(5) in Fig. 7. Formally, a net
NPP is derived from a given net N by:
4 new symbols d (direct), i (input), o (output) and n (internal or inherited)

PPP = {xn | x ∈ X };
TPP = {ty | t ∈ T; y ∈ {d; i; o}}

the xy notation is extended to multisets in the obvious way

prePP ty =

{
tn if y = o

(pre t)n; otherwise;

postPP ty =

{
tn if y = i

(post t)n; otherwise;

PPN = (prePP; postPP :MSTPP → MSPPP):
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Clearly PPN is a net. The linear function 'N with 'N xy = x is a PTNET morphism
'N :N →NPP, by construction of prePP and postPP. Furthermore, for any PTNET mor-
phism f :N ′ →N there is a unique place-preserving morphism g :N ′ →NPP making
the triangle commutative (Fig. 14). g is deAned on x′ ∈X ′ by

g(x′) =




(f x′)n if x′ ∈ P′ or f pre′ x′ = f x′ = f post′ x′

(f x′)o if f pre′ x′ = f x′ and f post′ x′ = postf x′

(f x′)i if f pre′ x′ = pref x′ and f post′ x′ = f x′

(f x′)d if f pre′ x′ = pref x′ and f post′ x′ = postf x′:

Clearly g is place-preserving. The proof that it is a morphism needs to check each case
of the deAnition. For an input transition t′:

g t′ = (f t′)i

g pre t′ = (f pre′ t′)n = (pref t′)n = pre g t′

g post t′ = (f post t′)n = (f t′)n = post g t′

and similarly in the three other cases.
To prove the uniqueness of g notice that the commutativity of the triangle requires

g x′ =(f x′)y. If x′ is a place y= n because g is place-preserving. If x′ is a transi-
tion there is only one possibility to select y such that g fulAls the place-preserving-
morphism-property on {x′}∪ •x′ ∪ x′•, namely the one given above in the deAnition
of g.

Proposition 4.21. PP is a functor from PTNET to PPNET and is right adjoint to the
underlying functor U with ' the counit.

PPNET PTNET

U

PP

Proof. Redrawing Fig. 14 as Fig. 15 yields that 'N is a universal arrow from U to
N which by a result from category theory [13, Theorem 2, p. 81] yields that PP is a
functor and is right adjoint to U with the counit '.

Notice that the two adjunctions between PTNET and 1S, respectively
PPNET do not compose as adjunctions because left and right do not match. But there
are other adjunctions. This has consequences for universal construction in PPNET
(Section 4.3).

Proposition 4.22. Let PL : PPNET→PPNET be the functor dropping all transitions
and keeping the places of a net. U PL : PPNET→ 1S forms a core;ection with the left
adjoint PP PTNET and forms a re;ection with the right adjoint MM2 : 1S→PPNET.
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   ε N

f

N

N'

NPP

∃ ! g Ug

   ε N

f

N

U N'

U PP N

g

N'

PP N

Fig. 14. The unique factorisation g. Fig. 15. The unique factorisation g as universal arrow
from U to N .

The diagram below summarises the situation. Notice that it is not commutative, e.g.
U U =U PL and the cyclic triangles compose to identities only in special cases (e.g.
U PL PPPTNET= Id1S) but not in general.

PP PTNET

PTNET

PP

U

U

PPNET PTNET

U PL

1S

MM2

Proof. Let M be an object of 1S and N of PPNET. PTNET M has only places, so
PP has no transitions to expand and produces an isomorphic object. Furthermore,

PPNET[PP PTNETM;N ] ∼= 1S[M;U PLN ]

is just a reinterpretation of the same function once as a place-preserving morphism and
once as 1S morphism between M and the multiset over the places of N . Clearly the
units of this adjunction are isomorphisms in 1S.
The construction of the claimed functor MM2 uses the same categorical technique as

Proposition 4.21 (see Fig. 15). To a given one-set M =1S S we build a net N =MM2M
which contains a node for each minimal combination of pre and post

X = {(m′; m′′) ∈ M × M | ∀l′; l′′ ∈ M; � ∈ N+:

if (m′; m′′) = (�l′; �l′′) then � = 1 or m′ = m′′ = 0}:
The set of places is an embedding of S in X

P = {(1s; 1s) ∈ X | s ∈ S}
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and pp is deAned on a transition (m′; m′′)∈T =X \P by

pp(m′; m′′) =
(∑

s∈S
m′(s)(1s; 1s);

∑
s∈S

m′′(s)(1s; 1s)
)

:

The counit 'M :U PLMM2M →M is simply the projection with

'M (1s; 1s) = s for (1s; 1s) ∈ P:

Now, let f :U PLN ′ →M be a 1S morphism. If there exists a factorisation f=
'MUPL g with a place-preserving morphism g it fulAls

gp′ = (f$ p′)(1f# p′; 1f# p′) for p′ ∈ P′;

g t′ = �t′((1=�t′)g pp′ t′) for t′ ∈ T ′ and an appropriate �t′ ∈ N+:

By the deAnition of X such a �t′ is uniquely determined unless f pp′ t′ = 0. These
equations completely determine g, hence, g is unique. Conversely, these equations de-
Ane a linear function g which maps places to places and yields the wanted factorisation.
That g is indeed a PPNET morphism is derived by

g pp′ t′ =
(∑

s∈S
(f pre′ t′)(s)(1s; 1s);

∑
s∈S

(f post′ t′)(s)(1s; 1s)
)

=

{
Sg t′

pp(f pp′ t′) = pp(g t′):

Thus 'M :U PLMM2M →M is an universal arrow from U PL to M which yields the
claimed adjunction.

4.3. Universal constructions

Proposition 4.23. PPNET is cocomplete and complete.

Proof. Because U : PPNET→ 1S has a right adjoint it preserves colimits [13, Freyd’s
adjoint functor theorem]. Thus, if a diagram D in PPNET has a colimit it can be
constructed by adding a net structure on the colimit v :U D→V in 1S which exists
by Proposition 2.7. First a bipartite structure is deAned such that the vC maps places
to places:

P = {vC;# p ∈ BV |p ∈ PC for an object C of D};
T = BV\P:

In order to build pp we start with functions pxC for each object C of D (see Fig. 16):

pxC ∈ 1S[U C; 1SP × 1SP]

pxC(x) =

{
vC(ppC x) if x ∈ TC;

vC Sx; otherwise:
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vC

pxC

U C V

1S P x 1S P

 ∃! pxV

U uCuV

vC
V

U N

U C

U Q

U qC    ∃!  U qN

    ∃! qV

Fig. 16. Construction of pp for a colimit. Fig. 17. The limit in PPNET.

The pxC are well deAned 1S morphisms, furthermore, they are a natural transformation
from D to 1SP× 1SP because the arrows in D are PPNET morphisms and v is natural
in 1S. By the universal property of V this yields a unique 1S morphism

pxV : V → 1SP × 1SP with pxC = pxV vC

and we get ppV as the restriction of pxV to T . The construction yields for t ∈TC

vC ppC t = pxC t = pxV vC t =
{
ppV vC t
SvC t

}
:

Thus, ppV turns V into a net N =ppV and the vC and v in PPNET-morphisms. The
universal property of v :D→N in PPNET follows from the universal property of V
in 1S, the construction of pp ensures that the connecting 1S morphism is a PPNET
morphism.
To show completeness a limit is constructed by modifying a limit in 1S. Let v :V

→U D be the limit in 1S of a U D for a diagram D in PPNET as depicted in Fig. 17.
DeAne a net N =pp with places the base elements from V that are mapped to places
and ‘all necessary transitions’:

P = {p ∈ BV | ∃ an object C of D: p ∈ def vC;# and vC;# p ∈ PC};

T = {(t; y) ∈ (BV\P)× (1SP)× (1SP)|
∀ objects C of D: vCy = (if vC;# t ∈ TC then vC pp t else SvC t)}

pp(t; y) = y:

Clearly N =pp is a net. If the projection uV ∈ 1S[UN; V ] is deAned by

uV x = if x ∈ P then x else if x = (t; y) ∈ T then t

then by construction the compositions uC = vC uV become PPNET morphisms from N
to C and the uC form a natural transformation u :N →D in PPNET.
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Fig. 18. Allowed (
√

) and disallowed (∅) mappings for di6erent morphisms.

It remains to show that N has the universal property. For that, let q :Q→D be a
natural transformation. The universal property of V yields a unique morphism qV ∈
1S[UQ; V ] as shown in Fig. 17. If the required connection qN :Q→N exists it must
fulAl for any x∈XQ:

qN x = if qV x = 0 or qV# x ∈ PQ then qV x else (qV x; qV pp x):

This implies the uniqueness of qN . The existence of qN follows by a translation of the
PPNET morphism deAnition of qC = vC qV to the construction of N .

It is interesting to compare this proposition with the adjunctions in Proposition
4.22. U P : PPNET→ 1S has a left adjoint and preserves limits. That it vanishes on
transitions gives the freedom to multiply the transitions for all possible combina-
tions of pre- and post-sets. This would be impossible if the adjunctions over PTNET
would compose and U U : PPNET→ 1S had a left adjoint. We can reiterate the re-
mark after the universal constructions in 1S: colimits are computationally reason-
able, their size does not exceed the disjoint union, but limits have a tendency for
inAniteness.

4.4. Foldings

De�nition 4.24. FNET is the subcategory of PTNET with the same objects but only
foldings as morphisms.

Fig. 18 shows di6erent mappings of nodes and tabulates in which categories they
are allowed for morphisms. It lists our three categories, a typical clustering-based one
[7] and folding-based ones [26,16]. However, this table reHects symptoms only. It
cannot explain the underlying principles that, e.g. in [16], are quite di6erent from
ours.
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pr

p

pq
 F

Fig. 19. The functor F .

Proposition 4.25. There is a functor F from PPNET to FNET which is right adjoint
to the underlying functor U .

FNET PPNET
U

F

Proof. Basically, F replaces every place by one place and one transition as shown in
Fig. 19. This may be thought of as moving outside the transition hidden inside a place
in PPNET. Formally, NF is constructed from a given net N by two new symbols q
and r

PF = {pq |p ∈ PN}
TF = {xr | x ∈ XN}

the pq and xr notation is extended to (pairs of) multisets in the obvious way

ppF xr =

{
(ppN x)q if x ∈ TN ;

(xq; xq); otherwise:

'N (xy) = x for xy ∈ XF:

Clearly NF is a net and 'N extends to a place-preserving morphism. For any PPNET
morphism f :N ′ →N there is a unique factorisation into a folding g and 'N (analogous
to Fig. 14). g is deAned on x′ ∈ X ′ by

g(x′) =

{
(f x′)q if x′ ∈ P;′

(f x′)r ; otherwise:

This is the only possibility to get a connecting folding. On the other hand, g is a
well deAned folding for any PPNET morphism f. The same argumentation as in the
proof of Proposition 4.21 yields that there is a functor F with FN =NF and that it is
right-adjoint to U .
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Fig. 20. Comparison of a morphism f : S → S′ in di6erent categories.

Proposition 4.26. FNET is cocomplete and complete.

Proof. The colimit of a diagram is the same as in PPNET: the universal connection
automatically becomes a folding in FNET. Limits are di6erent: transitions have to get
paired only with transitions. With this change the same construction and proof works
as for Proposition 4.23.

5. Structure and behaviour

This section introduces categories for net systems and shows the relationships to
the structural categories from the last sections. As usual, a net system is deAned
as a net with an initial marking but morphisms are new. As announced in the in-
troduction, this yields modelling power and an impressive web of adjunctions. Sys-
tems are not cocomplete or complete as the underlying nets are. But we will charac-
terise the existence and construction of (co)universal constructions in an intuitive way
(Proposition 5.31).

5.1. Net systems

De�nition 5.27. A system S is a pair S =(NS; IS) with a net NS and an initial marking
IS ∈ 1SPS . The categories PTSYS, PPSYS and FSYS respectively have systems as their
objects. A morphism f : S → S ′ is a morphism NS →N ′

S of PTNET, PPNET and FNET
respectively which fulAls f IS6I ′S . ∗SYS and ∗NET symbolise any of these pairs of
corresponding categories.
As usual the initial marking is a multiset of places. The idea behind the deAnition

is that the image of an enabled step sequence in the source system is enabled in
the destination system (for foldings, the situation is more complicated for general
morphisms). For this it is suMcient that the image of the initial marking is contained
in the initial marking of the destination net. This generalisation over the usual equal
yields several beneAts. First, the empty net with marking 0 becomes the zero object of
the category. Secondly, as shown in Fig. 2, it allows to simulate subsystems, parallel
compositions, etc.
The objects in the categories ∗SYS; in [26,16] are the same up to technical restric-

tions such as Aniteness or emptiness. Genrich et al. [7] provides no initial markings
and no arc weights. For morphisms the situation is tabulated in Fig. 20.
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De�nition 5.28. Let S =(NS; IS) and S ′ be systems, f : S → S ′ be a morphism and
deAne the following functors:

NET: ∗SYS→∗NET maps S to NS and f to f.
IP: ∗SYS→∗NET maps S to the net (PTNET supp IS) and f to the restriction

of f to IP S.
IM: ∗SYS→∗SYS maps S to (IP S; IS) and f to IPf
SYS0: ∗NET→∗SYS maps a net N to (N; 0) and a morphism to itself.

NET forgets the initial marking, IP retains only the places marked by the initial mark-
ing, IM retains only the initial marking and SYS0 adds a zero initial marking.

Proposition 5.29. SYS0: ∗NET→∗SYS forms a core;ection with NET. PP and F lift
to systems giving the commutative adjunction diagram alongside.

NET

SYS0
PPNET PPSYS

UF

NET

SYS0
FNET FSYS

UF

NET

SYS0
PTNET PTSYS

UPP UPP

Proof. Clearly

� = id : [SYS0N; S] → [N;NET S]

is natural and injective because it is the interpretation of the same morphism once in a
system and once in a net. Because f 0= 06IS it is also surjective and hence a bijection
as required for the claimed adjunction. The unit ID→NET SYS0 adds and removes
an initial marking from a net yielding an isomorphism and turning the adjunction into
a coreHection.
Let S ′ =(N ′; I ′) a place-preserving system. Interpret for a moment N ′ as an object

of PPNET. The unit '′N :N ′ →NETPPN ′ gives a place-preserving morphism '′ :N ′ →
PPN ′. Hence '′ I ′ is a marking in PPN ′ and PP S ′ =(PPN ′; '′ I ′) is well deAned.
Although '′ : Id→PP is not natural, it is ‘natural on places’ and this suMces for

(PPf)IPP S = (PPf)' IS = '′ f IS 6 '′ I ′S

hence PP is well deAned on morphisms.
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Let �N;N ′ : PTNET[U N;N ′]→PPNET[N;PPN ′] the natural equivalence given by the
adjunction between NET and PP. � lifts to systems by

�N;N ′ : PTSYS[U (N; I); (N ′; I ′)] → PPSYS[(N; I); (PPN ′; '′ I ′)]

for the same reason, namely, that ' is ‘natural for the initial marking I ’. F is lifted
in the same way. Commutative adjunctions means that left adjoints are composed with
left adjoints and right adjoints with right adjoints. That these compositions commute
follows directly from the construction.

Proposition 5.30. IM : ∗SYS→∗SYS has a right adjoint, namely MM2I for PTSYS
and PPSYS and FMM2I for FSYS.

*MM2I

IM
*SYS *SYS

Proof. We have to lift the functor MM2 and the appropriate part of Proposition 4.22
to systems. For that deAne the object function and counit 'S by

MM2I S = (MM2 IP S; I)

'S = <S'IP S : IMMM2I S → S with 'IP S :U PLMM2 IP S → IP S the counit of the adjunc-
tion of U PL and MM2 and <S : IP S →NET S the natural embedding.
This works Ane on the initial marking and the universal property follows from that

in PPNET. This proves the claim for PPSYS. It implies the claim for PTSYS because
IMf is place-preserving for any place–transition morphism f : S → S ′ by

f# supp I ⊆ supp I ′ ⊆ P′:

Finally, for FSYS we must deAne

FMM2I S = (F MM2 IP S; 'MM2 IP S I)

IMFMM2I S equals IMMM2I S, thus, the counit 'S may be deAned as above and
F lifts the universality of MM2I to FSYS by Proposition 4.25.

5.2. Universal constructions

Proposition 5.31. A diagram D in PPSYS or FSYS has a colimit respectively a limit
i9 IMD has.

Proof. The only if direction for colimits follows from Proposition 5.30: because IM
has a right adjoint it preserves colimits [13]. For limits let u :U →D be the limit
of D in ∗SYS as shown in Fig. 21. A natural transformation q :Q→ IMD yields a
natural transformation < q :Q→D with < : IM→ ID the obvious natural transformation
embedding an initial marking in its system. The universality of U yields a unique
rU :R→U . But this rU maps R to the initial marking of U hence it uniquely retracts
to a unique q′ :Q→ IMU with jU q′ = qU . Thus IMU is the limit of IMD.
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q'

u

ι

j

ι U
IM U

IM D

U

D

q

Q
   ∃ ! qU

NET qJ

u

uJ

j

ιIM D

J

D

U

q

qU

Q

NET j

NET ι
NET IM D

NET J

NET D

NET q

NET Q

u

uJ
NU    

    ∃ ! qJ

 ∃ ! qN

Fig. 21. IM on limits. Fig. 22. Construction of a colimit.

To construct the colimit of a diagram D let j : IMD→ J be the colimit of the initial
marking. The combined diagram (j : IMD→ J; < : IMD→D) has a colimit in ∗NET

u : NET(j : IMD → J; < : IMD → D) → NU

as shown in Fig. 22. To lift this colimit to ∗SYS let

U = (NU ; uJ IJ ):

For any object C of DuC preserves the initial marking by

uC IC = uC <C IIM C = uJ jIM C IIM C 6 uJ IJ = IU :

To show that U has the necessary universal property let q :D→Q be a natural trans-
formation in ∗SYS. The universal property of J yields a unique qJ : J →Q. (NET q)
together with NET qJ yields a unique qN :NU →NETQ by the universal property of
NU . qN uniquely retracts to a qU :U →Q with NET qU = qN because it preserves the
initial marking by

qU IU = qU <J IJ = qJ IJ 6 IQ:

qU is unique because it is determined by NET qU = qN which is unique. Thus U is
the claimed colimit.
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qJ

u

ι

 j

ιU
J

IM D

U

D

q

   ∃ ?qU

Q

IM q

IM Q
ιQ

Fig. 23. Construction of a limit.

NET has a left adjoint and preserves limit. If u :U →D is the limit of a diagram D
in ∗SYS then NET u :NU → IMU is the limit in ∗NET. Thus to construct the limit U
of D we have to And an appropriate initial marking which lifts NU to U =(NU ; IU ).
For this we use the limit j : J → IMD. First, < j : J →D is natural and the universal
property of U yields a <U : NET J →NU . The deAnition IU = <U IJ makes U a system
and <U a morphism in ∗SYS. This also holds for uC by

uC IU = uC jU IJ = <C jIM C IJ 6 IC for any object C of D:

Given a natural transformation q :Q→D in ∗SYS there are unique qJ and qU by the
universality of J and NU respectively, as shown in Fig. 23. Clearly, J = IMU; qJ = IM
qU and by < : IMQ→ ID the whole diagram is the natural transformation of the com-
mutative left-hand triangle to the right-hand triangle. Hence, qU preserves the initial
marking and is the required unique morphism in ∗SYS. Thus, U is the limit of D.

Remark. The prerequisite in IMD may be weakened to naturality whereas uniqueness
may be dropped. A transfer of this proposition to PTNET must explicitly consider the
existence of the speciAc colimit (limit respectively) in PTNET which has been used
in the proof.

6. Reachability and liveness

This section looks at reachability semantics—one of the simplest and most frequently
used ones. Mapping a system to its step reachability is shown to be functorial for
place-preserving nets. This was to be expected—the intuition behind the deAnition of
morphisms was the transfer of step occurrences. But in place–transition nets morphisms
allow the mapping of ‘half transitions’ by handling the pre- and post-functions of a
transition separately. In contrast to other authors which formalise the split of a transition
in an input and an output occurrence we use the adjunction to place-preserving nets.
Reachability semantics becomes functorial there—with transition occurrences remaining
atomic.
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De�nition 6.32. SM the category of state machines is the full subcategory of PPSYS
with the objects fulAlling

all arc weights are one and each transition has exactly one input and one output
place

I =1pI : the initial marking consists of a single token on a single place pI ,
X =pI F∗ with F∗ the transitive closure of the How-relation F : neither dead
transition nor never-marked places.

In our framework it is easier to handle step than sequential reachability:

De�nition 6.33. SM S for a system S =(N; I) is the state machine (N ′; I ′) with
P′ =all markings of S reachable from I including I itself
T ′ = {(m; �) |m∈P′ �∈ 1ST with m[�¿}
pp(m; �)= (m;m′) with m[�¿m′.
I ′ = I:

In short, SM unfolds a system to its step reachability graph.

Proposition 6.34. SM extends to a functor SM : PPSYS→SM.

Proof. To deAne SM on a morphism f : S → S ′ let m[�¿m′ be a step occurrence in
S and

(SMf)m = f m + (I ′ − fI);

� =
∑

t∈T and f# t∈T
�(t)t

(SMf)(m; �) =

{
fm + I ′ − fI if � = 0;

(f m;f �); otherwise:

The Arst line maps markings to markings because f is place-preserving. That SMf
maps enabled step sequences to enabled step sequences is shown by induction over the
length of enabled step sequences. Induction start for the initial marking is obvious. For
the induction step let m be reachable in S, (SMf) m be reachable in S ′ and m[�¿m′

be an enabled step sequence in S. Then

(Sf)m¿ pref � ¿ f pre � = pref �

shows that (Sf)m[(Sf) �¿ is enabled in S ′ and

(SMf)m′ − (fI − I ′) =f m′ = f m + f(−pre + post)� = f m + f(−pre + post)�

=f m + (−pre′ + post′)f � = f m + (−pre′ + post′)(SMf)�

shows that (SMf)m[(SMf)�¿(SMf)m′ is enabled in S ′ and that (SMf)m′ is a
reachable marking of S ′. Hence, SMf is a place-preserving morphism from SM S to
SM S ′. SM is compositional because the source morphism are place-preserving.
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SM clariAes how a morphism transfers properties which may be deduced from the
reachability graph.

Proposition 6.35. For a place-preserving morphism f : S → S ′, a transition t ∈TS with
f# t ∈T ′ and reachable markings m and m′ of S hold:
• if m′ is reachable from m then also fm′ from fm,
• if f# t (even f t su@ces) is dead at f m then also t at m,
• if S is live and f epimorphic then also S ′ is live,
• if S ′ is bounded at f# p by k ′ then S is bounded at p by k ′=(f$ p).

Proof. Use SM to map the pertinent step sequences.

Proposition 6.36. SM : PPSYS→SM has neither a left nor a right adjoint.

Proof. Let Ni-k be the net consisting of a single transition with i input places and k
output places, all arc weights one and all i + k places disjoint. SM sends any Ni-k
with i not zero to N1-1. Let L be a left adjoint of SM. What is LN1-1? Consider
[LN1-1; N3-1]∼= [N1-1; N1-1 =SMN3-1]. If the initial marking of LN1-1 is zero there are
either 1 or inAnitely many morphisms in the left morphism set. Hence there must be at
least one place with a single token. But the permutations of the three input-places are
automorphisms of N3-1. Hence if there is not only the 0 morphism in the considered set
there are at least 4 morphisms. Contradiction to a bijection between the two morphism
sets.
For a right adjoint R consider [N1-1 =SMN3-1; N1-1]∼= [N3-1; R N1-1]. Again the initial

marking cannot be zero and with the permutations of the input-places of N3-1 there are
more morphisms in the right morphism set.

This proposition shows that SM has its limitations. Other authors, e.g., [19,16] get
adjunctions here. Their morphisms may map a place to a marking. Our deAnition
enforces that a place is mapped to (the multiple of) a place in order to enforce a tight
relationship with the underlying graph. The missing adjoint for SM is a disadvantage
of this decision. In our setting reachability semantics abstracts too much from the graph
of a system to allow an adjunction.

7. Process semantics

The last subject of this paper is process based semantics in the style of, e.g., [15].
It models the interplay between causality and branching in the form of occurrence
systems. It di6erentiates between two occurrences of a transition if they consume tokens
produced by di6erent transition occurrences. One could understand it as the labelling
of tokens and transition occurrences with their history.
We introduce a functor WOCC which unfolds a system into a (weighted) occur-

rence system that contains all processes of the system. WOCC is part of a coreHec-
tion between FSYS and WOCC the category of weighted occurrence systems. These
represent a new variant of process semantics—known from the literature are (safe)
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2 2

occurrence unfolding
of W1 and W2

W1

W2

O3

O4
process unfolding
of O3 and O4

Fig. 24. A weighted occurrence system W1, a safe occurrence system O3, processes W2 and O4 and their
unfoldings.

occurrence nets (e.g. [14,3], etc.). Fig. 24 shows examples for the di6erent systems and
unfoldings.
It is remarkable that WOCC is functorial and an adjunction on the whole category

FSYS. For unfoldings to safe occurrence systems this has been achieved only for sub-
categories (e.g. [26,14]). This will be discussed in the last two sections for known
methods from literature as well as for our categories. Such unfoldings require restric-
tions that limit the freedom of how to map tokens with the same history. Such tokens
are not separated by WOCC.

7.1. Processes

De�nition 7.37. A system is safe i6 all arc weights are one and any reachable marking
is a set (rather than a multiset).

De�nition 7.38. The category WOCC of weighted occurrence systems is the full sub-
category of FSYS whose objects O fulAl

F is acyclic and ∀x∈XO: F∗ x is Anite with F the How-relation of O
|•p|61 for any place p∈PO and
supp IO = {p ∈ PO | •p= {}}
O has no dead transitions.

The category OCC of (safe) occurrence systems is the full subcategory of WOCC of
safe systems and the category PROC of processes is the full subcategory of OCC with

∀p ∈ PO: |p• | 6 1:

A process of a system S is a process O together with a unitary folding o :O→ S.
Similarly a (weighted, safe) occurrence system of a system is deAned. The depth of a
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node of a weighted occurrence system is
0 for places with empty pre-set and 1 for transitions with empty pre-set,
i + 1 for a transition t and its post-places if i is the maximal depth of a pre-

place of t.
Fig. 24 shows examples for the deAnitions. Processes are acyclic safe systems. Each
place not marked by the initial marking has a unique input transition able to deliver a
single token on it and a unique output transition that may consume this token later. Our
deAnition of processes coincides with the standard deAnition and as usual the image of
a maximal place cut of a process is a reachable marking of the system (refer to [22]).
Notice that we allow transitions with empty pre-set in WOCC but such transitions are
not allowed in safe systems.

7.2. Weighted occurrence systems

The set of all processes is a bit awkward. It would be nicer to fold the set of
processes into a single net. This is exactly the purpose of occurrence systems. First we
need a generalisation of a maximal place cut:

De�nition 7.39. A cut step of a system S is a multiset $ of transitions with pre $6IS +
post $.

Lemma 7.40. The image of the transitions of a 3nite process of a weighted occurrence
system is a cut step and each cut step is such an image. Hence, a marking is reachable
i9 it equals (I − pre $ + post $) for a cut step $. A process of a weighted occurrence
system of a system S extends to a process of S.

Proof. Let o :O→W be a process of a weighted occurrence system and Ti ⊆TO be
the transitions of O of depth i. The deAnition of a process and induction over i yields

preTi 6 IO +
i−1∑
k=1

−preTk + post Tk

and because o is a folding

pre o Ti 6 IW +
i−1∑
k=1

−pre o Tk + post o Tk

Thus T1; T2; T3; : : : is an enabled step sequence in O; o T1; o T2; o T3; : : : is an enabled step
sequence in W and o T is a cut step in W . To And a process for a given cut step $
of a weighted occurrence system W let

TO = {(t; k) ∈ TW ×N+ | k 6 $(t)};

PO = {(p; j) ∈ PW ×N+ | j 6 IW (p)}
∪ {((t; k); p; j) ∈ TO × PW ×N+ | j 6 (postW t)(p)};

postO(t; k) =
∑

((t;k);l)∈PO

((t; k); l):
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In order to construct the pre function we Arst write $ as the sum

$ =
n∑

i=1
$i with $i a multiset of transitions of depth i:

Because $•r is disjoint from $•S for any r = s and by induction over i it follows that

pre $i 6 IW +
i−1∑
k=1

−pre $k + post $k :

Thus, again by induction over the depth i, for any place p∈PW there is an injection
#p which maps the consumed tokens to the produced tokens PO:

#p : {((t; k); p; j) ∈ TO × {p} ×N+ | j 6 (preW t)(p)} → PO

with #p((t; k); p; j)= (p; j′) or = ((t′; k ′); p; j′)

preO(t; k) =
∑

((t;k);p;j)∈def #p

#p((t; k); p; j);

O =

(
(preOpostO);

∑
(p;j)∈PO

(p; j)

)
:

By construction O is a process and the projection

o : XO → XW with o(t; k) = t; o(p; k) = p and o((t; k); p; j) = p

extends to a unitary folding o :O→W . Hence it is the claimed process of W .
Finally, given w :W → S a weighted occurrence system of a system and a process

o :O→W then wo :O→ S is a process of S.

This lemma shows how to compute the processes of a weighted occurrence system.
This also works for a system in general if an appropriate occurrence system is available.
This is accomplished by:

Proposition 7.41. There is a functor WOCC : FSYS→WOCC which is right adjoint
to the underlying functor U forming a core;ection.

FSYS WOCC
WOCC

U

Proof. As in the proof of Proposition 4.21, it is suMcient to unfold a system S into a
weighted occurrence system WOCC S, to construct an universal arrow (S from U to S
and to verify that the units are isomorphisms. The proof translates constructions from
[14] in our framework.
WOCC S is constructed as the colimit O! of the inAnite diagram in Fig. 25. There,

O! is approximated by a sequence of weighted occurrence systems Oi of maximal
depth i. The diagram is constructed by induction. Induction start: '0 is the natural
embedding from O0 = IM S into S.
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e0 IS=O0
e1 O1

e2 O2
e3 O3.........

S

   ε  1    ε  0
   ε  2   ε 3

O ....ω

   ε ....ω

o0o1o2o3

Fig. 25. The inAnite diagram and its colimit O!.

Induction step from Oi to Oi+1. Oi is expanded as follows:

Ti+1 = Ti ∪ {(m; t) | t ∈ TS is a transition of depth i + 1 and m is a marking of

Oi with 'i m = pre t and m6 m′ for an m′ reachable in Oi}
Pi+1 = Pi ∪ {(m; t; p) | (m; t)∈Ti+1\Ti and p ∈ t•}

ppi+1(t
′) = if t′ ∈ Ti then ppi t

′ else if t′ = (m; t) then(
m;
∑

p∈t•
((post t)(p))(m; t; p)

)
:

This deAnes an occurrence system Oi+1 = (ppi+1; Ii) and the morphism ei :Oi →Oi+1

is the embedding used in the construction. 'i+1 is the unique extension of 'i with

'i+1(m; t) = t for (m; t) ∈ Ti+1\Ti;

'i+1(m; t; p) = p for (m; t; p) ∈ Pi+1\Pi:

It is straightforward to see that with 'i also 'i+1 :Oi+1 → S is a weighted occurrence
system of S and ei is a monomorphism with 'i = 'i+1ei.
This deAnes an inAnite diagram D=(e0; e1; e2; : : :) and IM S is isomorphic to all

initial markings hence by Proposition 5.31 the colimit o :D→O! exists. By the uni-
versal property of O! there is a unique '! :O! → S making the combined diagram
commutative.
We claim that '! :O! → S is a weighted occurrence system of S. '! and oi are

unitary because '! oi = 'i which is unitary by construction. The oi are monomorphic
because X! is simply the union of the Xi. This implies that the pre-set of each place
of P! consists of a single transition, that F! is acyclic, F∗

! x is Anite for any node x
of X! and, thus, O! is an occurrence system.
Next, we prove that '! :O! → S is a universal arrow from U to S as depicted

in Fig. 26. Such an f :U O′ → S may be expanded to the diagram in Fig. 27. Its
upper part redraws the construction of O! =WOCC S. In the lower part each O′

i is
the subnet of U O′ which consists of the nodes of depth at most i. The e′i and '′i
are the natural embeddings. O′ equals the colimit O′

! of the diagram (e′0; e
′
1; e

′
2; : : :)
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Ug   ∃  ! g
f

   ε S
U WOCC S S

U O'

WOCC S

O'

WOCC FSYS

Fig. 26. WOCC by an universal arrow from U to S.

g2

e0
IS=O0e1

O1e2
O2O.... ......

g1 g0

U O'

f

S    
   ε 0

g

e0'
IO'=O0'

e1'
O1'

e2'
O2'O' =O'......

ι '0

   ε 'ω =Id

ω

ω

ε ω

Fig. 27. Universality of o! :D! →O!.

and the monomorphisms o′i = '′i : O
′
i →O′

! make the diagram (e′0; '
′
0; o

′
0; e

′
1; '

′
1; o

′
1; e

′
2; : : :)

commutative.
By induction over i we show that there exist unique gi which make the combined

diagram (without g!) commutative. Induction start: g0 must equal IMf. Step from i
to i + 1. If such a gi+1 exists it is deAned on all nodes of depth less or equal i by
gi+1e′i = eigi because e′i is monomorphic. For any transition t′ ∈T ′

i+1 of depth i + 1 it
must fulAl

pre gi+1 t′ = gi+1 pre t′ = ei gi e′i
−1 pre t′ and 'i+1 gi+1 t′ = f '′i+1 t′:

This implies by the construction of Oi+1

gi+1 t′ = (f� '′i+1 t′)(m; t) with

t = f# '′i+1 t′ and

m = (1=(f$ '′i+1 t′))gi e′i
−1 pre t′

which uniquely determines the image of t′. For the postplaces of t′ follows similarly:

gi+1p′ = (f� '′i p
′)(m; t; f# '′i p

′) for p′ ∈ t′•

Together, this uniquely determines the morphism gi+1 :O′
i+1 →Oi+1.
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p t q u r

Fig. 28. A system (top) and its unfolding (bottom).

To verify the existence of gi+1 notice that there is a step sequence �′ of U O′

enabling t′ by the deAnition of an occurrence system. 'i gi �′ is a step sequence of S
which enables f '′i+1 t′ and thus t as deAned above. Hence, (m; t) is indeed a transition
of Oi+1 and gi+1 is well deAned by the above equations.
The oigi form a natural transformation from the diagram (e′0; e

′
1; e

′
2; : : :) to O!. The

universal property of O′
! yields a unique connecting morphism g! :O′

! →O! making
the combined diagram commutative and g= '′!

−1 g! is the required connecting mor-
phism.
Thus, the existence of a connecting g is proved. For another g′′ which factorises '!,

the image of o′i g
′′ consists of nodes of depth less or equal i and o′i g

′′ retracts to a g′′i :
O′

i →Oi. This yields again the diagram of Fig. 27 for which we proved that the gi are
unique. Hence, g′′i equals gi and the universal property of O′

! implies that g′′ equals g.
Finally, a unit 'O : WOCCU O→O of a weighted occurrence system is obtained

in Fig. 25 by setting S =U O. But as already mentioned, in this situation the Oi are
simply the subnets of U O of nodes of depth less or equal i, and both U O and O!

are the colimit of the diagram. Hence, they are isomorphic and the unit '! = 'S is
isomorphic. This Anishes the proof that U and WOCC form a coreHection.

As a corollary the processes of a system S are in one to one correspondence with
the processes of WOCC S. A process o :O→WOCC S yields a process 'S o :O→ S
and because 'S is a universal arrow this relationship is bijective. Thus the proposition
allows to reduce the computation of the processes of a system to the computation of
the processes of its weighted occurrence system.
Fig. 28 illustrates the unfolding by WOCC at an example taken from [8]. An oc-

currence of transition t creates a second token on place q. According to the individual
token philosophy there are two possibilities for the occurrence of u:
• either the initial token on q is consumed: such an occurrence is concurrent with t,
• or the token produced by t is consumed: such an occurrence is causal dependent
from t.



W. Keller / Theoretical Computer Science 308 (2003) 145–197 191

p t q u r

Fig. 29. A system (top), its WOCC-unfolding (middle) and its safe-unfolding (bottom).

This is reHected by the unfolding in Fig. 28: there is one transition for each of these
two possibilities. Furthermore, this unfolding coincides with the unfolding into safe
occurrence nets (as deAned, e.g., in [15]). The two unfoldings coincide for safe and
for semi-weighted nets (systems with the weight of any output-arc of any transition
equal 1 and the initial marking a set [20]). But they di6er on any system that is not
semi-weighted.
This is shown in Fig. 29. It uses the same net as the previous example, but, there are

two initial tokens on place r. The WOCC unfolding yields the same net as before, only
the initial marking is adapted. However, the safe unfolding puts the additional initial
token in an additional place and consequently needs to di6erentiate between further
types of occurrences of transition u. This means that
• the unfolding into safe occurrence systems radically individualises tokens, they have
a unique identity,

• the WOCC-unfolding di6erentiates only tokens that are located in di6erent places or
have a di6erent causal history,

• in the collective token philosophy tokens on the same place are indistinguishable.
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p t q u r

Fig. 30. A system (top) with variable initial marking on input-places p and r and its WOCC-unfolding.

The radical individualisation of tokens by safe unfoldings introduces inconveniences.
First, the unfolding yields conHicts between tokens on the same place with the same
history which seems strange in the case of anonymous tokens. Secondly, Section 7.4
will argue that there might be no ‘reasonable’ adjunction between systems and safe
occurrence systems. Finally, safe unfoldings do not easily cope with variable initial
markings. Such markings often occur when a net is used as a function transforming
tokens from ‘input-places’ to tokens on’output-places’ (e.g. [6,5]).
This is handled elegantly by our WOCC-unfolding. Fig. 30 shows how to convert

p and r in our example net to input-places. Here, p and r may receive an arbitrary
number of tokens from two initial transitions with empty presets. Such transitions are
disallowed for safe unfoldings. But they are no problem for WOCC.
Safe occurrence systems realise a radical individual token philosophy. However, if

the main interest is in causality and branching it is reasonable to look for the position
between the two poles of individual and collective token philosophy that best serves
this interest. It is exactly this intermediate position that weighted occurrence systems
realise: they individualise tokens i6 they have a di6erent causal history, not generally
as safe unfoldings do. In this sense, weighted occurrence systems represent the pure
semantics of causality and branching for anonymous tokens.

7.3. Decorated occurrence systems

De�nition 7.42. A place decoration / of a safe system S is a function / :PS →N+

with

∀t ∈ TS : /(t•) = [1; | t•|]
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∀p ∈ supp IS : /(p) = 1;

Thus, a place decoration numbers the output places of each transition of a system.

De�nition 7.43. D=(ppD; ID; /D) is a decorated occurrence system if (ppD; ID) is a
safe occurrence system and /D a decoration of the places of S. PD. DEC is the category
of decorated occurrence systems. A morphism f :D→D′ of DEC is a morphism of
the underlying safe occurrence systems which fulAls:

∀p; q ∈ PD ∩ def f# with •p = •q = {}: (/Dp ¡ /D q i6 /′
D fp ¡ /′

D f q):

De�nition 7.44. FSYS1 is the full subcategory of FSYS1 of systems with the initial
marking being a set. Similarly, WOCC1 is the full subcategory of WOCC of occurrence
systems with the initial marking being a set.

Proposition 7.45. The underlying functor U : DEC→WOCC1 has a right adjoint DEC
:WOCC1→DEC.

WOCC1 DEC
DEC

U

Proof. The proof is similar to that of Proposition 7.41. Let S be a weighted occurrence
system of WOCC1. Again, DEC S is constructed as the colimit of the inAnite diagram
from Fig. 25. O0 is simply IM S. Induction step from Oi to Oi+1. To the transitions
of Oi we add all combinations of presets of multiples of transitions of depth i+1 and
decorations of output-places:

Ti+1 = Ti ∪
{
(m; �t; )) |m ∈ 1SPi; �; )m ∈ N+; t ∈ TS; ) : [1; )m] → N+t• with

t has depth i + 1; �t is not dead in S; 'i m = pre �t and

)m∑
k=1

)(k) = post(�t)

}

Pi+1 = Pi ∪ {((m; �t; )); k) ∈ Ti+1 ×N+ | k 6 )m}:

ppi and 'i are extended by

ppi(m; �t; )) =

(
m;

∑
((m;�t;));k)∈Pi+1

((m; �t; )); k)

)

'i+1(m; �t; )) = �t

'i+1((m; �t; )); k) = )(k)
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and ei is the obvious embedding of Oi in Oi+1. Then the colimit o :D→O! exists. A
decoration / on O! is deAned by

/o0(p) = 1 and

/oi((m; �t; )); k) = k for i ¿ 0

which turns DEC S =(O!;/) into a decorated occurrence system.
To show the universality of '! :O! =U DEC S → S Fig. 27 is reused. Induction start:

IM g yields g0 because IS is a set. Induction step from gi to gi+1. If such a gi+1 exists
it must fulAl for any transition t′ of O′

i+1 of depth i + 1

pre gi+1 t′ = gi+1 pre t′ = ei gi e′i
−1 pre t′;

'i+1 gi+1 t′ = f '′i+1 t′:

Furthermore, gi+1 must correspond to a decorated morphism, especially it must be
binary. This yields by the construction of Oi+1

gi+1 t′ = (gi e′i
−1 pre t′; f '′i+1 t′; �) with

� : [1; |t �=|] → N+ T ′ with t �= = {p′ ∈ t′• |f 'i+1 p′ = 0};
�(k) = f 'i+1 p′ for the p′ ∈ t �= with k = |{p′′ ∈ t �= |/′ p′′ 6 /′ p′}|

which uniquely determines the image of t′ and its post-places. Thus, gi+1 is unique.
The existence of gi+1 follows from the facts that gi e′i

−1 pre t′ is reachable in S
because pre pre t′ is reachable in O′

i and �([1; |t �=|])= postf '′i+1 t′. It is easy to see,
that the colimit of the 'i yields the claimed morphism g. On the other hand, such a g′

yields a similar diagram with g′i . But, we have shown that gi equals g′i which implies
the equality of g and g′.

7.4. Safe occurrence systems

Proposition 7.46. The functor pair U , DEC restricts to an adjunction between DEC
and OCC.

DEC OCC
U

DEC

Proof. The underlying occurrence system of any decorated occurrence system is
safe.

Thus, the composition OCC=U DEC WOCC is a functor from FSYS1 to OCC. This
is interesting, although we could not And an adjunction between the two categories.
It is not easy to devise a functor from FSYS to OCC. It seems, that, in general,
compositionality breaks down (permutations of places symbolising tokens on the same
place). From the literature adjunctions are known for safe systems [26], semi-weighted
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systems ([19], here post t must be a set for any transition t) and nets with restricted
morphisms ([14], here the images of the places in the postset of a transition must be
disjoint).
Although our deAnition of a morphism is di6erent, there are similarities:

• WOCC unfolds safe and semi-weighted systems to safe occurrence systems.
• OCC is a functor on general morphisms. The restriction concerns only the objects,
namely, that the initial making must be a set. Although OCC is not part of an
adjunction, there is a morphisms 'S :U OCC S → S which factorises any process of
S (but not uniquely).
Our deAnition of decorated occurrence systems is a modiAcation of that in [14]. We

number all output-places of a transition whereas Meseguer et al. [14] enforces the order
only on subsets corresponding to one output-place of a transition in the weighted net.
This implies di6erent restrictions and di6erent functors. This method works also in our
framework. But in [14] an adjunction is achieved what we could not do here, again,
because we disallow to map places to markings.
In conclusion, we may compare three semantics for a system S, namely, WOCC S;

OCC S and PROC S = {o :O→ S | o is a process of S}.

Proposition 7.47. The expressive power of WOCC is strictly stronger than that of
OCC which again is strictly stronger than that of PROC.

Proof. Stronger follows from OCC=U DEC WOCC and that every process of a sys-
tem S factorises through 'S : OCC S → S. The semantics di6er on the examples of Fig.
24. Together this yields strictly stronger.

Meseguer et al. [14] compared process semantics and safe unfoldings. The Anding
that “the unfolding contains several copies of the same process which, : : :, are needed to
provide a fully causal explanation of the behaviour” fully applies to the current setting.
But it applies also to the WOCC and OCC unfolding and one would expect that WOCC
semantics lies between the process and OCC semantics. The same expectation comes
from the discussion that WOCC individualises tokens only partially. But the previous
proposition falsiAes this expectation! The explanation is that WOCC remembers more
about the distribution of tokens on nodes of the net (and similar of occurrences to
transitions)—a phenomenon countering the above argumentation.

8. Conclusion

This papers presents adjunctions between Petri net categories standing for the di-
chotomies of
• clustering and folding,
• structure and behaviour
and hence building a bridge from applications of Petri nets using clustering-based
techniques for software engineering to folding-based categorical methods o6ering a
rich set of theoretical relationships and insights. The hope is that this bridge allows
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the two paradigms to beneAt more easily from each other. However many interesting
questions remain open. We mention only a few:
• Research further relationships between morphisms and linear algebraic techniques,
starting from our results about invariants.

• Use comma categories to build coloured, hierarchical, algebraic, etc. nets. This could
be used to enhance an existing Petri net tools with categorical machinery, e.g. uni-
versal construction or an integration of graph transformation systems.

• Explore the categorical relationships between this work and other models of Petri
nets. Search for links to other semantics.

• The second part of the author’s Ph.D. thesis—not reHected in this paper—shows
how to use universal construction in reverse engineering. But there must be more
such novel applications.

Summarising, this paper is a beginning—there are many tasks for further research.
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