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Abstract

The aim of this work is to conduct research into synergies between Petri-
net theory and reverse engineering. The existence of such synergies is not
obvious because each sector is based on different assumptions. These
differences relate to two modelling paradigms: clustering and folding.

Clustering merges neighboured nodes and corresponds to the construction
of complex systems from subsystems. It is widely used in software
engineering and in practical applications of Petri nets. Foldings only merge
transitions with transitions, places with places and arcs with arcs. They
group similar functionality. Hence they preserve behaviour, allow the
transfer of semantics and provide deep theoretical insights by means of far-
reaching connections to other models of concurrency.

A folding-based Petri-net algorithm for reverse engineering is introduced.
It recovers a coloured net from an unstructured flat Petri net. The two nets
are connected by a folding which amounts to a compact specification of the
source net. The algorithm is both flexible and scalable, and this work
shows how application heuristics can be integrated into it. Its cost is almost
linear with respect to the size of the input net, which is remarkable in the
field of reverse engineering.

Petri nets may serve as an intuitive model of the interplay of the structural,
functional and dynamic aspects of a system. Various methods of modelling
aspects apart from concurrency by Petri nets represent an innovation. With
such a translation, the algorithm may also analyse legacy systems outside
the realms of Petri nets. The result is a novel and powerful method of
reverse engineering. A specific example shows how a high-level design
may be recovered from low-level implementation information. Moreover,
the recovered colouring contains a complete specification inclusive of the
data model.

The reverse engineering part of this work concentrates on folding-based
Petri-net methods because they contain new features. On the other hand,
clustering-based techniques share many similarities with known methods.
For best results, however, clustering and folding should be appropriately
combined. The foundations for such combinations are laid down in the first
part of this thesis.

Many Petri-net classes known from the literature may be grouped into
folding-based and clustering-based types. However, no well-defined link
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exists between them which would allow the strengths of both approaches to
be combined, especially for practical applications.

Such a link is presented here in the form of an adjunction, which is a strong
two-way relationship taken from category theory. It links folding-based and
clustering-based categories. It is shown that these categories have
properties typical of folding-based and clustering-based Petri-nets
respectively. Further compatible adjunctions express the Petri-net
dichotomy of structure and behaviour. To the best of the author’s
knowledge, this basic principle of Petri-net theory has not yet been
formulated categorically.

For practical applications, it is important that these concepts can be
integrated fairly easily with existing Petri-net tools. This will enrich them
with the power of a categorical machinery, e.g. with morphisms, universal
constructions and the transfer of behaviour. Coloured nets are simply
defined as special comma categories, i.e. essentially folding morphisms.
The reduction algorithm introduced here is a proof of the practical value of
this approach: it is an iteration of couniversal constructions and the
reduction itself has couniversal properties.

Keywords
Petri nets; reverse software engineering; clustering; folding; structure;
behaviour; semantics; occurrence systems; category theory; design
metaphor.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Erforschung möglicher Synergien zwischen
Petri-Netz-Theorie und Reverse Engineering. Dass solche Synergien
möglich sind, liegt nicht auf der Hand, zu verschieden sind die
Grundannahmen in den beiden Gebieten. Diese Gegensätzlichkeit bringe
ich mit zwei unterschiedlichen Modellierungs-Paradigmen in Verbindung,
nämlich mit Folding und Clustering.

Clustering gruppiert Nachbarschaften und entspricht der ingenieur-
mässigen Konstruktion von komplexen System aus Teilsystemen. Es ist
somit ein Grundprinzip von Reverse Engineering und unabdingbar für
jedes Praxis-taugliche Petri-Netz-Werkzeug. In Petri-Netzen kombinieren
Foldings Stellen mit Stellen, Transitionen mit Transitionen und Kanten mit
Kanten. Sie gruppieren somit ähnliche Funktionen, ermöglichen es
Verhaltenseigenschaften zu übertragen und haben weitreichende
Verbindungen zu anderen Modellen der Nebenläufigkeit.

Diese Arbeit führt einen folding-basierten Petri-Netz Algorithmus für
Reverse Engineering ein. Kernstück ist die Reduktion eines
unstrukturierten Netzes in ein gefärbtes Netz. Die beiden Netze sind durch
einen Folding-Morphismus verbunden, der eine kompakte Beschreibung
des Ursprungsnetzes beinhaltet. Der Grundalgorithmus ist anpassungsfähig,
z.B. kann er mit verschiedenen Anwendungsheuristiken kombiniert
werden. Hervorragend für einen Reverse-Engineering-Algorithmus ist die
Effizienz. Die Kosten sind beinahe linear in der Grösse des
Ausgangsnetzes.

Petri-Netz-Modelle können ein kompaktes und intuitives Bild des
Zusammenspieles von strukturellen, funktionalen und dynamischen
Aspekten eines Systems zeigen. Neu daran ist es, Petri-Netze für Fragen,
die wenig mit Nebenläufigkeit zu tun haben, zu verwenden. Mit geeigneten
solchen Übersetzungen wird der Reduktionsalgorithmus allgemein
anwendbar, nicht nur für Petri-Netze. Das ergibt eine neue, mächtige
Reverse Engineering Methode. An einem konkreten Beispiel wird gezeigt,
wie aus elementaren Implementations-Informationen eine abstrakte
Architektur wiedergewonnen werden kann. Die berechnete Färbung des
reduzierten Netzes spezifiziert den Zusammenhang von Architektur und
Implementation und spiegelt das Datenmodell wider.

Der Reverse-Engineering-Teil dieser Dissertation befasst sich mit folding-
basierten Methoden, weil sie neue Möglichkeiten enthalten, während
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clustering-basierte Petri-Netz-Methoden viele Ähnlichkeiten mit bekannten
Reverse-Engineering Techniken teilen. Aber selbstverständlich soll nicht
Folding gegen Clustering ausgespielt werden, sondern ein sinnvolles
Zusammenspiel gesucht werden. Theoretischen Grundlagen dafür werden
im ersten Teil dieser Dissertation gelegt.

Viele aus der Literatur bekannte Klassen von Petri-Netzen können in
folding- und clustering-basierte unterteilt werden. Was jedoch fehlt, ist eine
wohldefinierte Verbindung zwischen den beiden Gruppen. Erst eine solche
erlaubt die Stärken beider Ansätze zu kombinieren - auch in praktischen
Anwendungen.

Eine solche Verbindung wird hier vorgestellt und zwar in der Form einer
Adjunktion - einer starken Zweiweg-Beziehung aus der Kategorientheorie.
Es wird gezeigt, dass die verbundenen Kategorien die typischen Stärken
von clustering- bzw. folding-basierten Petri-Netz-Klassen aufweisen.
Darauf aufgebaute Kategorien und Adjunktionen bilden eine
Formalisierung der Dichotomie von Struktur und Verhalten - einem
grundlegenden Petri-Netz Prinzip, das meines Wissens noch nie
kategorientheoretisch formuliert worden ist.

Für die Praxis von Bedeutung ist, dass diese Konzepte relativ einfach in
bestehende Petri-Netz-Werkzeuge integriert werden können. Das
ermöglicht diese durch kategorische Mittel wie Morphismen, universelle
Konstruktionen oder Übertragung von Semantik zu bereichern. Gefärbte
Netze werden verblüffend einfach definiert, nämlich als spezielle
Kommakategorien, d.h. im wesentlichen als folding-basierte Morphismen.
Ein Beispiel für den praktischen Wert dieses Ansatzes ist der eingeführte
Reduktionsalgorithmus: Er ist eine Iteration von couniversellen
Konstruktionen und die berechnete Reduktion hat selbst wieder
couniverselle Eigenschaften.
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1 Introduction

The effort to understand existing software systems is known to be a major contributor to
software costs. Experience has shown that every new programming technique brings new
maintenance problems and needs specific reverse-engineering methods. The use of Petri nets
has emerged in recent years and the need to reverse-engineer such systems will inevitably
arise. This implies the importance of research into methods of reverse-engineering Petri nets.
However, reverse engineering is intrinsically difficult. There are still many situations in which
traditional analyses fail and in many domains reverse engineering remains an art rather than
an engineering discipline. This justifies the exploration of radically different methods. This
work represents a possible response to these two challenges:

Synergies between the fields of reverse engineering and Petri nets

Research on this topic yielded two conflicting
structuring principles: folding and clustering.

In clustering, directly connected entities are grouped
together. Neighbourhoods are collapsed into a
single object which also swallows relationships.
Foldings, on the other hand, merge similar objects
and, separately, similar relationships. They group
functionality and not adjacency. A model object
stands for similar objects and hence inherits many
properties.

Clustering respects vicinity, is the usual method of
breaking complex systems down into subsystems
and is consequently predominant in reverse
engineering. But a clustered node is neither a
transition nor a place and is incompatible with the
rigorous semantics of Petri nets. Folding is therefore
preferred for theoretical purposes but clustering is
indispensable in practice. Furthermore, coloured
Petri nets are a very convenient representation of
foldings and are important for practical applications.

The research conducted for this thesis highlighted the importance of this concept:

The dichotomy of folding and clustering

In terms of this dichotomy, the main results may be stated as:

• A folding-based Petri-net algorithm for reverse engineering is introduced. It recovers a
coloured net from an unstructured flat Petri net; it is also flexible and scalable.

• Several ways of modelling structural, functional and dynamic aspects of a system by Petri
nets are elaborated. They allow this algorithm to be applied as a novel and powerful
reverse-engineering method outside the realms of Petri nets. It recovers high-level design
and specification information such as the data model from a legacy system.

2

2

2

Figure 1. Clustering (top) and folding (bottom)
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• Petri-net categories which form a bridge from folding to clustering are defined. Within
these categories, this algorithm represents an iteration of universal constructions.

The algorithm inherits many properties from universal constructions such as uniqueness and
the possibility of performing optimisations. The almost optimal performance is especially
remarkable as the field of reverse engineering is notorious for huge confusing search spaces
and combinatorial explosions.

The second point shows that Petri nets may be used as an intuitive and concise model of a
system and we therefore propose to use them as design diagrams. Together with the first
point, we conclude that folding-based Petri-net methods qualify as a powerful method for
both forward and reverse engineering. However, best results would be expected from an
appropriate co-operation of clustering and folding.

The third point lays a theoretical foundation for such a co-operation. Existing Petri-net classes
are either clustering-based or folding-based, but connections between the two paradigms are
missing. The bridge from clustering to folding is actually an adjunction, which is a strong
relationship taken from category theory. The categories introduced support graph-based and
linear algebraic methods and allow coloured nets to be defined in a way which is simple but
nevertheless encompasses the net-theoretical essence of many classes of coloured Petri nets
containing these attractive diagrams with their node colours and arc inscriptions. They allow
practical applications to benefit more easily from the deep theoretical insights offered by
folding-based Petri-net categories and from the power of categorical machinery.

1.1 Petri Nets

For our purposes, existing Petri-net formalisms may be classified in two groups:

• Clustering-based - these usually make use of vicinity-preserving graph morphisms.
System compositions using clustering and graph-based methods are supported.

• Folding-based - these consider a Petri net as a two-sort algebra and pre and post as unitary
operators which must be respected by morphisms. Behaviour is transferred smoothly and
powerful links are set up to many other models of concurrency, thus yielding deep
theoretical insights.

We will introduce a typical category for each of these two groups. Place-transition nets
(PTNET) are clustering-based. Their form of clustering is very useful for software
engineering and their morphisms are compatible with linear algebraic Petri-net techniques.
FNET, the category of nets with foldings, is a subcategory of PTNET.

The bridge from clustering to folding is formed by two compositional adjunctions which
connect the two categories over PPNET, the category of nets with place-preserving
morphisms. Notice that an adjunction is a two-way relationship, and is much stronger than a
simple functor. On a theoretical level, these adjunctions clarify the relationships between the
two groups of Petri-net classes specified above. In practice, they allow clustering nets to be
simulated by folding nets with reasonable computational effort.

Simple categorical methods extend nets to coloured and hierarchical nets. They are
connected by a web of adjunctions which is compatible with the dichotomy of clustering and
folding. Although highly abstract, these categories are tightly related to existing classes of
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coloured nets. Existing net tools could thus benefit by virtue of our new categories from the
power of categorical machinery, e.g. morphisms for simulation or implementation/design
relationships, universal constructions for flexible compositions of subsystems, and functors
for the transfer of semantics from one environment to another.

In both PPNET and FNET, all universals and couniversal constructions exist. This allows
nets to be composed from subnets in a flexible and natural way, and graph transformation
techniques etc. to be applied. Furthermore, we will show that an iteration of couniversal
constructions may be used for reverse engineering, namely in the form of the recovery of a
coloured net from an unstructured net. The computed reduction has many of the powerful
properties typical of universal constructions, including uniqueness. Also, the clear theoretical
formulation permits flexible variations and important optimisations. This is especially
remarkable in the field of reverse engineering, which is notorious for huge confusing search
spaces and combinatorial explosions.

A Petri net is a static structure, merely representing a bipartite graph. If an initial marking is
added, a token game may be played. This is an important principle of Petri-net theory:

The dichotomy of structure and behaviour

However, this dichotomy has not yet, to the author's knowledge, been formulated in terms of
category theory. Even worse, morphisms in conventional folding-based Petri net categories
lose their relationship to the underlying graph. This work succeeds in defining behavioural
categories (PTSYS, PPSYS and FSYS) which are connected by coreflections (special
adjunctions) to net categories. Moreover, this procedure yields a web of seven adjunctions
categorically connecting the dichotomy of structure and behaviour to the dichotomy of
clustering and folding.

Strong relationships to semantics are typical for folding-based Petri net classes. This is also
true here, thus confirming that FNET is folding-based in a deep sense. The unfolding of a
system to the semantics of its step reachability is functorial. It consequently shows how
morphisms transfer behavioural properties such as liveness. Process-based semantics
expressed in terms of occurrence nets turns out to be a coreflection to a subcategory of FSYS
which is similar to previous results. In order to achieve a coreflection to the whole category of
FSYS, a generalisation of weighted occurrence systems is introduced. It is proposed as an
alternative to safe occurrence systems which yields a purer image of causality and branching.

1.2 Reverse Engineering

Given the author's professional background as a consultant for the more technical aspects of
the development of mainframe-based commercial software in large IT departments, this work
focuses on the reengineering of conventional applications. The aspects of concurrency are
thus delegated in a standard way to the database management system and the transaction
monitor. This means that Petri nets are used in a field where they cannot exploit their

natural strength to model concurrency.

As a consequence, a given system must first be translated to a Petri net. The net is
subsequently analysed and the result translated back. However, it turned out that this is not a
magician’s trick to simplify the intricacies of reverse engineering. Rather, several such
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translation methods exist which yield a graphically attractive, concise and intuitive model of
the structural, functional and dynamic aspects of a system. The reasons for the power of such
modelling paradigms are, for instance:

• the separation of active and passive elements in transitions and places

• foldings in terms of coloured nets

An unforeseen result of this work is that we propagate Petri nets as a modelling metaphor for
both forward and reverse engineering. This thesis does not exploit the Petri-net dialectic of
structure and behaviour for reverse engineering, although a similar dialectic of static program
source and dynamic program execution lies at the heart of software engineering. The specific
algorithms operate only on the bipartite graphs. However, the metaphor of Petri-net behaviour
was the driving intuition behind our research.

This work essentially concentrates on a particular reverse-engineering task: the recovery of a
coloured net from an unstructured one. This is a folding-based Petri-net method. A complete
reverse-engineering framework must also support clustering-based analyses, the selection and
combination of different reductions to a larger picture, etc.. We observed that folding-based
methods offer many new features, whereas many traditional methods apply to the remaining
tasks.

We are equipped for this task as regards the net-theory part with net categories and iterated
universal constructions which build a unique reduction of a net. Nevertheless, we decided to
implement a prototype of the algorithm in Smalltalk and to present it in this work together
with the source code of its key parts. A major benefit of this approach was the opportunity to
experiment with the algorithm on specific nets, which led to the discovery of surprising
effects.

The basic idea may be illustrated by another use of the word folding. Just like folding a shirt,
two adjacent parts which fit together are overlaid. The reduction works iteratively, i.e. it may
overlay fitting parts whenever they become adjacent, and it stops when there are no more
adjacent fitting parts. The algorithm offers three degrees of freedom:

• Similarity: How is similarity which allows two subnets to be merged defined?

• Adjacency: How is adjacency which allows two similar subnets to be merged defined?

• Choice: Which subset of the mergers allowed by the above two criteria is selected?

A first algorithm uses only the similarity criterion. It classifies the transitions of the net. Two
transitions belong to the same class iff they form isomorphic subnets together with their
surrounding places. Afterwards, larger subnets are classified. This yields a simple algorithm
together with a feedback mechanism that decides which subnets are to be merged. It already
yields a clear analysis. Unfortunately, there are two major problems: we could not find a way
to improve the first result obtained, and it is a NP-hard problem to compose subnets and
identify them in the source net.

Another approach uses an adjacency criterion instead of enlarging subnets. What looks like a
simple algorithm with the usual recursive programming techniques turns out to require some
sophisticated mechanisms - especially if high performance is needed. Performance is almost

optimal – cost is nearly linear with respect to the size of the analysed net. This is a very
attractive option in the field of reverse engineering which must fight against notorious
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combinatorial explosions. The performance results from a combination of locally merging
subnets during graph traversal, the shift of the work from the origin net to the current
reduction and several sophisticated data structures.

This version of the algorithm is flexible and allows integrating application heuristics. We
show this by the example of relationship cardinalities. They are applied twice: first the
heuristics allows a more detailed reduction to be computed. Secondly, they enable us to
colour the reduced net. Together, this procedure recovers both the original design diagram
and a specification which relates design and implementation, including the data model.
Indeed, the prototype implementation of the algorithm computed reverse-engineering
diagrams which were better than those in the original design of the example application.

The algorithm analyses a net without pre-knowledge such as a cliché library of known
programming constructs. This can be seen as an advantage as it is still an open question
whether such a library may be constructed and used for real-world systems. However, an
experiment indicates that the algorithm has the potential to detect reused components. It also
offers a natural interface to such a cliché library where a need for it would arise.

These and further reflections show that the algorithm developed here represents a powerful
reverse-engineering tool with many different applications. It ultimately leads to our thesis that
folding-based Petri-net methods are a valuable tool for both forward and reverse engineering.

1.3 Document Structure and Conventions

To enhance readability and to clarify the major line of thought, the main topics are structured
in this document as follows:

Continuous text Supplements

3 Petri Nets 7 Appendix: Proofs and Details for Petri Nets
4. Reverse engineering 8. Appendix: Proofs and Details for Reverse Engineering

To facilitate navigation, corresponding chapters have the same decimal structure; e.g. the
proofs for 3.4.2 may be found in appendix 6.4.2. Moreover, the reader may use forward and
backward links. They are encoded by the following document-structuring symbols:

♦ marks the end of a proof, a remark, an algorithm etc.

�15 points to a reference on page number 15. In Acrobat Reader, a mouse click on
the page number triggers a jump to the reference. The page number is followed
by a symbol that shows the type of reference.

�15� points from the main chapters to additional information in the appendix, e.g. from
a proposition to its proof.

�15� links back to where the reader probably originated. Thus it links back to the
proved proposition at the end of a proof in the appendix.
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2 Literature Review

Although abundant literature is available about Petri nets and reverse engineering, the
intersection between the two fields is surprisingly small. The situation is complicated by the
fact that we work in both subjects in a rather non-standard way. The consequence is that we
cite many references but the relationship to the current work is sometimes rather weak.

The chapter starts with literature about Petri nets. First, Petri net models directly related to our
work are presented. Some applications of nets for modelling of software systems follow. The
next sections treat reverse engineering. We give references that show the state of the art and
the practice as well as papers that compare to the present work. The last sub-chapter reviews
the use of nets in reverse engineering.

2.1 Petri nets

For a general introduction and overview to Petri nets refer to [Rei98]. Additionally many of
the cited books contain introductory chapters.

There are many definitions of net morphisms in the literature. Let’s start with definitions
maintaining strong relations to the underlying graph and often supporting clustering. [GLT79]
defines morphisms as mappings of the nodes of nets that f: X .X' mapping neighbours in X to
neighbours in X' and retaining the transition/place property, if the nodes are not collapsed.
[Chr80] sketches the use of such morphisms for software engineering – this approach is
extended in our work as a clustering technique. And in the outlook the article mentions the
relationship between morphisms and invariants – a question answered in a more general
setting in this work. [Des96] defines vicinity-respecting homomorphisms similarly and shows
some basic structural properties for such morphisms. This definition is common for graphs
and is used in this work as the graph component of a place-transition morphism.

A major inspiration for our work was [Feh93]. Here the same vicinity-respecting
homomorphisms are used to define refinement and abstraction. A refinement is the source of
a morphism that is surjective on the arcs and the nodes, whereas, the image is the abstraction.
A graph of such refinements builds a hierarchical net and a collection of net morphisms forms
a hierarchical morphism, making the hierarchical nets a category.

[Lak97] handles colours and morphisms in a similar way as we do. He uses much more
complicated definitions for morphisms to get a narrow relationship between the two nets, but
the paper does not work this out. A more crucial difference is, that the defining equations for
morphisms are different:

• an occurrence of t is mapped to an occurrence of f(t) in our definition, but in [Lak97] in
the other direction from t' to (a subset of) f -1(t').

• our definition gives distinct roles to transitions and places whereas [Lak97] tries to
maintain a symmetry.

The other line of morphisms that we call folding-based considers a Petri net as a two sorted
algebra – with multisets of places and multisets of transitions – pre and post as unary
operators and the initial marking as a constant. A net morphism then is simply an algebra
morphism that has to preserve the 3 operators. [Win84a], [Win84b] or [Win86] introduced the
first such definition together with occurrence systems as the semantics, connecting the two



Walter Keller. Petri Nets for Reverse Engineering. 16

categories by a coreflection. This needs some restrictions, most notably, only safe nets are
considered.

The line of publications continuing this work e.g. [MMS92] used definition of a morphism f:

N→N' like

• f is a map from T to T' and a linear multiset homomorphism from markings of N to
markings of N'

• f pre = pre' f

• f post = post' f

• plus possibly some further restrictions
This definition disallows the collapsing of a node with its neighbours. Hence the usual
clustering technique of software engineering is not supported. But the big advantage is that
the relationship of a marked net with its semantics – e.g. reachability or occurrence nets – is
functorial. This means a net morphism is translated compatibly into a morphism of the
semantics. No such relationship is published for the clustering based morphisms. The
unfolding of a coloured or hierarchical net into the flat is not a contradiction to this statement
– it is rather an internal or definitional transformation rather than semantics.

In [MMS92] an adjunction between occurrence nets and Petri nets is constructed. We
modified this construction to get two similar adjunctions between the categories developed in
this work.

[Sas94] introduces a cube of 12 adjunctions between 8 categories modelling concurrency. The
three axes of the cube correspond to the dialectics of system / behaviour, linear-time /
branching-time and interleaving / non-interleaving. This cube does not contain a Petri net
category but in appropriate categories the unfolding of a Petri net system to it’s reachability
graph gives an adjunction between transition systems and net systems as described in [NS98]
and shown in [NRT90]. The connection to this beautiful cube really demonstrates that these
purely folding based morphism definitions allow far reaching connections – making these
categories very attractive from a theoretical point of view.

But the categorical framework also starts to attack more concrete tasks. For example [NC95]
gives an elegant categorical description of many variations of bisimulation and other forms of
behavioural equivalence. This opens the possibility to prove interesting properties of concrete
nets within the language of category theory.

Folding based morphisms easily extend to algebraic high-level nets. [Pad98] uses categorical
constructions in such nets to prove safety properties. This is used for real-world software
development using a combination of Petri nets, algebraic specification and algebraic graph
transformation.

2.2 Modelling Software by Petri Nets

Petri nets are often used to model workflow processes ([Aal97], [Obe96]), manufacturing
plants ([Dic93], [Ezp98], [Zho98], and [Zim97]), embedded systems ([Ess97]),
communication networks [APNC99] or performance issues ([Lin98]). In classical software
engineering they are sometimes used to model the software engineering process ([Avr95]) or
to model the dynamic aspects of a software system [Mai97]. But the functional aspects of
software are seldom modelled by nets.
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[Ell95] models the changing of workflows by Petri nets. Workflow promises easy changes.
But what happens with tasks started in the old and finished in the new system? The paper
wants it to be processed by a firing sequence that is valid either in the old or in the new
system. Conditions to enforce this requirement are formulated.

[Mai97] proposes to use Object Coloured Petri Nets – an OO extension of the CPN formalism
[Jen92] – instead of the usual state charts, collaboration diagrams etc.. These are promoted for
example by the Unified Modelling Language UML [Rat97] to describe the dynamic aspects
of systems. [Mai97] argues that these techniques are less expressive and lack a formal
semantics of Object Coloured Petri Nets.

In [Fri97] data encapsulation and data abstraction are implemented in CPN ([Jen92]) using a
single interface place. Graphically this interface place is painted as a big circle and the
internals within this circle, which is an attractive visualisation of subsystem composition. The
inside can be refined or instantiated in different ways, which gives a lot of flexibility.

[Mir94] translates behavioural specifications into Petri nets. Each operation in the
specification is annotated with pre- and post-conditions. An operation is modelled by a place.
A mark in the place signifies that the operation is in progress. The place gets an input
transition, to start the operation. Control- and data-flow dependencies and the pre- and post-
conditions are translated in predecessors of the start transition and successors of the place. To
get a safe net, additional connection nodes might be necessary. Reductions on the resulting
net optimise the implementation.

[Erm97] models medical patient data and hospital workflows by algebraic high-level nets.
The interesting point for us is that push outs are used to construct large nets from simple ones.
And it is shown that under certain circumstance properties from the small nets transfer to the
combined net.

[Fel98] defines an implementation relation between timed Petri nets. The implementation
relation is defined on the semantic level. Here the semantics of a net are the theorems of the
theory obtained by translating a net to temporal formulas. Hence the procedure is to start from
semantics and then look for net transformations (like refinements) that preserve the semantics.
This is contrary to our approach which defines morphisms on a net level and then looks how
they transfer semantics.

2.3 Reverse Engineering in Practice

Reverse Engineering is still a difficult business, and the usual case is, that only a combination
of standard tools/methods with problem specific know how and ad hoc methods lead to some
useful result. This fact is not clearly reflected in the literature. As in our paper, the successes
for single cases are reported, the many trial and errors are hidden as research, bad examples or
teething troubles of prototype software. One of the papers where this can be seen (more than
read) directly is [Bur96]. The diagrams remain overloaded with edges till the end.

[Bel97] compares four reverse-engineering tools and [Sto97] observes users maintaining a
program with three tools (overlap two). It seems that none of the tools could analyse deeper
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than to a call-, control- or data flow-graph. Not even impact analysis (transitive hull of control
and/or data flow) was mentioned.

A typical reverse-engineering scenario is presented by the IDENT method [BUR98], [Bur97].
A call graph is generated from the source code, from this a dominance tree wherein candidate
reusable units are identified and then brushed up in seven further steps.

Many of the most sophisticated reverse-engineering techniques are tailored for reengineering.
The current top topics in the literature are fixes for year 2000 related problems and the
wrapping of legacy code into objects.

[Luc97] proposes a six-step migration path, starting with static analysis, doing some
architectural re-clustering, wrapping and finally migrating the wrapped objects to indigenous
objects. This requires specialised analysis and guidance by the user. Additionally automatic
sequences may be helpful. Other examples are [Sub96], which uses a different number of
different steps, but also defines sequence.

The thesis [And96] describes a detailed procedure to transform real Cobol Applications (with
Files, Database, Redefines etc.) into an OO-Model. Different graphs, relations, analysis
techniques and heuristics are used to get first a relational scheme and then an ERC+ (Entity
Relationship Model with Complex objects). Finally the OO schema is derived; uncertain
conclusions are conciliated using constraint satisfaction techniques.

Some of these techniques like spreading sets have similarities with our approach to detect
colours. The same holds for [Deu98]. She finds types in a Cobol source program. The method
is to generate an equivalence relation over variables, generated by assignments, comparisons,
arithmetic calculations and so on.

[Cim98] analyses legacy RPG Programs to wrap them into objects, that can be used in client
server environments. The first phase identifies candidate objects by two criteria:

• user interface and application domain code must be separated (a prerequisite for client
server) and

• objects are tightly coupled code fragments with persistent data.
The second phase has to compute small but correct interfaces. Both phases work on control
and flow-graphs. The first phase uses graphical methods, while the second phase must
preserve semantics.

A comparison with our approach shows, that we stress the first point, the second is only
shortly discussed as

• semantics is a strength of Petri nets

• there are a lot of existing graph-based approaches we could use within a framework.

There are many more frameworks on the coding levels but a recent article [Men97] counts
only two architecture-recovery environments. Both look in the AST for architectural
recognisers such as shared files or task control. This is most useful if computers and domain
experts collaborate to investigate the architecture of a piece of software. The human expert
can detect for the first time a recogniser and let the tool look for other instances. If the result
is not as expected, she or he can either change the definition or try another recogniser.
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[Bou74] reports, that they have had to postpone (a euphemism for cancel?) an innovative
software reengineering tools workshop, because only two tool producers wanted to
participate. Today you find a lot of tools, promising to fix year 2000 related problems, but
most of these tools are very specific. The author's experience is that if your job needs a simple
but slightly different kind of transformation, you are left alone with your own ad hoc tools.

2.4 Different Reverse-Engineering Techniques

A common clustering-based method is to partition a system into high cohesion, low adhesion
subsystems. This directly reformulates as a graph theoretical problem. An elementary
overview is given in [Wig97].

Clustering can use very different definitions of near. For example [Sif97] selects a set of
attributes (from variable usage, type selection etc.) and calls a set of Functions F a concept iff

F = {f' | f' is a function of the system having all attributes in A

with A the set of attributes common to all f∈F}
These concepts form a partial order and one can select a hierarchy of modules. This is in a
very abstract sense similar to our folding approach, in that it groups elements, having similar
connections. The definition of connection is in both approaches very open, but processing of
these connections uses different concepts.

Normally clustering works on nodes, edges are reflected as couplings or attributes between
two nodes. In our approach edges are first class citizens, in that they define neighbourhood
and allowed/disallowed mergers are defined by edges. An approach that really deals with
edges is presented in [Man96]. It defines tube graphs and formal criteria, which edges to
merge.

Cliché recognition tries to identify programming constructs in existing code. Typically these
techniques – refer for example [Ree97] or [Pal97] - use an program representation that lays
somewhere between abstract syntax trees, flow/control graphs and string representations. The
specific mix of representations and algorithms allows detecting different clichés or efficiency
in a different situation. For example [Fiu96] uses clichés to recognise typical architectural
connectors like shared files or task control.

[Sel98] (and [Bra97] in an earlier version) uses patterns to detect (and transform) features in
programs for example year 2000 errors. They always speak about context free grammars but
they are using variable bindings. Thus, their patterns (and transformation) remind patterns
used in logic programming. The big advantage is that the patterns can be formulated natively,
e.g. in a syntax consistent with the specific language. The hope is that this consistency
drastically reduces the acceptance problems in the industry. To reduce variations, pre-
processing standardises the program source. Two points are interesting to us

• pre-processing corresponds to the translation to a Petri net

• using simpler techniques, in form already familiar to the user

In [Deu97], [Qui97] and [Woo98] reformulate plan base program understanding as a
constraint satisfaction problem (CSP) and try to solve it with CSP techniques. They finally are
successful in recognising a very elementary plan in programs with several thousands lines of
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code – which they claim to be an improvement of an order of magnitude over the state of the
art. This research has several interesting aspects:

• The modification at the CSP engine can been seen as re-introducing the graph search
techniques (essentially in the data flow graph of the program to analyse). A possible
conclusion: currently graph-based techniques can't be avoided.

• Whereas the tractable size of the program seems to approach reasonable dimensions, this
is not true for the size of the plan library. The techniques are restricted to one very
elementary plan. [Woo98] presented a hierarchical algorithm. But the only experiment he
could do with it showed higher cost than the flat algorithm.

• Not much experience is available for a cliché library applicable to real world programs
and reverse-engineering tasks. It seems that a basic dilemma is not solved. For usability
the library should contain few general plans. But for recognition efficiency, a plan must
have unique features.

• General plan recognition techniques use open perception assumption. I.e. if an observation
for a plan is missing they do not reject the plan. But for program analysis this is wrong. If
a piece of code is missing it is definitely not in the code. If something is incomplete it is
the plan library not the code.

Our conclusion is that AI systems which rely on a deep understanding of the software are not
yet ready for real world reverse-engineering tasks. This could be a sign that the rationalistic
perspective [WF86] is not fully appropriate for software reverse engineering. This is quite
surprising, as nothing seems wrong to consider the software artefacts as

• closed symbolic virtual worlds

• designed and implemented within the rationalistic perspective
It is out of the scope of this paper to discuss which metaphors of new AI could preferably be
applied to reverse engineering. But the immediate consequence for our work is to experiment
(also) with other metaphors. The Petri net metaphor explored in this work of course can be
interpreted as another tool within the rationalistic perspective (even within formal methods).
But we can also interpret for example as a metaphor for situated design: An engineer sitting at
a terminal, reading code and drawing diagrams.

Reverse engineering may use other inputs than source code. Dynamic trace data collected
during the execution of the system may reveal information that may not be easily from the
static program source.

[Wil96] instruments source code with a dynamic trace facility. By comparing traces from runs
of different test cases, they get hints, where to look for the implementation of certain features.
The basic technique is to run a test case without the interesting feature and one with this
feature. Code traced only by one of the two tests has a closer or looser relationship with the
searched functionality. Our work does some fundament generalisations on that

• We do not need the source code. We can trace at an interface for example to a database.

• Depending on the application we also can use code locations, but we may get a different
result: a high-level model of the software investigated.

2.5 Flexibility and 'Take it Easy''

Many proposals for a flexible reverse-engineering strategy exist. Most of them involve human
experts as pilots. Such frameworks can be used as a tool for general maintenance. But they are
also useful for forward engineering because things which are easy in a single-language
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environment (e.g. show all senders in Smalltalk) get awfully complex in a heterogeneous
environment. Refer for example to [Kul98] for a situation on a MVS system. The described
situation is not extreme – the author knows worse ones.

[Til93] describes flexibility as one of the three main design goals of Rigi (a framework for
discovering and analysing the structure of large software systems. Named after a mountain in
central Switzerland, known for it's easy access by two of the very early mountain railways).
Flexibility is considered in at least three dimensions:

• parsers for different languages

• extensible and configurable analysis algorithms

• tailorable views and user interfaces

In [Kaz98] a framework for reverse and re-
engineering tools is presented. He uses a
horse shoe metaphor shown in Figure 2. The
idea is the following sequence:

• reverse engineer a legacy application
from source code up to higher levels

• do an architectural transformation

• Forward engineer to get the desired new
implementation.

[Ant97] presents the maintenance Environment CANTO. The user communication consists of
a program source editor and a graph display. For each user action they show the results of the
requested analysis by different tools on the architectural and the program logic level. The
tools work on an intermediate representation extracted by a front end. The major benefit is not
a single analysis by itself. It is the seamless interface which allows to navigate intuitively
between different representations and to modify the system in the same environment.
Analysis on the architectural level is also done with help of user expertise.

Reverse engineering faces many difficulties. But there is also another side: Very simple
techniques can give surprising results.

[Kon97] experiments with different combinations of program metrics to detect cloning in
programs. The detection quality is measured by methods commonly used in information
retrieval. A similar work is [May96] using different metrics and a different point of view. One
interesting point for us is, that they use software metrics which is a tool which is - for the
current purpose - rather superficial. Superficial compared to formal methods which try to
reflect the precise semantics of a program. Also, superficial compared to heuristics which
mimic human thinking about software. But this superficial approach has advantages in
performance, tolerance for programming errors etc.. The superficiality may work as a fuzzy
filter – which is difficult for formal methods. In fact these methods could claim to detect
program structure, not only clones, just by changing the point of view. The difference
between two procedures are clones and they are instances of the same pattern is only gradual.

We can see some similarities to a possible application of our approach: we take a program and
draw a Petri net from it, for example by simple visual methods. And we get something

 

 Figure 2. The horse shoe.
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software engineers are working with every day: diagrams that give a high-level conception of
a software system. These diagrams are correct only in an informal or fuzzy way.

Interestingly enough, an opposite application of superficiality is useful. In [Bak95] two
sections of program text match iff they are equal

• after removing comments

• squashing multiple spaces, but preserving the line structure

• and global substitution
An algorithm detecting such matches is already a powerful tool to detect cloning. [Gup97]
uses even simpler patterns. They are restricted to a single line of source. We can interpret
these techniques (after possibly adding some constraints), as applying formal semantic
preserving transformations. But these transformations are selected not by a semantic criterion,
but from superficial properties like simplicity, peculiarities of the used programming language
and programming practise and efficiency of the analysis algorithm.

2.6 Nets in Reengineering

Petri nets are rarely used for reverse reengineering. This is rather surprising, as many different
kinds of graphs are used or invented in software maintenance like different forms of
dependence trees. In [Cre97] a graph rewriting system is used as the transformation engine for
reverse engineering. Hence graphs techniques can also be used as transformation rules – not
only as static descriptions.

But Petri nets are more often used to model the software engineering process or business
reengineering. For an example refer to [Avr95] or [Kel95]. But, to the authors knowledge, no
such tool contains a reverse-engineering component.

[Chu96] translates formal components to Predicate/Transition nets. A formal component here
is specified in a specification language called MIATAC-MA, by three sets of logic formulas:

• pre-conditions: must be satisfied in order to use a component correctly

• post-conditions: are satisfied after correct use of a component

• obligations: tasks that have to be done sometimes in the future (i.e. closing a file after
opening it).

The predicate transition net contains a single input place with the preconditions, one output
for the post-conditions and another one for the obligations. This translation can be used for
our method, as a further variant to get a net. But in our opinion the title of [Chu96] is
misleading, we cannot see any reverse- or reengineering done in this paper.

In [Can93] not a net but a bipartite graph is mentioned. Within RE2 project reuse candidates
are searched by different clustering measures in a bipartite graph. One kind of nodes
corresponds to procedures, the other kind to global variables and the edges to variable
references, that always run from procedure to variables.
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3 Petri Nets

3.1 Introduction

This chapter is the net-theoretical part of this thesis. As discussed in sections 1.1 and 2.1 there
exist Petri-net classes from the literature fulfilling some of our requirements, but, new
definitions are needed to fulfil the combination of all requirements.

We decided to use the framework of category theory which is a mathematical meta-theory
such as logic. Category theory stresses

• relationships between nets and

• relationships between net classes
rather than single transitions or places of a net. This is very natural for forward and reverse
engineering. Basic definitions of category theory and our motivations for the use of categories
in this work are detailed in the following:

Remark 1. Category theory in computer science. �102�

The balance of this chapter is as follows. The following section introduces some notations and
defines the basic categories. In section 3.3 clustering-based Petri-nets are introduced. Then a
bridge to folding-based Petri-nets is created. Later it is demonstrated, that these Petri nets are
a sound basis for defining high-level nets, additionally universal constructions with
applications in reverse engineering are presented. Finally, the remaining section describes the
integration of behaviour and semantics in the current categorical framework.

3.2 Preliminaries

This section introduces some notations, reviews some well-known categories and introduces
the category of one-sets. This is new variant of multisets avoiding some their disadvantages.

3.2.1 Notation

For a general introduction to Petri nets refer to [Rei98] for category theory to [Lan71]. Used
symbols, abbreviations and terms are listed in chapter 9 Index and an introduction to
Smalltalk is contained in Remark 67. We omit the description of symbols that are usual. To
avoid confusions we provide the following list:

f: X→Y: A function, a partial function, a morphism, a functor or a natural transformation
from X to Y

g f x: Multiplication, function composition and functor application may be written with or
without operator and/or brackets. If clear from the context functions are lifted to
multisets or power sets without special notation.

undef: f x = undef means the partial function f is not defined on the element x
C[X, Y]: the set of morphisms from object X to object Y in the category C
[X, Y] is C[X, Y] if the category is understood
Two functor arrows connected by a triangle (Figure 3 top) symbolise an adjunction. The

triangle points from the left adjoint L to the right adjoint R. As shown at the bottom of
Figure 3 this is also the direction of unit and counit and morphisms which are

transferred by the natural equivalence η.
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For a coreflection the adjunction
symbol is decorated with a
vertical equal sign at the side of
the unit which consists of all
isomorphisms (Figure 3 left
middle) Similarly a reflection
gets an equal sign at the side of
the counit.

3.2.2 Sets and Multisets

Definition 2. SETP designates the
category of sets and partial maps. As
usual the composition of partial maps
is defined by

(g f) x = if f x = undef then undef
else if g (f x) = undef then undef
else g (f x)

It is well-known that in SETP all (co)universal constructions exist. As it is important to
understand what these look like, the reader might like to consult the proof of

Proposition 3. SETP is cocomplete and complete. �104�

Definition 4. A multiset over a set S is a function m∈MS(S) = {f: S→���� | f(s) ≠ 0} for a set S.
The sum of two multisets is defined by (m'+m")(s) = m'(s) + m"(s) and similarly
multiplication with a natural number. The category MS consists of the objects MS(S) for a set

S and morphisms which are the linear functions MS(S)→MS(S'). MS extends in the obvious
way to a functor from SETP to MS.

As usual, linear means f(m'+m") = f(m') + f(m") and f(λm) = λf(m) the latter being an

obvious consequence of the former. 0 is the empty multiset (0(s) = 0 ∀s∈S). We freely switch
between the function notation (m(q) is the multiplicity of q in m) and formal sums (m = 3s' +

s"). Further we define m' ≤ m" iff m'(s) ≤ m"(s) for all s∈S.

The last section showed that SETP is finitely complete and cocomplete. This is not true for
MS:

Lemma 5. In MS there are finite diagrams without a colimit or a limit. �106�

The counter examples in the proof of the above lemma are very simple. It signifies that
universal constructions are missing in typical situations in MS.

This is an uncomfortable dilemma for the construction of Petri net categories. Multisets are
widely accepted to model resources – but they lack universal constructions. Unfortunately the

obvious generalisation to ���� -modules that would allow universal constructions is lacking the

modelling power. Over ���� +r and –r have equal rights. But for nets the difference between an
available resource +r and a missing resource –r is crucial. Hiding this difference in a tiny sign
compromises the essence of net theory.

unit counitη η η η X,Y

X

RY

LX

Y

ID

RL

LR

ID

R

L

C D

R

L

C D

R

L

C D

Figure 3. Symbols for adjunction (top) and (co)reflection

(middle) and mnemonics (bottom).
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A simple way out is to only use 1-dimensional multisets or simply the naturals. But this is not
a real solution:

• the distinguishing feature of high-level nets is, that their places carry not only a number
but also something more complex, normally a kind of multiset.

• even if every place only carries a number, a marking is still a multiset. At least as long as
nets are not restricted to a single place – which would simplify net theory a little bit...

Another way to handle the dilemma is a restriction of the type of morphisms used. In the next
section we construct a subcategory of MS having the same objects but only a subset of the
morphisms. The category has nice adjunctions to SETP from which we will profit in the Petri
net categories.

3.2.3 One-Sets

The category 1S is the result of careful balancing of different requirements.

• it is a subcategory of multisets

• it has all colimits and limits

• morphisms retract to the base sets

• it allows infinite base sets

The last point does not seem necessary for a computer tool. But, the
behaviour of a net can be modelled by another net - a nice self-
reflecting feature of net theory. However for a net as small as the one
in Figure 4 the semantics might create an infinite net.

The new category is connected by three different functors with SETP – two of them forming
an adjunction. The adjunction clearly shows that 1S is smaller than MS because the right
adjoint functor maps a one-set to a set much smaller than the set of elements.

The section finishes by showing that 1S is cocomplete and complete. In the next chapter the
definition of nets will be very concise because we have all necessary categories at our
disposal.

Definition 6. 1S, called one-sets, is the subcategory of MS with multisets over a base set as

objects. A morphism f∈1S[M, M'] is the linear expansion of the product of two functions,

namely the base component fβ  and the coefficients f γ with:

�λ=�λ
∈

βγ
∈ Ss

s

Ss

s )sf( )sf()s(f for λs∈���� such that

fβ ∈ SETP[S, S']

fγ: S→����

def fβ = {s∈S | fγ s ≠ 0}
S the base set of M
S' the base set of M'

In other words 1S is a subcategory of MS with the same objects and the restriction on
morphisms that a base element is mapped to the multiple of a base element. This is a
generalisation over partial functions but a specialisation from multisets morphisms. It is easy
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 Figure 4. A net with an

infinite reachability graph.
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to see that the morphisms are compositional. A 1S morphism determines fβ and fγ. Reverse if

def(fβ) = {s | fγ(s) ≠ 0) then they uniquely determine an f. f = (fβ, fγ) denotes this situation that
allows layered constructions.

Definition 7. 1S: SETP→1S is the functor mapping a set S to the one-set with base S and a
partial function f to a 1S morphism with

∀s∈S: (1S f) s = if s∈def f then 1 (f s) else 0
(1 (f s) is f s interpreted as a multiset).

This functor builds the one-set over a given set. It is well-defined and compositional because
the 1S morphisms with coefficients 1 are a direct translation of partial functions on the base
sets.

Definition 8. B: 1S→SETP is the functor that maps an object of 1S to its base set (i.e. B (1S

S) = S) and retracts a morphism f to fβ.

B is the inverse to 1S on objects by mapping a one-set to its base set (for morphisms see
Proposition 10). This is possible for 1S-morphisms but not in general for MS-morphisms.
Compositionality follows because undefined values propagate in partial function composition
in the same way as zeros do in products.

Definition 9. BN: 1S→SETP is the functor mapping a object M to the set ����
+ x (B M) and a

morphism f ∈ 1S[M, M'] to

def (BN f) = ����
+ x (def fβ)

(BN f) (s, λ) = λ fγ(s) fβ(s) for s∈S and λ∈����
+.

BN maps a one-set to the base skeleton, which is the set of nonzero multiples of base
elements. By the same argument as above BN is well defined. The three functors are related
as follows:

Proposition 10. 1S is left adjoint to BN. There is a natural equivalence ε: IdSETP→B 1S and

there are isomorphisms δM: M→1S B M with B δΜ = εBM.
�107�

Proposition 11. 1S is cocomplete and complete. �108�

The computation of a colimit is computationally reasonable – the size of the coproduct does
not exceed the size of the disjoint union, that is the size of the input. But this is not true for
limits. Already the product of one-sets with the base consisting of a single element gets an
infinite base. Although 1S is complete products are only of restricted computational value.

In summarising this chapter we compare 1S and MS. For both categories the free functor from
SETP has a right adjoint. For a multiset this is the usual forgetful functor producing the set of
all elements of the multiset, for a one-set it is the smaller set of the base skeleton. Furthermore
the functor 1S has a left inverse functor which is simply B. And finally 1S is cocomplete and
complete which isn’t true for MS – worse, simple diagrams typically are lacking a colimit or
limit.

SETP 1S

1S

BN
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3.3 Place-Transition Nets

We start with one side of the framework: a class of Petri nets with clustering that will be
called PTNET: the category of place-transition nets.

Clustering should support software-engineering principles for subsystem composition. The
well-known graphical representation of Petri nets should be more than a mere visualisation.
Graphical operations should be interpreted in a natural and intuitive way within PTNET. And
not least, it should be a real Petri-net category in the sense that it reflects Petri-net principles
and can harness the power of Petri-net analyses.

Although there are definitions in the literature with different combinations and variations of
these properties, we need the new PTNET category to be able to link to a folding category
later on.

Whereas PTNET, the category of place-transition nets, defines nets (the objects of the
category) in a standard way, morphisms are a novel combination of:

• vicinity-preserving graph morphisms

• foldings commuting with the pre and post function, and hence mapping transition
occurrences

Such a morphism retracts to the underlying graph. If a morphism is seen as an
implementation/specification relation, then the origins of a node are a subsystem of the source
net. The origins of a transition form a transition-bordered subnet with proper port transitions.
Ignoring vanishing nodes, the origins of a place form a place-bordered subnet. Hence PTNET
morphisms are vicinity-preserving and support clustering in a way which is very useful for
composing subsystems.

A morphism retracts to a (partial) graph morphism. Thus PTNET has a direct interpretation of
operations on the underlying graph. This is an important principle of Petri-net theory - the
graph is not a mere visualisation but a major component. Thus graph operations and
transformations are a natural and powerful tool in PTNET. This claim is supported by a
coreflection between 1S and PTNET.

Place and transition invariants are important structural net properties. A morphism transfers a
place invariant from the destination net to the source net. This leads to a very convincing
interpretation of semi-positive place invariants: they are simply morphisms to a net consisting
of a single place. A transition invariant is transferred in the direction of the morphism. This
shows that PTNET integrates smoothly with linear algebraic techniques which are important
net-theoretical tools.

3.3.1 Definitions and Basic Properties

Definition 12. The category PTNET of place-transition nets consists of objects

N = (preN, postN ∈ MS[MS TN, MS PN])
with disjoint sets TN of transitions and PN of places.

 XN = TN∪PN

is the set of nodes of the net N and f is a morphism N→N’ iff

f ∈ 1S[1S XN, 1S XN’],
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∀t∈TN: (fβ t∈TN’ and f preN t = preN’ f t) or f preN t = f t and

∀t∈TN: (fβ t∈TN’ and f postN t = postN’ f t) or f postN t = f t
A morphism f is called

• a folding iff fβ P ⊆ P’ and fβ T⊆T’

• unitary iff fγ XN⊆{1} and

• binary iff fγ XN⊆{0, 1} �109�

This means that the pre and post functions map a transition to a multiset of places. A
morphism maps a node of the source net to a multiple of a node of the destination net and the
pre (or post) multiset of a transition is either mapped to the image of the transition or its pre
(post) multiset. It is worth mentioning that a node may be mapped to 0 and that the empty net
is the zero object of the category.

These morphisms are a combination of commutative and vicinity-respecting definitions.
Before the “or” in the definition stands the usual commutative requirement and after it a
strengthened version of vicinity-respecting. Vicinity-respecting morphisms normally are
graph based hence (partial) functions from X to X'. Commutative definitions
map places to markings but transitions to transitions - an asymmetry that
becomes problematic for the clustering of places with transitions. We keep
the middle with 1S morphisms - a restricted form of multiset morphisms
that retracted to a (partial) node function.

As usual we will replace the index N with other forms of sub- or
superscripting or drop it completely if the context rules out
misunderstandings. We will use the convention that the application of a pre
or post function implies the argument to be a nonzero transition multiset.
Thus the conditions before the “and” become superfluous.

The objects are defined in the standard way the notation is similar to [NS98]. Many usual
notations are easily derived, for instance:

the pre-set of a node: •x = {y∈X | if x∈T then pre(x)(y) ≠ 0 else post(y)(x) ≠ 0}

the postset of a node: x• = {y∈X | if x∈T then post(x)(y) ≠ 0 else post(y)(x) ≠ 0}

the neighbourhood of a node: •x• = •x∪x•

the environment of a node: env(x) = {x}∪•x•

the flow relation of the net: F = {(x, y) | x, y∈X with x∈•y}

The basic morphism types are characterised by:

Proposition 13. A PTNET morphism f: N→N' is

• epimorphic iff fβ is surjective

• monomorphic iff def(fβ) = X and fβ injective

• isomorphic iff f is unitary, fβ is a bijective and isolated places are mapped to places.
�109�

Figure 5 shows that in PTNET monomorphic and epimorphic does not imply isomorphic. Not
even for finite nets. A morphism such as this is useful in engineering:

• it does not loose any information because it is mono

Figure 5. Mono and

epi but not iso.



Walter Keller. Petri Nets for Reverse Engineering. 29

• it does not ‘invent’ anything new because it is epi

• it transforms information because it is not iso.

Remark. The proposition still holds in subcategories of PTNET allowing only foldings
(FNET) or disallowing morphisms to map places to transitions (PPNET).

An isomorphism in PTNET is a bijective unitary folding or equivalently a pair of bijections,
one between the places and one between the transitions. Hence our Petri net isomorphisms are
the exactly the same as in clustering-based ([GLT79]) or folding-based ([NS98]) approaches.
On the other hand, even our foldings are in general no morphisms of [NS98] because they are
allowed to multiply transitions.

The tight relationship from Petri nets to the underlying graph is first seen by the definition of

a PTNET morphism as (special) 1S morphism. This allows retracting a net morphism f to fβ.
But there is also something to say about the other direction:

Definition 14. PTNET: 1S→PTNET is the functor with PTNET 1S P equals the net with
places P and no transitions and the identity on morphisms. U is the underlying functor sending
a net N to 1S XN.

Proposition 15. PTNET: 1S→PTNET is the left adjoint of U. Moreover, they form a
coreflection. �110�

Observe that 1S and PTNET
compose having a right adjoint
BN U. On the other hand B U

f equals fβ the retraction of a morphism to the underlying graph.

3.3.2 Clustering

A simple way to use morphisms for clustering is to interpret a morphism say f as a
specification of an implementation. The source of f is the implementation and the destination
is the design. The origins of a destination node form a subnet of the source. This of course
works for any function between the node sets. But crucial are the specific properties such
subnets have.

The idea that the origins of a node form a super node is not too bad as Figure 6 shows.
Moreover, a closer look moreover reveals that super transitions have special input and output
transitions. This is formalised in the following:

Definition 16. Let S, R⊆XN. S is called non-splitting relative R iff for each transition t∈S∩T

the intersection •t∩R is either completely contained in S or disjoint from it and similarly for

t•. S is called non-splitting iff it is non-splitting relative XN

1S PTNET

PTNET

U

SETP

1S

BN
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Proposition 17. Let f: N→N’, Kf = XN\def(fβ) and S’⊆X’. Then

• def(fβ) is transition-bordered

• Kf is place-bordered,

• if S’ is place-bordered then also fβ
-1(S’)∪Kf

• if S’ is transition-bordered then also fβ
-1(S’)

• if S' is non-splitting then also fβ
-1(S’) relative def(fβ)

�111�

Ignoring Kf - the ‘garbage
component’ - the origins of a
single node form a super
node of the same type.
Furthermore, super
transitions have proper port
transitions. These clustering
capabilities of PTNET
morphisms have obvious
parallels to modularization
principles in software
engineering. As well as
having strong parallels to
several classes of Petri nets
with composition operators.

What about the reverse?
Given a set S of nodes, is
there a morphism that exactly
collapses these nodes? If S
consists only of places the
obvious map from

X→X\S∪{S} yields a unitary
folding. But for a set of
transitions in general this is
not true. They need to be
compatible. The relationship
between morphisms and net
invariants elaborated in the
next section allows the
formulation of a linear

algebraic criterion whether such a collapsing morphism for an arbitrary S⊆X exists.

3.3.3 Net Invariants

Place and transition invariants are important tools in net theory. They allow deducing
behavioural properties by linear algebraic techniques from the net structure. A place invariant
is a map from markings to the integers that does not change under transition occurrence. A
transition invariant is a transition sequence with total marking change zero:

Figure 6. The origins of a node form a super node.
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Definition 18. A place invariant of a net is a linear function i: 1S P→ ���� with i (post - pre) = 0
and a transition invariant j is an integer linear combination of transitions with (post - pre) j
= 0. An invariant is called semi -positive iff all coefficients are non-negative.

Proposition 19. Let f: N→N’ a morphism of place-transition nets. Then

• if i': XN'→���� is a place invariant of N' then i = �
∈Pp

p f i' is a place invariant of N.

• Semi-positive place invariants of N are 1 to 1 with morphisms to single place nets.

• if j∈1S TN is a transition invariant of N then j’ = �

≠
∈

 tf  t pre f
Tt

f(t) j(t)  = �

≠
∈

 tf post t  f
Tt

f(t) j(t) is a

transition invariant of N’.

• A semi-positive transition invariant corresponds to a unitary folding from a T-system (a

PTNET with all arc cardinalities 1 and |•p| = 1 = |p•| for all places).
�111�

A semi-positive place invariant has a very concise characterisation: it is simply a morphism to
a single place net. A transition invariant corresponds to a T-system which is neither unique
nor small. The asymmetry between place and transition invariants is a consequence of the
asymmetry in their definitions as well as the break of the place/transition duality by the
definition of a PTNET morphism.

Remark 20. The major limitations of PTNET are the following: universal constructions do
not exist in general and behaviour transfer is complicated. �113�

3.4 From Clustering to Folding

The folding side of our framework will be called FNET, the category of nets with foldings.
The crucial point is to obtain a powerful relationship between the two sides, FNET and
PTNET. A one-way relationship such as a functor (e.g. subcategory) is not enough.
Simulations in both directions are needed. We will use a strong relationship of this kind which
is formalised in category theory under the name of adjoint functors. An adjunction is the first
choice from a theoretical point of view but computational complexity must be affordable for
practical applications. If a subnet is mapped to a transition, its 'occurrences' are no longer
atomic like transition occurrences. There are several propositions in the literature for dealing
with such transitions in occurrence - but they add complexity and violate the principle of
transition-occurrence atomicity. A solution within pure Petri-net theory would be preferable.

The category representing folding is the subcategory of PTNET containing the same objects
but in which only foldings are allowed as morphisms. Furthermore, a middle category of
place-preserving nets to be known as PPNET is defined. Its morphisms map places to places.

The bridge from clustering to folding is formed by two adjunctions which compose at
PPNET. They allow a place-transition net to be simulated by a place-preserving or a folding
net - in a faithful and computationally reasonable way. Moreover, they also show how to
handle 'transitions in occurrence' in an elegant way while remaining within pure Petri-net
theory.
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On a theoretical level, these adjunctions clarify the relationships between two groups of Petri-
net formalisms:

• vicinity-preserving or graph-based

• algebraic or behaviour-preserving.

FNET and PPNET have further interesting properties in addition to those of PTNET. For
example, all couniversal and universal constructions exist. This allows nets to be composed
from subnets in a flexible and natural way. It also allows graph-rewriting techniques to be
applied directly on the basis of the single or double-pushout approach.

3.4.1 Place-Preserving Nets

The category of place-transitions nets offers powerful features for clustering based software
engineering and for structural net analyses. It’s weaknesses are the lack of universal
constructions and the difficulty to transfer behaviour. A small modification improves the
situation:

Definition 21. A PTNET morphism f: N→N' is called place-preserving iff fβ(P)⊆P'. The
category PPNET is the subcategory of PTNET with the same objects and place-preserving
morphisms.

Obviously pp stands for place-preserving. The following lemma gives it yet another sense:

Lemma 22. Let ∆x = (x,x) and pp = (pre, post) ∈ MS(MS T, MS P) x MS(MS T, MS P) ≅
MS(MS T, MS P x MS P). For a PTNET morphism f: N→N' the following properties are
equivalent:

• f is place-preserving

• (∀t∈T: f pp t = pp' f t or f pp t = ∆ f t) and

(∀p∈P∩def fβ: ∃p'∈P with fβ p'∈P' such that p and p' are connected by an undirected path

with all nodes in def(fβ)).
�114�

Thus the second understanding for pp is pre and post. Arguments for pre and post may be
replaced by an argument with the combined function pp. This abbreviates notation and
simplifies proofs. For example we may abbreviate a net N = (pre, post) by N = pp.

Clearly there is a forgetful functor U: PPNET→PTNET simply forgetting the place-
preserving restriction on morphisms.

Proposition 23. The forgetful functor U has a right adjoint PP: PTNET→PPNET. �114�

PP replaces every transition by three transitions
and a place as shown in Figure 7. This deals with
the four combinations of the image of the pre- and
postsets of a transition under a PTNET morphism.
Figure 7 suggests an upward projection which

merges again the 4 nodes generated from each transition. This projection is a morphism and
moreover the counit of the adjunction.

PPNET PTNET

U

PP
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A place-transition net can be faithfully simulated
by a place-preserving net. This is
computationally sensible, as the place-preserving
net gets 3 additional nodes for every transition in
the original net. Given the simplifications in the
new category this seems no bad programming
technique.

Observe that the two adjunctions between
PTNET and 1S respectively PPNET do not
compose as adjunctions because left and right do
not match. However there are other adjunctions:

Proposition 24. Let PL: PPNET→PPNET be the
functor dropping all transitions and keeping

the places of a net. U PL: PPNET→1S
forms a coreflection with the left adjoint PP
PTNET and forms a reflection with the right

adjoint MM2: 1S→PPNET. �115�

The diagram beside summarises the
situation. Notice that it is not commutative,

e.g. U U ≠ U PL and the cyclic triangles
compose to identities only in special cases
(e.g. U PL PP PTNET = Id1S) but not in
general. There are two adjunctions between

PPNET and 1S although the adjunctions between PPNET and PTNET and between PTNET
and 1S do not compose.

Proposition 25. PPNET is cocomplete and complete. �116�

U PL is a left adjoint and hence transfers limits. Hence the places of a limit are determined by
the limit in 1S but the limit may 'invent' additional transitions required by commutativity with
pre and post. If U U would transfer limits it would disallow this and hence limits could not
exist in general. This 'invention' of transitions may produce problems with computational
complexity. This cannot happen with colimits: their size is limited by disjoint union and
hence by the size of the input.

3.4.2 Folding Nets

Definition 26. FNET is the subcategory of PPNET with the same objects but only foldings as
morphisms.

Figure 8 shows different mappings of nodes and tabulates in which categories they are
allowed for morphisms. It lists our three categories, a typical clustering-based one ([GLT79])
and a folding-based one ([Win84a]). For a more formal comparision see Figure 20.
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Figure 7. The Functor PP.
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Figure 9 demonstrates how to define a functor F: PPNET→FNET. Whereas PP splits
transitions, F splits places. F has similar properties as PP and the two adjunctions compose:

Proposition 27. The underlying functor U has a right adjoint F: PPNET→FNET. �118�

Proposition 28. FNET is cocomplete and complete. �118�

Later we will need morphisms that map transitions only to similar
transitions:

Definition 29. A morphism f is called local injective iff it is a unitary

folding with fβ injective on the environment of each transition.

3.5 High-Level Nets

To model real-world applications with the formalism of ordinary Petri nets alone is
cumbersome, and is rendered practicable only by the additional expressiveness of high-level
nets. High-level nets such as coloured or hierarchical nets provide a compact notation for
large (e.g. infinite) nets. The design of such net classes has to balance two conflicting
requirements: expressiveness versus coherence. Coherence allows analyses to be performed
for an unfolded net within a compact notation. However, many tools lack such coherence, as
well as categorical resources such as morphisms for simulation or universal constructions for
sophisticated subsystem composition.

Initially, a coloured net is defined as a unitary folding and a morphism as a pair of morphisms
of the underlying category forming a commutative square with the two foldings. This means
that a colour of a token on a place of the coloured net is unfolded to a place in the unfolded
net - which corresponds to the unfolding of a coloured net to a flat net. But the usual
definitions delegate the coherence of a coloured net and its unfolding to the typing system
(e.g. the permitted expression for arc inscriptions) whereas our coloured categories derive the

[GLT79] PTSYS PPSYS FSYS [Win84a]

2* ∅∅∅∅ √√√√ √√√√ √√√√ √√√√

∅∅∅∅ ∅∅∅∅ ∅∅∅∅ ∅∅∅∅ √√√√

√√√√ √√√√ √√√√ ∅∅∅∅ ∅∅∅∅

√√√√ √√√√ ∅∅∅∅ ∅∅∅∅ ∅∅∅∅

2* ∅∅∅∅ √√√√ √√√√ √√√√ ∅∅∅∅

Figure 8. Allowed (√√√√) and disallowed (∅∅∅∅) mappings for different morphisms.
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Figure 9. The Functor F.
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coherence condition from the definition of a morphism, which may be stronger, for instance
by not allowing variable arc cardinalities.

The range from clustering to folding is lifted by this construction to coloured nets yielding the
following three categories:

• CPTNET: coloured place-transition nets

• CPPNET: coloured place-preserving nets

• CFNET: coloured folding nets

Each of these coloured categories is connected to the underlying uncoloured category by two
adjunctions, more precisely a reflection and a coreflection. Furthermore, co-universal and
universal constructions in coloured nets reduce to such constructions in the source and
destination nets. Although these categories are very abstract, they encompass the net-
theoretical essence of existing classes of algebraic or coloured nets - which are already
implemented as computer tools. Our categories have the potential to enrich such net classes or
tools by a categorical framework including the integration of clustering and folding,
morphisms for simulations and universal constructions for subsystem composition.

More generally, a category of hierarchical nets consists of net diagrams and natural
transformations. However, similar and more abstract arguments and properties apply, as for
coloured nets. And the clustering capabilities of PTNET or PPNET really prove their
usefulness for hierarchical nets.

Once high-level nets are used, the question of how to reverse-engineer existing nets arises.
Chapter 4 will show that reverse engineering of Petri nets applies not only to Petri nets but
also contributes a novel analysis to the reverse engineering of conventional applications.
Within this framework, the task of reverse engineering is: given a net Nf, find a hierarchical
net that specifies the design of Nf. The hierarchical net is a diagram consisting of colouring
foldings and clustering morphisms. Hence the task reduces to three subtasks: to compute
colourings, to compute clusterings and to select and compose a meaningful diagram from
them. Here we shall only treat the first subtask. Many methods from traditional engineering
may be used for the second one. Practical experience with the first two would be a
precondition for the third one.

Hence for a given net Nf we have to compute a colouring morphism c: Nf→Nu. The idea is to
start from a set of pairs of parallel monomorphisms to Nf. An adjacency criterion selects
which of these pairs should become (co)equalised by c. When properly applied, this idea
yields a final reduction that is itself couniversal, in particular, it is unique. It is computed by a
sequence of couniversal constructions, namely coequalisers. This computation is very
efficient because it requires neither searching nor backtracking and allows important
optimisations.

This construction allows variations in three dimensions:

• the morphisms of the category determine the similarity criterion of the subnets which
might become merged

• the adjacency criterion

• a choice between pairs yielding conflicting coequalisers
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The last variation choice may lead to the loss of uniqueness. These variations allow flexible
adaptation of the construction to a specific reverse-engineering task. A prototypical
implementation and practical applications are described in Chapter 4.

3.5.1 Coloured Nets

Definition 30. C*NET is one of the three following comma
categories of unitary foldings:

• CPTNET in PTNET

• CPPNET in PPNET and

• CFNET in FNET.
The definition can be expanded by saying that a coloured net of

C*NET is a unitary folding C: Ns→Nd from a source net src C =

Ns to a destination net dst C = Nd. A morphism f: C→C' is a pair

of morphisms fs: src C→src C' and fd: dst C→dst C' which
together with C and C' form a commutative diagram in PTNET,
PPNET or FNET respectively.

Proposition 31. src and dst extend to functors SRC and DST: C*NET→*NET. DST is left
adjoint to ID (with ID N =
IdN), forming a reflection,
and SRC is right adjoint to
ID, forming a coreflection.
The functors PP and F and
their adjunctions with U lift
to the categories C*NET
and commute with the
former adjunctions. �118�

The proposition is shown
alongside with grey arcs
depicting the
compositionality of
adjunctions.

Proposition 32. CPPNET and CFNET both are cocomplete and complete. �119�

Although this definition sounds quite different from the usual definition of coloured nets, such
as that of CPN [Jen92], in reality they are not that far apart.

Before a formal discussion look at the example of a CPN in Figure 11. There are three places

all with the same colour set ����5 the field of the integers modulo 5. The arcs carry expressions
whose variables are bound around a transition. A transition occurrence takes from the left
places a number x and a number y and
deposits the quotient in the place at the right
side. Additionally the transition has a guard –

it is only allowed to occur if y ≠ 0.

A given CPN NJ translates to a

C‘
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C

f
s
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src C‘

dst C‘
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Figure 10. A colour morphism.
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Figure 11. A coloured net.
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C*NET C: Cs→Cd as follows. Places of NJ become places of the destination net Cd, the places

of Ns are the token elements (pairs of a place and a compatible colour) with Cβ(p, c) = p.
Similarly, the binding elements (pairs of a transition and a transition mode permitted by the
guard expression) become the transitions of Ns. The pre and post-functions of the source net
are derived from the arc-expression function EJ (arc identities are ignored to simplify
notation) as follows:

pres((t,b), (p,c)) = EJ(p, t) (b) (c)
posts((t,b), (p,c)) = EJ(t, p) (b) (c).

Finally
Td = {(t, C pres (t, b), C posts (t, b)) | for each binding element (t, b)}
pred(t, u, v) = u
postd(t, u, v) = v
C(t, b) = (t, C pres (t, b), C posts (t, b)) for each binding element (t, b)

complete the definition of Nd and clearly turn C into a unitary folding.

If t uniquely determines (t, C pres (t, b), C posts (t, b)), this yields a perfect correspondence:
the net of NJ is Cd and C is the unfolding of the coloured net to the equivalent flat net, which
is Cs. In general, however, the CPN transitions must be split up to force C to commute with
pre and post. This splitting is necessary because C*NET enforces a coherence condition (by
the definition of a folding) whereas CPN delegates such a coherence condition to an
unspecified typing system.
In conclusion, CPN and C*NET differ in the following ways:

• C*NET abstracts away the typing system in CPN. Typing is indispensable for
programming but is neglected here as a concept which is orthogonal to Petri net theory.

• For lack of space, we defined only coloured nets and not systems which include an initial
marking as CPN does.

• C*NET enforces coherence between the coloured net and its unfolding whereas CPN
delegates this coherence to an unspecified typing system.

• CPN lacks the categorical machinery which is a strength of C*NET.

3.5.2 Hierarchical Nets

Hierarchical nets support additional structuring methods. Beside colouring they allow (copies
of) components to be composed, and hence permit layered design and analysis. A general and
simple way to attain this within the current categorical framework will now be shown:

Definition 33. The categories HPTNET, HPPNET and HFNET respectively consist of

• finite commutative diagrams as objects, and

• natural transformations as morphisms
in PTNET, PPNET and FNET respectively.

Natural transformation means that a correspondence is defined between the objects of the two
diagrams, and corresponding objects are connected by morphisms to make the combined
diagram commutative. This is a generalisation of coloured nets that allow only diagrams with
a single arrow. The purpose is to use colourings where appropriate and forget about them
elsewhere. The diagram would be annotated as follows (for instance):

• this arrow is a colouring of database entities

• this is a pushout square composing two components
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• this is a simulation arrow defining concurrent behaviour

• this arrow is a place invariant ensuring that no clients get lost
To model an existing hierarchical net class, only a few types of arrows are needed. For
instance HCPN [Je92] would need monomorphisms for subnet identification and unitary
foldings for place fusions and colourings. Place-transition morphisms may be used for
clustering. This definition of hierarchical nets is obviously very general and a specific tool
would have to select a subcategory. However, this is beyond the scope of this paper.

Within this framework, the task of reverse
engineering can be expressed thus: given a net
Nf , find a hierarchical net that specifies the
design of Nf. The hierarchical net is a diagram
consisting of colouring foldings, clustering
morphisms, monomorphisms identifying
subsystems etc.. The task thus reduces to the
following subtasks: to compute colourings, to
find clusterings, to identify subsystems etc.
and to select and compose a meaningful
diagram from them.

Here, we concentrate on the first subtask.
Chapter 4 will show that folding-based
methods yield powerful new analysis methods
for conventional reverse engineering. For the
remaining subtasks, on the other hand, many
clustering-based methods from traditional
engineering apply. They usually use
clustering methods, because these are the
fundamental method to compose complex
systems from subsystems.

3.5.3 Iterated Couniversal
Constructions

For a given net Nf, we must compute a

colouring morphism c: Nf→Nu. The basic idea may be illustrated by another use of the word
folding. Just like folding a shirt, two adjacent parts which fit together are overlaid. Figure 12
shows this process for Petri nets. The reduction works
iteratively, i.e. it may overlay fitting parts when they
become adjacent, and it stops when there are no more
adjacent fitting parts.

Only similar transitions may be overlaid, whereas there is
no such restriction for places. The process therefore relies
on the bipartite structure of the graph. This folding process
is formalised as follows:

Definition 34. Let ι be a relation on morphisms with

if (f, f')∈ι then (gf, gf')∈ι for each compositional morphism g.
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Figure 12. Reduction by folding.

f‘

q

rf

N

R

Q

∃∃∃∃! q'

N'

ιιιι
∀∀∀∀

Figure 13. A maximal ι reduction R.
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A morphism r: N→R is an ι reduction of N iff

∀f, f': N'→N: if (r f, r f')∈ι then r f = r f'

The maximal ι reduction of N is an ι reduction which is couniversal for all ι reductions.

The definition is visualised in Figure 13, which is commutative except for the parallel arrows

f and f'. The idea is that two morphisms which are related by ι have the same source and
destination, and their images should become overlaid. Figure 14 shows that this has the same
result as the folding reduction from Figure 12.

Proposition 35. A cocomplete category possesses all maximal ι
reductions. �120�

For finite nets of PPNET or FNET, the proof contains an
algorithm: just compute one coequaliser after the other. When no

further reduction is possible, the maximal ι reduction is reached.
The next proposition is crucial for efficiency.

Proposition 36. If ι is a relation on morphisms as in Definition 34

and κ is the least relation fulfilling points (i) to (iii) from below then an r is an ι reduction of

N iff it is a κ reduction.

(i) ι⊆κ
(ii) if (f, f')∈κ then (f g, f' g)∈κ for each compositional morphism g

(iii) if ∀ (f, f')∈κ,  (e g, e g')∈κ and h, h', fh and gh are morphisms fulfilling the points

(a) to (d) from below then (h, h')∈κ (refer to Figure 15):
(a) f = h fh and f' = h' fh,
(b) g = h gh and g' = h' gh,
(c) e is the coequaliser of f and f'

(d)  ∀ x, x': Nh →Nx holds x = y iff (x fh = y fh and x gh = y fh)  �120�

f

f‘

r

Figure 14. The lower reduction from Figure 12 as coequaliser.
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 Figure 15. The Factorisation.
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To reduce a relation ι the proposition is
applied in reverse: pairs generated by right
multiplication (ii) or union (iii) are
superfluous. For many applications it is
sufficient to use morphisms from nets
consisting of the environment of a single
transition. This yields an efficient
computation because it allows to work locally.

3.5.4 Variations

These universal constructions may be
modified in three dimensions:

• Adjacency: The relation ι decides about
the necessary adjacency criterion for
subnets - including ignoring adjacency
completely.

• Similarity: The morphisms of the category
determine which subnets are merger
candidates. Should subnet isomorphism be
weakened or strengthened by additional
requirements?

• Choice: which subset of the mergers
allowed by the above two criteria is
selected? This leads to similar
constructions that may not be universal or
unique.

There are several ways of defining adjacency:

Definition 37. Define relations on parallel

morphisms f, f': N'→N by:

• overlap: im fβ ∩ im f'β is not empty

• fixpoint: ∃x'∈XN' with f x' = f' x'

• common intersection: {x'∈XN' | f x' =

f' x'} = im fβ ∩ im fβ' ≠ {}

• clean intersection: (if fβ x'∈im fβ' or

fβ' x'∈im fβ then f x' = f' x')

and im fβ ∩ im fβ' ≠ {}.
These four relations are totally ordered with
overlap the coarsest and clean intersection the
finest relation. As Figure 16 shows, the first
two definitions may still unnecessarily disturb
the 'isomorphic transition' picture. We were
unable to find any such examples of clean
intersection which coincides with common
intersection for monomorphisms. However,
the two last relations are not preserved by left
multiplication, as is required by Definition 34.

2

Figure 16. Bad examples for overlap (top) and fixpoint

(middle) not occurring with clean intersection (bottom).
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They may be used for more general reductions.

These adjacency definitions only ensure that a single reduction step is locally clean. We will
need additional methods to get clean reductions for the whole net. For this Definition 34 and
the following propositions are formulated purely categorically which allows selecting a
subcategory of PPNET or FNET. Chapter 4 will use a preliminary analyses to select a subset
of morphisms and then will compute the reduction in the resulting subcategory.

Up to now, a reduction has equalised all morphisms related by ι. This is in line with universal
constructions, avoids combinatorial explosion and yields a unique solution. Sometimes,
however, it is crucial to select a pure variant and avoid mixtures. An algorithm using arbitrary
choice would be more appropriate in this case. It would, for instance, not lead to over-
simplification as in Figure 17. We formalise these ideas as follows:

Definition 38. Let ι be an arbitrary relation on morphisms. A morphism r: N→R is an ι
choice reduction of N iff

for each f, f': N'→N with (rf, rf')∈ι there exist morphisms g, g': N"→N with

∀ x, y: (x f = y f iff x g = y g) and (x f' = y f' iff x g' = y g'),

(r g, r g')∈ι and r g = r g'
With this definition universal properties and uniqueness are lost even for maximal (with
regard to connecting morphisms) choice reductions. The optimisations offered by Proposition
36 may remain valid, at least as heuristics. But the
same algorithm that computes coequalisers iteratively
still works.

There are many interesting questions about choice
reductions. What about the limit of all (maximal)
choice reductions of a net? What are the common
properties of all reductions? In section 4.6.1 we
propose that all such reductions be computed by
relational algebra in a product representation which
would allow reverse-engineering information to be
extracted from the set of all reductions.

3.6 From Structure to Behaviour and Semantics

We have built a bridge from clustering to folding, but a final point is still missing: do we
obtain the strong relationships to semantics which are typical for folding-based Petri-net
categories? A positive answer will affirm that we have built a folding category in a deep sense
and not only superficially. Semantics is the final purpose of all work with Petri nets: nets and
systems represent a compact formulation of possible behaviours or semantics. Strong
relationships to semantics allow semantic analyses to be reduced to simpler structures, which
is often crucial for avoiding combinatorial explosions.

A Petri net is a static structure, no more than a bipartite graph. A Petri system is a net plus an
initial marking which enables a token game representing the behaviour of the system. The
main interest in net structures is to understand the behaviour of nets. Hence tight relationships
between nets and systems are crucial: They allow the properties of a system to be derived

2

Figure 17. A single choice would be better.
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from a static net. In particular, we would like to find the bridge from clustering to folding for
systems.

The dialectic between
structure and behaviour is
a basic principle of Petri-
net theory, so it would be
useful to formulate it
categorically. To the
author’s knowledge,
however, there has so far
been no reference to this
being done in the
literature.

For each net category, a
corresponding system
category PTSYS, PPSYS
or FSYS respectively is
defined. The objects are
always the same. As a
rule, a system is a net with
an initial marking.
Morphisms are novel.
They stem from the
corresponding net
category PTNET, PPNET
or FNET respectively,
with the restriction that the
image of the initial
marking must be smaller than or equal to the initial marking of the destination system. This
represents a generalisation of the equals relationship usually applied. This is not a big change
for the simulation: some tokens may simply remain immobile. However, morphisms can now
express parallel composition and not only selection, as is shown in Figure 18.

This definition yields a coreflection between nets and systems. More precisely, there is a
coreflection between each net category and the corresponding system category. Furthermore,
the adjunctions from PTNET to PPNET and from PPNET to FNET lift to systems. Together,
these seven adjunctions form a commutative diagram of adjunctions. Very powerful
relationships therefore exist between the system and net categories, and the bridge from
clustering to folding extends naturally from nets to systems. This web of adjunctions
expresses the Petri-net dichotomy of structure and behaviour. A (co)universal construction of
systems reduces to a (co)universal construction of the initial marking plus a construction in
the net category.

A frequently used semantics for Petri nets is the reachability graph. The unfolding of a system

to its step-reachability graph turns out to be a functor SM: PPSYS→SM with SM being the
category of state machines, a subcategory of PPSYS. This immediately shows how

parallel composition selection

Figure 18. Parallel composition and selection.
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morphisms simulate step sequences and how they transfer behavioural properties such as
liveness or boundedness.

Reachability semantics simply reflect the possible moves of a system whereas occurrence
semantics encompass causality and branching. The literature describes a co-reflection
between folding-based system categories and occurrence nets - more precisely, there are
coreflections to different subcategories of such a system category but none to the whole
category. This same phenomenon is found for FSYS.

Moreover, we propose an
alternative approach. Instead
of restricting the system
category, we generalise
occurrence systems. This
yields a similar coreflection
between FSYS and WOCC,
the category of weighted
occurrence systems. WOCC
does not distinguish tokens
with the same history as safe
occurrence systems do. This
means that tokens are only
differentiated if they have
different causal
dependencies. Hence in the
range of individual and
collective token philosophies,
ordinary occurrence systems individualise all tokens whereas WOCC selects the point
between the two poles which reflects causality and branching. Figure 19 shows examples for
the different systems and unfoldings.

The adjunctions from PTSYS to PPSYS, from PPSYS to FSYS and from FSYS to WOCC
compose. Thus weighted occurrence systems not only explain the behaviour of folding
systems but also of place-preserving and place-transition systems.

This work does not need Petri-net semantics for reverse engineering – indeed, we state the
thesis that bipartite weighted graphs are already providing a powerful modelling metaphor for
software engineering. Our goal in this last section of the net-theoretical part of this
dissertation is to demonstrate that the defined categories are folding-based in a deep sense, i.e.
they have strong categorical connections to behaviour and semantics. To show this, it is
sufficient to give some highlights. Completeness is not aimed for in any way. Rather we hope
to encourage further research because we assume that there are many more features to
discover.

2 2

OCC W1 = OCC W2

W1

W2

O3

O4

PROC O3 = PROC O4

Figure 19. A weighted occurrence system W1, a safe occurrence system

O3, processes W2 and O4 and their unfoldings.
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3.6.1 Net Systems

Definition 39. The categories PTSYS, PPSYS and FSYS respectively consist of

• objects S = (N, I) with N a net (of PTNET) and I∈1S PN the initial marking

• a morphism f: S→S' is a morphism N→N' of PTNET, PPNET and FNET respectively

fulfilling f I ≤ I'.
*SYS and *NET symbolise any of these pairs of corresponding categories.

The initial marking must map to a marking contained in the initial marking of the destination
net. This is a slight generalisation over the usual equal. The generalisation adds modelling
flexibility, allows zero-objects and adjunctions between nets and systems. Hence a simpler
and more powerful theory is obtained.

The objects in the three categories *SYS and in [Win84a] are the same up to technical
restrictions such as finiteness or emptiness. [GLT79] provides no initial markings and no arc
weights. For morphisms the situation is tabulated in Figure 20 (compare also Figure 8).

Definition 40. Let S = (NS, IS) and S' be systems, f: S→S' be a morphism and define the
following functors:

• NET: *SYS→*NET maps S to NS and f to f.

• IP: *SYS→*NET maps S to the net (PTNET supp IS) and f to the restriction of f to IP S.

• IM: *SYS→*SYS maps S to (IP S, IS) and f to IP f.

• SYS0: *NET→*SYS maps a net N to (N, 0) and a morphism to itself.
 
NET forgets the initial marking, IP retains only the
places marked by the initial marking, IM retains only
the initial marking and SYS0 adds a zero initial
marking.

Proposition 41. SYS0: *NET→*SYS forms a
coreflection with NET. PP and F lift to systems
yielding the commutative adjunction diagram of
Figure 21. �121�

As announced in the introduction this web of 7
adjunctions expresses the Petri net dichotomy of
structure and behaviour combined with the bridge
from clustering to folding.

[GLT79] PTSYS PPSYS FSYS [Win84a]

∀p∈P: f p ∈ X' ∈ ���� X' ∈ ���� P' ∈ ���� P' ∈ MS P'

∀t∈T: f t ∈ X' ∈ ���� X' ∈ ���� X' ∈ ���� T' ∈ T'∪{undefined}

f I - ≤ I' ≤ I' ≤ I' = I'

Figure 20. Comparison of a morphism f: S→S' in different categories.

NET

SYS0

PPNET PPSYS

UF

NET

SYS0

FNET FSYS

UF

NET

SYS0

PTNET PTSYS

UPP UPP

Figure 21. Proposition 41.
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Proposition 42. IM: *SYS→*SYS has a right adjoint, namely MM2I for PTSYS and PPSYS
and FMM2I for FSYS. �121�

The functor *MM2I crumples a net, saving only the initial
marking and inventing transitions to allow morphisms. The

net of MM2I S is infinite if the initial marking contains at least one place.

Lemma 43. There is a natural transformation: ι: IM→ID*SYS with all ι unitary
monomorphisms.

Proof: Define ιS as the injections of the places of the initial marking of S into NS. Clearly, ι
preserves the initial marking and ι is natural ♦

Figure 18 shows that system morphisms allow to model parallel composition which is the
same as disjoint union. The latter is the coproduct for nets whereas the two systems do not
have a coproduct. Systems are neither cocomplete nor complete as the underlying nets are.

Proposition 44. A diagram D in *SYS

• has a colimit iff IM D has a colimit j: IP D→J and the combined diagram

NET (j: IM D→J, ι: IM D→D) has a colimit in *NET

• has a limit iff IM D and NET D have a limit
As prerequisite the universal construction for IM D only needs naturality, uniqueness may be
dropped. �122�

The quintessence of this proposition can be stated as: A universal construction in *SYS is
reduced to the universal construction of the initial marking and a universal construction in
*NET. A diagram in FSYS or PPSYS hence has a colimit or a limit iff the initial marking
allows it.

3.6.2 Reachability and Liveness

In the last section we introduced system categories that reflect the behavioural aspects of Petri
nets. As announced we turn now to the study of semantics.

The semantics of reachability graphs are frequently used. The nodes of the graph are the states
– e.g. markings – of the system. The arcs reflect state changes. This is a very intuitive
abstraction of a system as a set of states and allowed state changes. The transfer of the initial
marking by system morphisms ensures that if the source net can do a move the destination net
can do the corresponding move. Reachability graphs represent the possible moves of a
system. A place-transition morphism simulates the occurrence of a transition in the source net
by

• an occurrence of a transition in the destination net

• ignoring it, if it is mapped to the inside of a node

• starting a transition if it is mapped to the pre side of a destination transition

• finishing a transition if it is mapped to the post side
This is quite a complicated simulation – violating in fact a basic principle of Petri net
behaviour, namely, the atomicity of transition occurrence. This was one of the reasons to
introduce nets with simpler morphisms.

*MM2I

IM

*SYS *SYS
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In order to define a functor from systems to reachability graphs a destination category is
needed. There is a natural choice: reachability graphs can be represented as special Petri nets:

Definition 45. SM the category of state machines is the full subcategory of PPSYS with the
objects fulfilling

• all arc weights are one and each transition has exactly one input and one output place

• I = 1 pI: the initial marking consists of a single token on a place pI

• X = pI F
* with F* the transitive closure of the flow-relation F: neither dead transition nor

never-marked places.

There are two common ways to unfold a system to a state machine:

• sequential: a transition in the state machine corresponds to the occurrence of a single
transition

• step: a transition in the state machine corresponds to the occurrence of a transition step
In our framework it is easier to handle the second case:

Proposition 46. Unfolding the steps of a system to a state machine extends to a functor SM:

PPSYS→SM. �124�

This functor allows to transfer properties such as liveness or boundedness between two
systems. Again we only give some samples:

Proposition 47. Let f: S→S' be a place-preserving morphism and t a transition of S with

fβ t∈T' and m and m' reachable markings of S then

• if m' is reachable from m then also fm' from fm

• if fβ t (even f t suffices) is dead at fm then also t at m

• if S is live and f epimorphic then also S' is live

• if S' is bounded at fβ p by β' then S is bounded at p by β / (fγ p)

The proof uses f to map step sequences ♦

Proposition 48. SM: PPSYS→SM has neither a left nor a right adjoint. �125�

This proposition shows that SM has its limitations. Other morphism definitions get
adjunctions here but our definition enforces a tight relationship with the underlying graph.
The missing adjoint for SM is a disadvantage of this design decision. Reachability semantics
abstracts too much from the graph of the net system to allow an adjunction. But for handling
liveness there are alternatives to the functor SM:

Proposition 49. Let *ND the full subcategory of *SYS with neither dead transitions nor never

marked places. The functor ND: *SYS→*ND
removing dead transitions and never marked places
forms a coreflection with the underlying functor.
�125�

In conclusion, the developed framework integrates with reachability semantics and basic
Petri-net properties such as liveness and boundedness.

ND

U

*ND *SYS
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3.6.3 Processes

Process semantics describe the possible moves of a system as reachability semantics does. But
additionally, behaviour is explained in terms of causality and branching. Hence process
semantics differentiate between two occurrences of a transition if they consume tokens
produced by different transition occurrences. Put otherwise, a transition occurrence is tagged
with the origins of the consumed tokens: with its history.

Figure 22 shows two nets with the same unfolding in state machines but different processes.
History and causality are clearly shown in the process pictures. The interrupted lines in the
processes show maximal place cuts which correspond to reachable markings. Processes fit

processes reachability processes

Figure 22. Process and reachability semantics.
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smoothly in our framework because they are special morphisms:

Definition 50. A system is safe iff all arc weights are one and any reachable marking is a set
(rather than a multiset).

Definition 51. The category WOCC of weighted occurrence systems is the full subcategory of
FSYS whose objects O fulfil

• ∀p∈PO: | •p | ≤ 1

• supp IO = {p∈PO | | •p | = 0}

• the flow relation F is acyclic and XO = (supp IO) F*

• ∀x∈XO: F* x is finite

• R has no dead transitions
The category OCC of (safe) occurrence systems is the full subcategory of WOCC of safe
systems and the category PROC of processes is the full subcategory of OCC with

• | p• | ≤ 1 for all places p

A unitary folding o: O→S is called a (weighted, safe) occurrence system or a process
respectively of the system S.

Processes are acyclic safe nets, thus the initial marking is a set instead of a real multiset. Each
place not in I has a unique input transition able to deliver a single token on it and a unique
output transition that may consume this token later.

Each node of a weighted occurrence system is assigned a depth:

• depth 0 for places in I and depth 1 for transitions with empty preset.

• depth i+1 for a transition with the maximal depth of an input place equal i

• depth i for a place produced by a transition of depth i
The finiteness condition guarantees that each node has finite depth.

Definition 52. A maximal place cut of X is a maximal subset of P such that no two elements
are related by F*.

Maximal place cuts correspond to reachable marking of the process or the system:

Lemma 53. The image of a finite maximal place cut of a process is a reachable marking of
the system. Any step sequence of a system is the image of a step sequence in an appropriate
process. �125�

3.6.4 Weighted Occurrence Systems

The set of all processes is a bit unhandy. It would be nicer to fold a set of processes into a
single net. This is exactly what weighted occurrence systems are for. First we need a
generalisation of a maximal place cut:

Definition 54. A cut step is a multiset τ of transitions with pre τ ≤ I0 + post τ and

I0 + post τ − pre τ is a cut.

The definition is motivated by the following lemma. It also shows that cuts as defined above
coincide with those defined for processes:
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Lemma 55. The image of the transitions of a process of a weighted occurrence system is a cut
step and each cut step is such an image. Hence a marking is reachable iff it equals (I –

 pre γ + post γ) for a cut step γ. A process of a weighted occurrence system of a system S
yields a process of S. �126�

This lemma gives a simple computation of the processes of a weighted occurrence system:
expand the cut steps into processes. As figured out in the proof, expansion means to multiply

each transition t σ(t) times and each place p (I + post σ)(p) times and to select compatible
connections. This also works for a system in general if an appropriate occurrence system is
available. This is accomplished by:

Proposition 56. There is a functor WOCC: FSYS→WOCC which is right adjoint to the
underlying functor U forming a coreflection.. �127�

Lemma 57. The processes of a system S are in
bijection with the processes of WOCC S.

Proof: A unitary folding r onto a cut step of WOCC S

gives a process εS r by Lemma 55. Because a process is
a weighted occurrence system it factorises through

WOCC S. This relationship is bijective because εS is a
universal arrow from U to S which equivalent with

adjointness ♦

Hence the processes of S may be computed as the
processes of the weighted occurrence system WOCC
S. Also, Lemma 55 yields an easy characterisation of
the processes of a system. WOCC S is a representation
of all the processes of a system S in a single net.

Figure 23 illustrates the unfolding by WOCC at an
example taken from [GP95]. An occurrence of transition t creates a second token on place q.
According to the individual token philosophy there are two possibilities for the occurrence of
u:

• either the initial token on q is consumed: such an occurrence is concurrent with t

• or the token produced by t is consumed: such an occurrence is causal dependent from t.

This is reflected by the unfolding in Figure 23: there is one transition for each of these two
possibilities. Furthermore, this unfolding coincides with the unfolding into safe occurrence
nets (as defined e.g. in [MMS92]). The two unfoldings coincide for safe and for semi-
weighted nets (systems with the weight of any output-arc of any transition equal 1 and the
initial marking a set [NS98]).

But they differ on any system that is not semi-weighted. This is shown in Figure 24. It uses
the same net as the previous example, but, there are two initial tokens on place r. The WOCC
unfolding yields the same net as before, only the initial marking is adapted. However, the safe
unfolding puts the additional initial token in a additional place and consequently needs to
differentiate between further types of occurrences of transition u. This means that

p t q u r

Figure 23. A system (top) and its unfolding

(bottom).

FSYS WOCC

WOCC

U
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• the unfolding into safe occurrence systems
radically individualises tokens, they have a
unique identity

• the WOCC-unfolding differentiates only tokens
that are located in different places or have a
different causal history

• in the collective token philosophy tokens on the
same place are indistinguishable.

The radical individualisation of tokens by safe
unfoldings introduces inconveniences. First, the
unfolding yields conflicts between tokens on the
same place with the same history which seems
strange in the case of anonymous tokens. Secondly,
section 3.6.5 will argue that there might be no
'reasonable' adjunction between systems and safe
occurrence systems. Thirdly, using collective token
philosophy in a pure form [Bru98] builds attractive
categorical connections between behavioural,
algebraic and logical models – whereas the
corresponding connections in the individual token
philosophy seem to be less simple, maybe because
they a radical instead of a 'natural' individual token
philosophy. Finally, safe unfoldings do not easily
cope with variable initial markings. Such markings
often occur when a net is used as a function transforming tokens from 'input-places' to tokens
on 'output-places' (e.g. [Feh93], [Ess97]).

This is handled elegantly by our WOCC-unfolding. Figure 25 shows how to convert p and r in
our example net to input-places.
Here, p and r may receive an
arbitrary number of tokens from two
initial transitions with empty presets.
Such transitions are disallowed for
safe unfoldings. But they are no
problem for WOCC.

Safe occurrence systems realise a
radical individual token philosophy.
However, if the main interest is in
causality and branching it is
reasonable to look for the position
between the two poles of individual
and collective token philosophy that
best serves this interest. It is exactly
this intermediate position that
weighted occurrence systems realise:
they individualises tokens iff they

p t q u r

Figure 24. A system (top), its WOCC-

unfolding (middle) and its safe-unfolding

(bottom).

p t q u r

Figure 25. A system (top) with variable initial marking on input-

places p and r and its WOCC-unfolding.
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have a different causal history, not generally as safe unfoldings do. In this sense, weighted
occurrence systems represent the pure semantics of causality and branching for anonymous
tokens.

3.6.5 Safe Occurrence Systems

The category of weighted occurrence system is new. Known from the literature are
occurrence nets. As a bridge to them we need decorated occurrence systems:

Definition 58. A place decoration Φ of a safe system S is a function Φ: PS→����
+ with

∀t∈TS: Φ(t•) = [1, | t• | ]

∀p∈supp IS: Φ(p) = 1

Thus, a place decoration numbers the output places of each transition of a system.

Definition 59. D = (ppD, ID, ΦD) is a decorated occurrence system if (ppD, ID) is a safe

occurrence system and ΦD a decoration of the places of S. PD. DEC is the category of

decorated occurrence systems. A morphism f: D→D' of DEC is a morphism of the underlying
save occurrence systems which fulfils:

∀p, q∈PD ∩ def fβ with •p = •q ≠ {}: (ΦD p < ΦD q iff ΦD' f p < ΦD' f q)

Definition 60. FSYS1 is the full subcategory of FSYS1 of systems with the initial marking
being a set. Similarly, WOCC1 is the full subcategory of WOCC of occurrence systems with
the initial marking being a set.

Proposition 61. The underlying functor U: DEC→WOCC1 has a right adjoint

DEC: WOCC1→DEC. �129�

Proposition 62. The functor pair U, DEC restricts to an adjunction between DEC and OCC.
Proof: The underlying occurrence system of any

decorated occurrence system is safe. ♦

Thus, the composition OCC = U DEC WOCC is a functor
from FSYS1 to OCC. This is interesting, although we could not find an adjunction between
the two categories. It is not easy to devise a functor from FSYS to OCC. It seems, that, in
general, compositionality breaks down (permutations of places symbolising tokens on the
same place). From the literature adjunctions are known for safe systems [Win84b], semi-
weighted systems ([NS98], here post t must be a set for any transition t) and nets with
restricted morphisms ([MMS92], here the images of the places in the postset of a transition
must be disjoint).

Although our definition of a morphism is different, there are similarities:

• WOCC unfolds safe and semi-weighted systems to safe occurrence systems.

• OCC is a functor on general morphisms. The restriction concerns only the objects,
namely, that the initial making must be a set. Although OCC is not part of an adjunction,

WOCC1 DEC

DEC

U

DEC OCC

U

DEC
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there is a morphisms εS: U OCC S→S which factorises any process of S (but not
uniquely).

Our definition of decorated occurrence systems is a modification of that in [MMS92]. We
number all output-places of a transition whereas [MMS92] enforces the order only on subsets
corresponding to one output-place of a transition in the weighted net. This implies different
restrictions and different functors. This method works also in our framework. But in
[MMS92] an adjunction is achieved what we couldn't do here, again, because we disallow to
map places to markings.

What is the difference between the semantics given by WOCC and OCC? First OCC
generates a place for each single token whereas WOCC may use a place for several tokens. In
the last section we called this radical individual tokens philosophy and suggested that WOCC
might be more appropriate for anonymous tokens. This view is supported by the restrictions
on the functor OCC: only a subcategory allows to individualise tokens compatible with
morphisms. It is out of the scope of this paper to discuss parallels to quantum physics. But, it
is remarkable that the borders of this adjunction to safe occurrence systems are so similar for
different authors although the definition of morphisms are different. This might indicate that
this border very deeply rooted in net theory.

Now, we may compare thre semantics of a system S, namely, WOCC S, OCC S and

PROC S = {o: O→S | o is a process of S}.

Proposition 63. The expressive power of WOCC is strictly stronger than that of OCC which
again is strictly stronger than that of PROC.

PPNET PPSYS

UF

FNET FSYS

SM

UF

PTNET PTSYS

UPP UPP

WOCC

FSYS1 OCC

Systems SemanticsNets

Clustering

Folding

Place-

Preserving

Figure 26. The synopsis of categories and adjunctions.
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Proof. Stronger follows from OCC = U DEC WOCC and that every process of a system S

factorises through εS: OCC S→S. The semantics differ on the examples of Figure 19.

Together this yields strictly stronger ♦

[MMS94] compared process semantics and safe unfoldings. The finding that “the unfolding
contains several copies of the same process which, ..., are needed to provide a fully causal
explanation of the behaviour” fully applies to the current setting. But it applies also to the
WOCC and OCC unfolding and one would expect that WOCC semantics lays between the
process and OCC semantics. The same expectation comes from the discussion that WOCC
individualises tokens only partially. But the previous proposition falsifies this expectation!
The explanation is that WOCC remembers more about the distribution of tokens on nodes of
the net (and similar of occurrences to transitions) - a phenomenon countering the above
argumentation.

In conclusion, we got a web of categories, functors and adjunctions depicted in Figure 26.
Clearly visible are

• the bridge from clustering to folding (PTNET over PPNET to FNET),

• the dichotomy of structure (*NET) and behaviour (*SYS)

• the connections to semantics (SM, OCC and WOCC)

This two-dimensional schema may be embedded in three dimensions with an additional axis
from low-level to high-level nets, i.e. flat, coloured and hierarchical nets. This is shown in
Figure 27. It suggest to interpret Figure 26 as the back and the colourings from section 3.5 as
the floor of a cube. Naturally, the questions arises how the other walls should look like. For
example which relationships does the process semantics of a coloured system possess? It is a
interesting task for further research to complete this cube.

coloured

structure

hierarchical

flat

behaviour

pp

semantics

folding clustering

Figure 27. Categories, adjunctions and functors in a 3-dimensonal schema.
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4 Reverse engineering

4.1 Introduction

Within the setting of this paper, the core task of reverse engineering may be stated as:

• for a given uncoloured net, find an elegantly structured high-level net which unfolds to the
given net and explains its design

To apply this approach to a general system - not necessarily implemented in Petri nets - the
following procedure is proposed

• Choose a translation method appropriate to the goal of the reverse-engineering task.

• Translate the existing system by the chosen method to a Petri net.

• Analyse the net in order to recover reductions, colourings, building components etc..

• Interpret the most promising analyses by translating them back to the original system.
Decide which results to use, which not to use, which to refine and how to combine them.

As discussed in section 1.2, this chapter is mainly restricted to the subtask of recovering a
coloured net. First, however, several methods of translating software systems to nets are
presented. A specific example is also described. This is a spare-part order system which will
be used as current example throughout this chapter. We consequently provide a much more
detailed description for it than for the other translation methods.

The next subchapter gives the first rudimentary version of the reverse-engineering algorithm
to be developed. It is rather surprising that this version already yields a reasonable analysis.
The main purpose is to build the type system as the basic data structure and to introduce the
prototype implementation in Smalltalk. Readers unfamiliar with Smalltalk may refer to
Remark 67.

When the base classes have been built, we can introduce the core of the algorithm: computing
a reduction by merging neighboured transitions - iteratively. This merely constitutes the
implementation of the iterated universal constructions from the net-theoretical part. However,
sophisticated techniques are required to get the algorithm to run correctly and quickly. The
same applies to computing its cost. Ultimately, this algorithm is fast, stable and flexible. It
turns out to be really easy to implement different neighbourhood definitions - a first proof of
its flexibility.

The algorithm is enhanced by introducing heuristics, namely in relationship-analysis
techniques for the current example. These are initially used to enhance the discriminating
power of the algorithm so that it now differentiates between the nodes of the 1 and the n side
of a reflexive 1:n relationship. They are then used to find the structure of a given reduction in
terms of colourings. The recovered coloured net simultaneously contains the design
specification and a no-loss representation of the implementation. In fact, reverse engineering
reveals properties overlooked during the design phase.

The last section discusses variations, applicability and extendibility of this algorithm. Its
quintessence is that the unchanged algorithm offers a good starting point for many reverse-
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engineering tasks. Furthermore, it can be integrated with domain-specific heuristics to
produce deep insights. However, this step requires careful balancing of different factors.

4.2 Petri Nets as a Modelling Tool

This chapter discusses applications of Petri nets. It shows that both forward and reverse
engineering may profit from Petri-net based methods, also in areas other than concurrency
which is the traditional strength of Petri nets.

This requires a process of translation from the relevant application to a Petri-net model. It is
merely a new kind of the modelling abstraction inherent in every engineering methodology. It
subsequently turns out that there are different natural and intuitive translations of software
systems to Petri nets.

The first folding-based Petri-net models will describe a spare-part order system. It is complex
enough to illustrate and detect the strengths, weaknesses and potentials of the ideas expressed
in this paper and will serve as a current example. The example is introduced by a series of
Petri nets connected by morphisms. It illustrates how the categories introduced in the previous
chapter can be applied to an engineering task. Moreover, the implementation of the Petri-net
design in a procedural language using a relational database is explained in some depth. Later
on, implementations or unfoldings of this system will be used as a test input to the reverse-
engineering algorithms.

The second section uses a different translation to Petri nets which supports clustering-based
engineering methods. The principles of structured programming will be modelled with Petri
nets by making use of the clustering capabilities of Petri-net morphisms.

The program semantics will subsequently be translated as Petri nets. Two different
approaches are discussed: explicit representation of the control flow or a pure data flow. The
former method may be used for a fine-grained analysis which must preserve the semantics on
a microscopic level whereas the latter could be used to migrate a sequential program into a
parallel one, for instance.

The fourth section looks at reverse engineering without source code. For a Petri-net method,
the switch to binary machine code or execution traces seems simpler than for methods
working on the symbolic level.

As a final example we use an embedded system designed by a Petri-net tool. Because we
already started from a net, a translation is not necessary. However, the net was generated by a
tool using modularization concepts very different from ours. It will therefore be interesting to
observe how the reverse-engineering algorithm reacts to this concept clash.

This chapter shows that the reverse-engineering methods to be developed in the rest of this
work apply to very different tasks and that folding-based Petri-net methods constitute a
valuable engineering metaphor - also for purely functional tasks which cannot benefit from
the natural strengths of nets in concurrency.
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4.2.1 Forward Engineering by Folding

Using morphisms for the design of Petri nets leads to the following translation of
terminology:

• f: N→N' N implements N'

• N' = im f abstraction or design

• N = src f specialisation or
implementation

• f-1(x') implementation of node x'

• f-1(0) structure clash

We will describe an example system first
by a class diagram and then by a series of
nets. It is a spare-part order system for a
big loom manufacturer in Switzerland.
The author was involved in its
implementation in a procedural 4GL
some years ago.

Figure 28 is the class diagram of the
system. An order consists of different
positions each one containing a certain
number of a spare part. Once the order
has been defined, parts get allocated,
i.e. reserved in the warehouse. If parts
are out of stock or have to be
manufactured specially an order can
be split in several allocations. If an
order contains old parts no longer in
production then they are replaced by a
compatible replacement part. For this
(transitive) navigation in a
complicated replacement graph is
used. An allocation is distributed in
possibly more than one shipment such
as to allow the parts of a shipment can
fit into one box.

The dynamic model of the spare-part
system is depicted in Figure 29 as an
uncoloured Petri net. After the
positions of an order are defined, they
are allocated. An allocation is
distributed into one or more
shipments. The warehouse robot
transports the parts of a shipment to
the packing station, where they get

*

sPos

oPos

Part

*

*

aPos

*

pPos

shipment

order

allocation

package

*

*

*

*

*

Figure 28. The class diagram of the spare-part order system.
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ship

allocate

finish

startA
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Figure 29. The design of the spare part system as the net Nu.
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packed into a box together with all necessary shipment documents.

Figure 29 shows

• vertically:

• the life cycle of an order consisting of the states allocating, shipping and packing

• the life cycle of a part waiting on stock in the warehouse, getting allocated, shipped and
packed

• and horizontally:

• the interface between an order and a part, they are connected in an interleaving way,
enforcing, that a part changes its state only, if the order has the corresponding state.

The left column shows the handling of parts by the warehouse. A token signifies

• in oPart: an available part on stock,

• in aPart: a Part on stock allocated to an order and

• in sPart: the robot transports the part.
The places in the middle column correspondingly show the life cycle of an order position.
And the right side reflects the state of an order.

This uncoloured net – let’s call it Nu - deals with a single part. To handle several parts use a

coloured net CP→u: NP→Nu and a set PART to represent the different parts:

the nodes of NP are

places: the cartesian product of the part-places {oPart, aPart, sPart} and the

position places {Pos, aPos, sPos, pPos} with PART and the remaining
places of Nu

transitions: the cartesian product of the part transitions {allocate, ship, pack}
with PART and the remaining transitions of Nu

CP→u: NP→ Nu is given by C x = x and C (x, p) = x for any node x of Nu and part p ∈
PART

ppP (xu, xP) (yu , yP) = if xP = yP then (ppu xu (yu)) x {xp} else 0 else ppu C x (C y)

This method is very simple it just multiplies nodes. In general, however, a design dimension
contains additional application semantics. In our example we need to add the rules which find
a replacement part for a part that is outdated or out of stock. For this the colouring of

allocate becomes more sophisticated as follows:

{(allocate, oldPart, newPart) ∈ {allocate} x PART x PART |
newPart is currently sold and equals oldPart
or is a valid direct or indirect replacement of it}

preP (allocate, oldP, newP) = (oPart, oldP) + (oPos, oldP) + allocating
postP (allocate, oldP, newP) = (aPart, newP) + (aPos, newP) + allocating

This means the colours of the allocate transitions correspond to the transitive closure of
the replacement relation. But the complexity of this closure and database normalisation are
reasons to prefer alternative implementations.
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To handle the further dimensions of orders, shipments and boxes we introduce the sets
ORDER, SHIP and BOX that allow to uniquely identify a box of a shipment of an order etc..

The coloured net C: NPOSB→Nu is defined analogously to CP. The details may be found in

Remark 64. Colouring of orders, shipments and boxes. �130�

Of course, a real system needs many more application dimensions and details. But for the
purpose of this paper we stop the forward engineering process here and implement now. What
does implement signify here? We could take the last Petri net already as an implementation.
But to illustrate a translation of a Petri net to a procedural language we will reformulate the
last net as a relational database application. A simple (abbreviated) Pascal- and -SQL-like
syntax will be used.

First we define the tables and columns of the database. This can be done straightforwardly,

using place names as table names and colours as attributes. The attribute tokens is used to
hold the number of tokens:

table oPart (part tokens)
table aPart (part tokens)
table sPart (part tokens)
table allocating (order)
table shipping (order ship)
table packing (order ship box)
table oPos (part order tokens)
table aPos (part order tokens)
table sPos (part order ship tokens)
table pPos (part order ship box tokens)

The columns printed in bold together form the unique primary key for a table. The typing

information is omitted because it is clear from the naming. The tables allocating,

shipping and packing drop the tokens column because a tuple may only contain 0 or 1
token. Thus, existence in the database means one token non-existence means zero. Of course
this database design can be improved in many ways but for the current purpose we choose this
simple approach.

The transitions are translated into database transactions, programmed as parameterised
procedures, let’s start with a simple one:

PROCEDURE startS(anOrder aShip);
BEGINTRANSACTION;
DELETE allocating WHERE order = anOrder;
INSERT INTO shipping (order, ship) VALUES (anOrder, aShip);
COMMIT;

END startS

This procedure has two input parameters: anOrder and aShip. Again typing information is
hidden in the naming. The procedure executes two SQL-statements first it deletes a tuple from
allocating, then it inserts a tuple into shipping. We freely mix Pascal and SQL-Syntax
avoiding name clashes by appropriate prefixing or renaming. Hidden in these SQL-statements
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is an existence condition: if no tuple of allocating fulfils the WHERE-condition the
DELETE statement will fail. At our level of abstraction error handling is not specified, so this
is a valid implementation of the existence condition. Similarly INSERT fails for the primary

key constraint, if the uniqueness of (order, ship) is violated.

The SQL-statements correspond exactly to the pre- and post function of the net; the
translation process is straightforward.

Now we see a consequence of the decision to drop the tokens attribute in order. Because

startA deletes the order in the table allocating, it is no longer there to enforce by the
primary key constraint the uniqueness of order. Hence additional logic is needed to ensure

uniqueness when creating a new order. startP is similar:

PROCEDURE startP(anOrder; aShip; aBox);
BEGINTRANSACTION;
DELETE shipping WHERE order = anOrder AND ship = aShip;
INSERT INTO packing (order, ship, box) VALUES (anOrder, aShip, aBox);
COMMIT;

END startP

Algorithm 65. The procedures next and allocate. �130�

Although, these procedures are slightly more complicated the same principle guides the
implementation. In conclusion, implementation is done by the following translation:

• places are translated into database tables

• the colours of a place give the columns of the table

• transitions are programmed as procedures

• transition colours give the procedure parameters

• pre- and post functions are reflected as database modifications

Still missing is the outer block code or the driver of these isolated procedures. In a Petri net
the firing of transitions is driven by the paradigm that any enabled transition non-
deterministically may or may not fire. For a procedural implementation the situation is
different:

Remark 66. Main Driver. �131�

Using the colours P = PART, O = ORDER, S = SHIPMENT and B=BOX our example
expands to the hierarchical net in Figure 30. Above the empty net 0 this diagram contains 24

nets of our example. The superscripts indicate the colours that are present in the net, so Nu is
the uncoloured net at the beginning of the last chapter and NPOSB the last net with all the four

colours. The morphisms (except 0) are πc with c the colour, that is dropped from their source
to their target. The forward engineering in the last chapter started with Nu and followed the
left side of the diagram via NP

 to NPOSB.

The diagram is commutative. Notice that in general a square is neither a pushout nor a
pullback square. This means as well that in a single square as depicted in Figure 31 the two
lower morphisms are not redundant. This is not true for the whole diagram. The 4 morphisms
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with source N
POSB determine the whole hierarchical net. But this is not a simple colimit

construction. Rather these four top
morphisms give the maximal
resolution of NPOSB: The constructions
would be governed by a set of rules of
the type:

• if πO x = πO y and πS x = πS y then

πB πP x = πB πP y
Formalising such rules would give an
exact meaning to the term independent
colour sets. Immediately two questions
arise:

• how to express such rules
categorically

• how to use such a formalisation for
reverse engineering.

Both questions are beyond of the scope of this work.

4.2.2 Structured Programming and Clustering

A more conventional approach to software engineering composes a system of subsystems using
a limited number of composition constructs. E.g. the structured programming constructors:

• sequence

• choice

• iteration

0
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N
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N
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N
PO

N
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N
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Figure 30. The hierarchical net.
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Figure 31. A single square.
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The reduction diagrams in Figure 32 clearly show that a net morphism easily reduces each of
these constructs. It allows even the choice to map a sequence to a place or a transition. The
net models naturally combine data- and control-flow together. So there is a chance to handle
them symmetrically.

However, state of the art includes further constructs like

• parallel execution (fork)

• synchronisation (join)

• return or another atomic operation to leave a cascade of nested blocks

• call backs

• exception handling

Also fork and joins are nicely mapped, which is one of the natural strengths of Petri nets.
However, the situation gets more difficult for the remaining constructs because they break
locality. That is what they have been invented for – experience has shown that without such
breaks it becomes cumbersome to localise functionality such as control loops or error
handling. Hence it is difficult for any formalism to describe their semantics clearly.

For forward engineering, such a morphism together with a detailed description might be
sufficient, but, how should we recover such a morphism in reverse engineering? Is there
another alternative than to try to catch all clean constructs first, and let the user try to
understand the rest?

Reverse engineering structured-programming constructs is a well-known technique. We work
bottom up and replace every structured construct with a corresponding super place or super
transition. For example there are tools that harness the transition from cyclomatic to essential
complexity metric [Cab76], [Wat96] for this purpose. We sketch in the following the basic
ideas as to how to apply this in our Petri-net approach.

For a given net N we need to compute a reduction f: N→N'. We will compose this morphism
f by elementary reductions fi:

N = Nn 
fn →  Nn-1 

fn− →1  ..... f2 →  N1 → 1f  N0 = N'

Figure 32. Structured programming: sequence (left), choice (middle) and iteration (right).
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Each of the fi should eliminate a single construct. We will simply compose elementary
reductions as long as we can find any. In Smalltalk (refer to Remark 67 for a basic
introduction) this would look like:

Net>>clusterReduction
| red |
red := Morphism identityOn: self.
[red needsFurtherReduction] whileTrue: [
red := red image elementaryClusterReduction ° red].

^ red

To get an elementary reduction, we first look for the nice structures, and resort to locality
breaking structures only if we are forced to:

Net>>elementaryClusterReduction
| red |
(red := self findMaximalSequenceReduction) isNil ifFalse: [  ̂red].
(red := self findChoiceReduction) isNil ifFalse: [̂  red].
(red := self findIterationReduction) isNil ifFalse: [̂  red].
(red := self findForkJoinReduction) isNil ifFalse: [  ̂red].
^ self findLocalityBreakingReduction

Obviously, this is only a sketch of an algorithm, but we do not want to
go in any details here.

4.2.3 Program Semantics

There are different visual programming environments that are
implicitly or explicitly based on Petri nets. If the user wants to add
two numbers, she or he selects an arithmetic add transition, drops it on
the desktop, drags input edges from the places holding the numbers to
add and finally draws an output edge to deposit the result in a further
place.

Of course we can use the reverse technique to translate an
existing system to a Petri net. But there are many choices how to
translate. The next section shows a few of these possibilities in an
informal way. The goal is to give a general idea, not to define
algorithms.

A net for an assignment c := a + b with explicit control-flow is
depicted in Figure 33. There is one place for each of the variables
a, b and c. The places representing the control flow are filled with
vertical lines.

A sequence of two blocks x and y is modelled as shown in Figure
34. x and y may be simple transitions or complicated
components. Each of the component nets has one input and one
output control flow place. A sequence simply merges the control
flow output of x with the input of y. Choice and iteration are
composed similarly.

a
b

a+b

c

c

Figure 33. c := a + b with

explicit control-flow.

x

sequence x; y

y

Figure 34. A sequence in explicit

control-flow representation.
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Additional work is needed for procedure calls. These for two reasons

• the return address has to be remembered

• for recursive calls, the local variables (including the parameters) need to be instantiated in
a separate copy.

There are many ways to handle that in Petri nets and many high-level nets have a special
construct for this functionality. For
example CPN’s ([Jen92]) use page
instances.

We just give a simple solution. Every
such procedure gets a place iCounter for
an invocation counter, initialised with 0.
The control flow places in the procedure
hold instead of the anonymous black
token the current ic. All the local
variables become tuples (ic, val) where
ic is the current invocation count and
val the application value of the variable.

If a user calls the procedure it fires a
transition that commutes a new
invocation count ic and passes the parameters together with the new ic to the input places of
the procedure. Every transition in the procedure gets a guard condition which ensures that it
uses only variable values with the correct ic. This is shown in Figure 35 in which the places
holding invocation counters are chequered. The net for this simple call looks rather
complicated but it contains the whole machinery of recursive procedure calls.

This translation with explicit control flow is a no loss conversion which contains the exact
semantic of the source program. In fact it is a compiler which generates Petri nets.

An alternative approach is to drop control flow
completely. This allows to get rid of the control flow
places and the doubled arrows for reading and writing
variables. This looks very intuitive as in Figure 36 –
this is why visual programming languages use this kind
of diagram, instead of the diagram in the last
paragraph.

The net is no longer forced to the fixed sequential
execution flow of the procedural program. The
concurrent semantics of transition occurrence allows a
highly parallel execution, only restricted by data
availability. Hence translating a procedural program to
a net without explicit control flow has the potential of
transforming it into a parallel algorithm. But of course
there are restrictions:

x

(ic, a)

wait

ic

ic

ic-1

iCounter

a
(ic, x)

(ic, a*a)

(ic, y)

ic ic
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y return

Figure 35. A caller (left) of the function a2 (right).
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Figure 36. The sum of ar[0..n] as a data flow.
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• a program is not only serialised by control flow restrictions data dependencies can do the
same - as the loop example shows. To get a really parallel version of this loop we have to
use a different algorithm which exploits associativity of addition. However, this is beyond
the scope of a simplistic Petri net approach.

• we have to remove input tokens from the places otherwise the transitions will repeat
occurring and reproduce the same output forever.

• if the same value should be read more than once from the same variable it has to be
known in advance and the value has to be copied explicitly.

• If different values have to be written into a single place for example in a loop then it must
be ensured that the old values are removed and that the consumer transitions realise when
there are new input values.

There is of course a lot of research and literature about the conversion of sequential programs
into parallel programs. We only want to mention that Petri net theory offers a various tools to
attack these problems (e.g. [Fer94]):

• We can individualise the variables for each different use. In a high-level net, this can be
done similarly as for the procedure calls in the previous section.

• We can use semantic preserving net transformations to remove control flow places. Thus a
net with a mixture of explicit and implicit control flow is obtained.

• processes or partial order semantics of Petri nets individualise tokens. Hence by
comparing (appropriate) processes of a net with explicit control flow and one without one
can decide whether the data tokens are used in the correct sequence and the second net is a
correct transformation of the first one.

4.2.4 Binary Reverse Engineering and Execution Traces

Also, there are also reverse-engineering techniques that do not operate on source code. The
translations from the last section may be adapted to binary machine code or byte code. If the
transformation with explicit control flow is used this yields a decompiler (on the lowest level,
however, further analyses may reach higher levels of abstraction). The data flow approach
could also be used for optimisation of existing code for parallel machines.

A further technique is to instrument the source code to collect trace information at selected
points. The trace information can be analysed e.g. for performance questions. But, it may also
be used for reverse engineering e.g. to relate a specific functionality with a code location etc..

The trace point can be selected in different ways:

• manually attached to the source code. It is one of the oldest debugging techniques to add
the display statements (and to forget to remove them before migration to production ...)

• generated for example at every procedure entry/exit

• the interfaces to another software component

• at (nearly) regular time intervals

For reverse engineering there are different interesting applications possible:

• Many features are hard or impossible to extract from source code. The execution trace
shows how it is puzzled together in specific instances.
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• A preliminary analysis may be confined to code which is frequently used. This is likely to
exclude things like error handling which often compromises the software structure.

• The access frequencies to persistent data can reveal the split between infrastructure and
volatile data.

• A trace of the interfaces shows the black box behaviour of a piece of software – and may
work even if the source code is unavailable

The reverse-engineering approach presented in this work can easily use execution traces. The
only requirement is that they translate to a Petri net. Analysing this net may reveal interesting
structures of the investigated system. Definitely this offers broad applicability to our
approach. We confine us to describe one example: using the database trace of our running
example from section 4.2.1.

The obvious way to translate a database trace to a net, is

• transaction → transition

• relation tuple → place
The crucial point is to derive a kind of tuple identity, such that a single tuple is mapped
always to same place although its value may have changed. Database operations translate as

• insert → edge from transition to place

• update → edge from place to transition plus the reverse edge

• delete → edge from place to transition

This information is contained in every database audit. The translation to a net is
straightforward: every database transaction translates to a transition which is connected to all
modified tuples. Simply the tuple identity must be mapped to places. For the example system
this translation yields the net NPOSB of Figure 30.

4.2.5 The Telephone Net

This paragraph presents the last example domain to apply our reverse-engineering approach.
It is the most obvious: the analysis of an existing Petri net. As an example we have chosen a

Figure 37. The telephone net implemented as a composition of CodeSign components.
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net modelling a telephone. The net is delivered together with the CodeSign tool (see [Ess97]).
A net is recursively composed of components. A component is in itself a (composed) net
together with a set of connectors which may connect to net nodes or other connectors. They
allow a restricted kind of multiplying tokens (send copies to several destinations). The
telephone net is thus structured in a way that is very different and even incompatible with our
approach. To reverse engineer such a net with our tools is hence a hard crosscheck.

Figure 37 shows the telephone net. The tool draws a diagram with many very small
components. Some of them contain more interfaces (triangles), than internal nodes. A further
complication is that the telephone net uses state machines. They are implemented as a user
defined embedded formalism in CodeSign and are displayed as user defined symbols (ovals).
CodeSign translates them internally into Petri net elements. Our algorithm will analyse the
underlying place-transition net in which all components and state machines are resolved as
places and transitions.

4.3 Simple Reductions

The previous sections presented a range of methods for modelling systems with Petri nets and
discussed applications for the reverse engineering of these nets. This section starts with the
core of this work, namely the development of a reverse-engineering algorithm for an
unstructured net.

Reductions are morphisms from the net under investigation to a simpler net. They can give an
extremely concise model of a net, although this must naturally disregard many details.
Techniques are available to reintroduce the lost information such as node colourings or arc
inscriptions. Performance is a very attractive feature from the point of view of reverse
engineering: combinatorial explosions are naturally avoided. However, there is a danger of
losing too much information. In the extreme case, a net consisting of a single transition and a
single place is produced – hardly a helpful abstraction.

Looking back to section 3.5.3, a basic implementation is described for a maximal ι reduction

with ι as a set of pairs of local injections. This chapter presents a basic form of this procedure.
However, this simple form can already perform useful reverse-engineering work.

In this section, a type system is initially built. Single-transition subnets are used as basic
types. The necessary data structures and algorithms are discussed. Small types are then
composed to obtain larger types, thus producing a network of groups of isomorphic subnets
connected by inclusions.

The third section shows that such a type system translates directly to a classification of the
nodes of the net. Finally, this classification is used to build a reduction using a feedback
technique. The feedback determines which types should be expanded and a new reduction is
then computed with this expanded type system. Such a reduction algorithm already contains
interesting information.

The prototype of the algorithms was implemented in Smalltalk. Most code examples are thus
given in this language. A short summary of Smalltalk constructs used may be found in

Remark 67. Used Smalltalk constructs. �132�
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4.3.1 Seed Types

The type system should classify subnets and isomorphic subnets should have the same type:

Definition 68. The types of net N are the equivalence classes of a relation R over a set Σ of
subnets of N which is closed under monomorphisms, i.e.

∀S∈Σ, ∀ι: S→N with ι monomorphic holds S R ι(S)

First seed types are computed which are later combined into bigger types. A natural choice for
the seed types are the subnets consisting of a single transition with the surrounding places.

For the algorithm it is not sufficient to look at a type as an equivalence class of subnets.

Additionally the connecting monomorphisms ι from Definition 68 are necessary. One way to
reach this is to store for each type C

• a disjoint copy NC of one of its subnets,

• exactly one monomorphism from NC to each of its subnets

• the automorphisms of NC

This is shown in the class
diagram Figure 38.

Because NetType is a

subclass of Net it is in
itself a net, namely NC.
Thus it does not need an
instance variable for NC.

In the equivalence
relation trace, two nodes
x and x' of NC are equivalent iff there is an automorphism of NC that maps x to x'. I.e. the
equivalence class of a node x is the trace of x under the automorphisms.

A place p of a net with a single transition t may be characterised by a tuple of integers

• pp(t, p) = ((pre t) (p), (post t) (p))
This pp is the evaluation of the function pp of Lemma 22 at place p. The number of
arguments indicates which definition must be used. Anyway the two definitions are in 1 to 1
correspondence. A whole single transition net maps to a sequence of integer tuples

• (pp(t, p1), pp(t, p2), ..., pp(t, pn))
where p1, p2, ..., pn are the places of the net. The computation of this representation for every
transition of a net is sufficient for an efficient computation of the seed types:

• if the list is sorted (in an arbitrary but fixed way) it is a unique key for the type of
transition. I.e. single-transition nets are isomorphic iff their sorted list representations are
equal.

• The pp(x) = pp(x') generates an equivalence relation on the nodes of the net, which is the
trace equivalence.

• a permutation of the nodes is an automorphism, iff each node is mapped to a node in the
same trace class

• the group of automorphisms of the net is the cartesian product of the permutations of
elements of the trace classes

Morphism

Net

NetType

embeddings

automorphisms

1..*

1..*

EquivalenceRelation

trace

Figure 38. The class diagram for NetType.
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The algorithm for the seed types is a straightforward application of these properties. It finds
the type of a transition in a hash table with the sorted list of pairs as key. Of course it may
turn out to be a longer programming exercise, depending on the available class libraries.

Definition 69. A net N has the small transition property iff for each transition t∈T holds

Γ ≥ � +
∈Pp

p)post(t,p)pre(t,  for a (global) integer constant Γ.

For complexity question the small transition property is always tacitly assumed. For the
applications we are studying here transitions with a high number of arcs do not seem
reasonable. Even if the small transition property does not hold cost may remain reasonable,
but do not elaborate on this.

Lemma 70. The seed types may be computed with cost O(e) with e the number of arcs of the
net N. �135�

4.3.2 Combining Types

If the types are combined into bigger types appropriate subnets must be selected. As we
concentrate on reductions by local injections it is natural to study subnets that cannot be
reduced by local injections. Formally in terms of section 3.5.3:

Definition 71. An li-component of net N is a place-bordered subnet isomorphic with its

maximal ι reduction with ι pairs of parallel local injections in fixpoint relation.

For the rest of this section ι is used in the same way as in the above definition. A type system
using li-components is well suited for folding based reductions. On single transition nets local
injections are simply monomorphisms, thus the seed types from the last paragraph are the
correct starting points. The algorithm will use a ‘forbidden zone’ around each transition to test
whether a subnet is a li-component:

Lemma 72. A subnet N' of N is a li-component iff each transitions t' of N' is disjoint from
forbidden(t') with

 forbidden(t') = {t∈T | t ≠ t' and ∃ (f, f')∈ι with im f = env t and im f' = env t'}.

Proof: A direct consequence of Proposition 36 ♦

This lemma yields an efficient test whether the union of two li-components is itself a li-
component: only the union of the forbidden transitions must be computed. Furthermore if the
union of T' and the forbidden transitions equals T, N' is a maximal li-component of N.

But deciding whether the union of two components is local-injective is only one step to create
a new type. Regarding Definition 68 all isomorphic subnets must be found and in regard to
the class diagram of NetType all automorphisms. To record all this information an additional

class NetStructure is needed, as shown in Figure 39.

Algorithm 73. The combination of two types. �135�
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This algorithm computes
the data for a combination
of two types. Performance
cannot be good because the
problem is NP-complete in
the size of the combined
types. Hence types of big
sizes must be avoided. One
method is to create the
single transition types, and
only expand types when an
analysis does really need it.
When the analysis finds
problems, it calls the method in

Algorithm 74. Expanding problematic types. �136�

This method expands the types around the problematic zone by one transition after the other
until the type system has effectively grown. Then the analysis is repeated for the larger set of
types, which is hoped to reduce the problematic spots.

4.3.3 Classifying the Nodes

The concept of how to classify the node of the net is simpler to program than to formulate
abstractly. In fact the idea was born, as a preliminary programming shortcut for a much more
complex concept. First each node is classified by the types it is touched by. More precisely by
the ‘roles’ it plays in each type. This is coded like:

Algorithm 75. Classification by type membership.

NetStructure>>membershipForTypes
| byNode |
byNode := IdentityDictionary new.
self types do: [:type |
type embeddings do: [:emb |
type autos do: [:auto |
type nodes do: [:node | (byNode
at: (emb at: (auto at: node))
ifAbsentPut: [self newSet]) add: node]]]].

^ byNode

Programmatically the role of a node n in a type is a node of this type that is mapped by a type
embedding to n. This assumes the nodes of the types are disjoint. The only technical difficulty

is hidden in the strange construct self newSet. This creates an empty instance of a special
set class that supports equality based on the members contained in the set. In contrast equality
of standard Smalltalk sets compares the object identity of the set instances. An optimised

version of this method is contained in the appendix �137�♦

A node is classified not only by its types but also by the ‘roles’ it plays within each type. But
it is ignored as to whether a node occurs only once or several times in a type embedding. This

Morphism

Net

NetStructure

embeddingByNodes

types

1..*

1..*

NetType

1

net

Figure 39. The class diagram for NetStructure.
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will be changed later to analyse relationships. A final technical preparation is needed before a
net reduction may be computed:

Algorithm 76. Convert membership classification to an equivalence relation. �137�

4.3.4 Reduction Ignoring Neighbourhood

We identified how to classify the nodes of net by types. In this section we will discuss a
simple reduction algorithm which ignores the criteria neighbourhood and choice. It works as
follows:

Algorithm 77. Net reduction by type expansion.

(i) Choose a net.
(ii) Convert the net to the internal format.
(iii) Compute transition seed types as in section 4.3.1.

(iv) Classify the nodes of net by the types (Algorithm 76) and transfer this
classification into an equivalence relation (Algorithm 75).

(v) Build a net with nodes corresponding to the equivalence classes.
(vi) Check if the map from a node to its equivalence class is a morphism. If so the

algorithm finishes with this reduction.
(vii) If not, the types touching the transitions not mapped as required by morphism,

are extended until new types are generated by Algorithm 74.
(viii) If new types are found the algorithm loops back to step (iv)to reiterate with the

expanded type system, otherwise it fails ♦.

The input for step (v) is an equivalence relation R. Create a new Net N' with one node for

each equivalence class. Take the projection π: X→X' mapping a node x of N to the node x' in
X' corresponding to the
equivalence class of x in
R. Define N' by

• π x = [x]R

• π x∈T' iff x∈T

• pp'(π t, π p) =

�
= p π q π

q)pp(t,

The second point is well
defined because an
equivalence class of R
either only contains
transitions or places
only. The reason for that
being is that the used
type embeddings are
foldings. The definition

of pp' fails if π t1 = π t2

and the sums over the pp
do not equal. Thus step
(vi) computes the set of

pack

defining

packing

donepPos

oPart, oPos

aPart, aPos

sPart, sPos

allocate,

 ship

startA,

startS,

startP,

finish,

next

allocating

,

Figure 40. The reduction from the first iteration.
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type embeddings with a destination transition at which pp' is not well defined. This set is the
input for step (vii).

Now this algorithm may analyse the spare part net in Figure 29. We generated unfolded nets
with several hundred nodes, with random distributions of part and positions of an order and
random permutations on node and arc sequences.

Step (v) of the analysis algorithm produces at the first iteration the reduction in Figure 40.
The conflicting transitions and their arcs are drawn in dotted lines. The node inscriptions
show which nodes of the coloured net are mapped. Obviously this analysis is very basic, and
directly shows the single transition types of the net.

At the second iteration step (v) finds a more interesting reduction which is shown in Figure
41. Step (vi) accepts this reduction as a valid morphism.

The major difference to the design Figure 29 is the additional column at the left side with

names ending in a 1. These are the allocate, ship and pack transitions, that use a part
occurring exactly once in a single position. Because these parts are 1 to 1 with the
corresponding positions, there are no differences between parts and positions in reverse
engineering. Hence parts and positions at the same stage are folded together.

next

startP

startS

pack

defining

allocating

shipping

packing

done

oP1

aPos

sPos

pPos

oPart, oPos

aPart

sPart

ship

allocate

finish

startA

  2

allocate1

  2

aP1

  2

ship1

  2  2

sP1

  2

pack1

  2

Figure 41. The reduction from the second iteration.
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All transitions are separated, exactly as designed in
section 4.2.1. But this is a happy accident due to
simple structure of the example.

More surprising, the algorithm differentiates aPart
from aPos and sPart from sPos instead of

merging them such as oPart and oPos. In fact we
first looked for a programming error to explain this...
But the real reason is that the algorithm identifies a

type as depicted in Figure 42. In this type aPart x

cannot be mapped by a automorphism to aPos y or

aPos z, hence they are not related in the equivalence

relation. This logic does not apply to oPart and

oPos because there is no second transition there.

The complexity of the algorithm is optimal (i.e. O(e))
as long as it does not extensively expand types. But
few type expansions imply a coarse relation and a
small reduced net. So if the algorithm is useful because it detects high-level structures it is
fast.

Summarising this simple algorithm detects valuable design structures and it has a natural
stopping criterion. But there are two weaknesses:

• there is no guarantee, that it terminates (of course we can make it terminate, by keeping
transitions separated, if the maps of their pre and post places do not correspond, but then
we would loose the natural termination criterion)

• every iteration round results in a bigger net. We do not see a sensible method to get rid of
the left column of 1 to 1 elements.

4.4 Neighbourhood Reductions

The last section computed basic data structures for the type system and a first reduction. This
chapter describes the computation of a maximal reduction under consideration of a
neighbourhood criterion. Thus subnets are merged if they are of the same type and,
additionally, if they are adjacent. Of course, neighbourhood is used transitively: if the images
of two subnets become neighboured in an intermediate reduction, they may get merged.

To get a fast algorithm - nearly linear in the input size - a combination of principles is used:

• work with single transition subnets according to Proposition 36.

• work locally

• work in the (intermediate) reduction not in the original net whenever possible

• avoid redoing things

• efficient data structures

Although this list looks rather obvious, quite a few non-trivial techniques must be carefully
co-ordinated already at a theoretical level. The prototype implementation in Smalltalk
revealed another set of problems. E.g. algorithms in the standard class library showed not the

aPos y

sPos z

oPart x

aPart x

sPart x

ship x z

allocate x y

oPos y

aPos z

Figure 42. The asymmetry between parts and

positions.
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expected functionality or
performance and
consequently forced time-
consuming re-
implementations.

The first section outlines the
algorithm and its variation
for different adjacency
criteria. In the second
section it is used to analyse
the spare part system. The
results give a basic picture
of the design although they
are not yet a major
improvement over the
simple reduction from the
last chapter. But it is the
basis for the exciting results
in the next chapter.

An attractive feature of the algorithm is its speed; it is nearly linear in the size of the input net
which would be optimal. This is proved in the last section.

4.4.1 Algorithm

The main idea of the algorithm is to check the areas around a place in the intermediate
reduction. If the origins of these arcs are connected to compatible transitions, they are merged
which requires checking the arcs around these places recursively.

To obtain a fast algorithm it is essential, to minimise the number of times an arc is merged,
because it’s place has been newly merged. Therefore, the intermediate nets are not stored
explicitly. Instead, an equivalence relation on the source nodes is used. The equivalence
classes of this relation correspond to the nodes of the intermediate net in each step in the
algorithm. Equivalence classes of places are mapped to instances of the class

PlaceReduction which contains a representation of both the merged and the still to
become merged arcs (around the reduced place).

The algorithm is represented in Figure 43 as a circular diagram. It should be read as: an

instance of the class place sends the message merge: to an instance of PlaceReduction
and a message add: to the toDo list. In the following each of these methods are explained
in detail.

But foremost some preparatory remarks. The algorithm uses an object called info, which
stores the information used during processing. It contains

• relation: an equivalence relation indicating, which original nodes might be mapped (if
they get neighboured in the reduction). This relation is an input to the algorithm which
does not change

merge:info:

mergeMapsTo:info:

mergeArc:at:info

merge:

tryToMerge:info:

Transition

Place

toDo

Place

Reduction

add: mergeArcsInfo:

Figure 43. The reduction algorithm as object interaction diagram.



Walter Keller. Petri Nets for Reverse Engineering. 74

• reduce: a map from the nodes of the origin net to equivalence classes. These correspond
to the nodes in the current reduction. The equivalence classes of places are mapped to

instances of PlaceReduction.

• toDo: a collection of the place reductions that still need to be merged

The initialisation builds the map reduce. It corresponds to an isomorphism and the
representation of the arcs in the place reductions. Our implementation reuses code from the
main algorithm for initialisation. This leads to an overlap of initialisation and main algorithm

with a nice side effect: the toDo list is build implicitly. We spare the reader from the
technical details of initialisation and termination and move directly to the main loop:

Algorithm 78. The main loop.

NetReduction>>mergeInfo: info
self initialise
[info toDo isEmpty] whileFalse: [
(info reduce at: toDo removeAny) mergeArcsInfo: info].

self finalise "translate it to a net and a morphism" ♦

This main loop is really straightforward: an arbitrary element from toDo is removed and the
arcs of its current place reduction are merged as follows:

Algorithm 79. Merge the arcs of a place reduction.

PlaceReduction>>mergeArcsInfo: info
| list |
list := self nodesToMerge.
self nodesToMerge: OrderedCollection new.
list do: [:aNode |
aNode keysAndArcsTreeDo: [:key :arc |
self mergeArc: arc at: key info: info]]

The instances of PlaceReduction form trees. The root of a tree is the actual reduction and
its other nodes are further reductions. The latter are already combined with the root but their
arcs have not yet been merged. This tree structure allows the postponement of the merging of
arcs and hence to minimise the repetitive merging of the same arc. Each node registers its

direct children in the instance variable nodesToMerge. At the beginning of the method the

current tree is saved in the variable list and then reduced to the root alone. Thus coping

with the case that a reduction gets merged, while running mergeArcsInfo: ♦

keysAndArcsTreeDo: iterates through the tree and executes the code block for each arc
to merge within the tree:

Algorithm 80. Depth first tree traversal.

PlaceReduction>>keysAndArcsTreeDo: aBlock
self arcsByKey keysAndValuesDo: [:key :arcColl |
arcColl do: [:arc | aBlock value: key value: arc]].

self nodesToMerge do: [:node | node keysAndArcsKeyDo: aBlock].
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A PlaceReduction registers the already merged arcs in a map called arcsByKey which
maps keys to arcs. This is another key principle to obtain a fast algorithm. It avoids a linear
search for a compatible arc which would cost somewhat quadratic in the number of arcs of a
place. This is not acceptable because the small transition assumption (Definition 69) does not
limit the arcs at a place. On the contrary in typical nets there are places with a huge number of
neighbours.

What are the requirements for such a key? The most elegant requirement of course is

• arcs can be merged iff they have the same key
Then it suffices to check the keys. However, we will use the following weaker property:

• if arcs can be merged then they have the same key
This weaker property requires a compatibility check after the key check.

The main part of the
algorithm only uses the keys
and relies only on the above
property. But the keys have to
be constructed in the
initialisation phase.

What is the requirement to
merge two arcs? In Figure 44

after the merger of placeA
and placeB, arcA and

arcB can get merged if

• both transitions have the same transition type called type

• there are two embeddings embA: type → transitionA, embB: type →
transitionB and a place p of the type

• so that embA(p) = placeA and embB(p) = placeB
Thus an arbitrary embedding embA from type to the transition of arcA and all embeddings

embB must be checked. But the restriction to an arbitrary embedding embB is sufficient, if
trace classes (of places under automorphisms of the type see 4.3.1 Seed Types) are used. The
reduced condition is

• there is a transition type type
• for arbitrary embeddings embA: type → transitionA, embB: type →

transitionB
• the trace class of embA-1(placeA) equals the trace class of embB-1(placeB)
This means that the trace class is exactly the required key and merging arcs works as

Algorithm 81. Merge a single arc.

PlaceReduction>>mergeArc: newArc at: aKey info: info
(self arcsAt: aKey)
detect: [:myArc | myArc transition
tryToMerge: newArc transition info: info]

ifNone: [(self arcsAt: aKey) add: newArc]

type

arcA arcB

embBembA

placeA transitionA placeB transitionB

Figure 44. Merging two arcs.
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As only the weaker key property is used PlaceReduction>>arcsAt: answers a
collection of arcs (which in the reduction are connected to the receiving place reduction). If
no such arc exists an empty collection is created by lazy initialisation. If it is possible to

merge two transitions Transition>>tryToMerge:info: does it, returns true and

mergeArcAt:info: finishes (by the Smalltalk semantics of detect:ifNone:). If the
new arc cannot be merged with any of the existing ones then it is added to the arc collection.
This is not necessary in the first case because the image the existing and the new arc coincide

after the transition merger ♦

Algorithm 82. Merge two transitions.

Transition>>tryToMerge: aTrans info: info
| maps |

(info reduce relation is: self equivalent: aTrans) ifTrue: [̂  true].
(info relation is: self equivalent: aTrans) ifFalse: [^ false].
(maps := self mergeMapsTo: aTrans info: info) isEmpty
ifTrue: [^ false].

info reduce relate: self to: aTrans.
maps do: [:one |
one keysAndValuesDo: [:ori :ima | ori merge: ima info: info]].

^ true

This method attempts to merge the receiver with the transition aTrans. If it succeeds or the
transitions are already merged it answers true. A merger is rejected, if the two transitions are

not compatible by the input equivalence relation (info relation). If there are merging

maps the method applies to all of them to merge the environment of the two transitions ♦

The computation of the merging maps in

Algorithm 83. Merging Maps. �138�

is illustrated in Figure 45. The method

composes each automorphism auto with

myEmb and checks whether it is compatible

with othEmb. Compatible means:

• mapped nodes are equivalent in the input
relation

• map has fixpoints with regard to the
current reduction.

This is the point of the algorithm to be
varied for different adjacency criteria. In fact
all four variations from Definition 37 are
easily handled as is explained in

Algorithm 84. Adapting to different adjacency criteria. �138�

auto

type

othEmbmyEmb

receiver aTrans

curInt

tyNd

myNd othNd

map

Figure 45. The computation of merging maps.
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The effect of these variations cannot be demonstrated in the current example. All produce the
same reduction because the example is too well behaved. It is left to further research to
evaluate the implication of such variations in real-world programs.

The above method or one of its variations respectively is called from tryToMerge that uses
the computed maps to merge the places in the environment of the transitions:

Algorithm 85. Merging two places.

Place>>merge: aPlace info: info
| myReduction |
(info reduce relation is: self equivalent: aPlace) ifTrue: [̂  self].
((myReduction := info reduce at: self)

merge: (info reduce at: aPlace)) == myReduction
ifTrue: [info reduce relate: self to: aPlace]
ifFalse: [info reduce relate: aPlace to: self].

info toDo add: self

If the places are not already merged then the place reductions and the places are merged (in

the equivalence relation info reduce). But the implementation requires these two mergers
to be done in sync. This is the technical reason for the mathematically redundant branching.

The merged places are added to the work list toDo which closes the circle of the algorithm ♦

The merging two place reductions requires linking one reduction into the tree of the other
one:

Algorithm 86. Merging of two place reductions.

PlaceReduction>>merge: aReduction
self arcsByKey size >= aReduction arcsByKey size
ifTrue: [self nodesToMerge add: aReduction. ^ self]
ifFalse: [aReduction nodesToMerge add: self. ^ aReduction] ♦

The bigger arcsByKey map is reused. This optimisation will be crucial in the performance
estimation.

4.4.2 Analysing the Spare-Part System

We used the spare-part system from Figure 29 to test our implementation. We used unfolded
nets of different sizes as explained there. The algorithm needs an equivalence relation that
allows or disallows the merging of nodes. For this, we used the type equivalence from section
4.3.3. The algorithm produced the analysis in Figure 46. Compared to the forward-
engineering diagram in Figure 29 we lost

• The separation of parts and positions

• the colouring.

It is not surprising then that the algorithm cannot distinguish parts and positions. For example

swapping aPart and aPos is an automorphism of ship or allocate. In fact, the surprise
was that the algorithm using types in section 4.3.4 was able to differentiate them.
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4.4.3 Complexity

Proposition 87. The reduction algorithm has in the worst-case cost of

O(e log (min (maxDeg(N'), | P |) γ)) with

• e the number of edges in the source net,

• maxDeg(N') the maximum number
of arcs incident to a place of the
reduced net,

• log the binary logarithm and

• γ a slowly increasing inverse of the
Ackermann function, which does
not surpass 3 in any real case

 �139�

A large maxDeg(N') normally does not
correlate with a good design. Thus, if
the algorithm is doing useful reverse
engineering the cost is almost linear in
e.

The processor time used by the
Smalltalk prototype to analyse the
running example in different sizes is
shown in Figure 47. It does not look as
linear as the above proposition suggests.
This has several explanations:

• there are statistical variations, as
Windows NT and VisualAge
Smalltalk is are complex systems
with many parameters not easily
controlled

• nobody knows when garbage
collection is running

• the implementation is not memory
efficient, already with 40000 arcs is nearing the thrashing point. It’s wonderful how
much memory modern times software can use...

• tuning is a lot of work. It is not easy to localise the non linear things when approaching
the thrashing point

• a lot of standard Smalltalk hash tables are used in dictionaries, sets and so on. If a
program uses systematically distorted hash distributions the hash tables become very,
very slow. This happened several times. But even if it is detected it is still time
consuming to repair.

4.5 Integrating Domain Heuristics

This section applies domain heuristics, namely relationship cardinalities, to improve the basic
algorithm developed in the last sections. Relationship cardinalities are a very old software
engineering concept already contained in the relational database and the entity relationship
model [Che77], [Rum91] salvaged them into the Object Modelling Technique from where

next

startP

startS

pack

defining

allocating

shipping

packing

done

aPart/aPos

sPart/sPos

pPos

oPart/oPos

ship

allocate

finish

startA

Figure 46. The analysis by the neighbourhood algorithm.
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they found their way into the Unified Modelling Language [rat97]. Also in the following, they
will prove to be a powerful concept.

The first task is to separate parts and positions. They may become swapped by subnet
automorphisms but they have a 1:n relationship. The trick is to use this asymmetry as an input
to the reduction algorithm. We pinpointed in section 3.5.4 that the algorithm offers three
dimensions of variations namely similarity, adjacency and choice. This section uses domain
heuristics as the similarity criterion whereas the last section varied the adjacency criterion.

After mastering some tricky details, e.g. with non-determinism, such a relationship analysis,
yields exactly the reduction net Nu from Figure 29. Hence, for the current example the design
is perfectly recovered. But this method not only applies to this specific situation: 1:n
relationships are fundamental construct in software engineering, thus it is important to recover
them.

The recovered reduction diagram is an important help for human understanding of a system.
But it is a reduction which removes information from the original system. Colouring is a Petri
net technique to use a small net together with inscriptions to completely specify a large (even
infinite) net. So far we practised reverse engineering as discovering reductions. Now we turn
to the challenging task of computing a concentration: a concise but complete specification of
the original system.

reducing the spare part system
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Figure 47. The performance of the prototype.
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The nodes of a coloured reduction net are inscribed with colour-sets. The colours of the
colour-sets correspond to the origins of a node. Usually, colour-sets are built as cartesian
products (of elementary colour-sets). But here we will restrict it to an equivalent construction
of relationships between colour-sets. The translation between these two concepts is not
difficult. This approach simplifies the concept because it does not require a formalism for
expressions such as a programming language or a universal algebra. In other terms, yet again,
we are able to restrict ourselves to the net-theoretical essence.

Once a reduction is obtained, each reduced node gives a colour-set, namely its origins. But
this is rather trivial. The challenge is to detect a helpful structure between these colour-sets.
Colour-sets in 1:1 relationships get identified transitively. Relationships between colour-sets
that equal or contain each other are classified as the same relationship. Such relationships
correspond to structures of the application domain, e.g. the data model.

The enhancement of the reduction algorithm with relationship analyses yields convincing
results on our running example:

• The design of the system is completely recovered. This signifies to bridge the huge gap
from a low-level net to high-level design information. We recover from a given code the
basic concepts of the application domain, namely the fundamental data areas and their
relationships.

• However we obtain diagrams that contain more information than our design diagrams.
The use of coloured Petri nets leads naturally to novel diagrams for both forward and
reverse engineering. In section 4.6.6 we will combine these ideas with concepts from
category theory.

4.5.1 Reduction Refinement

To compute finer reductions the reduction algorithm needs the relationships as an input. The
type system is available in this early stage. An elementary type path is a tuple w = (cb, ce) of
two trace classes of the same type. To such a path we define a relationship rel(w) on the
places of the source net by

rel(w) = {(pb, pe) ∈ PxP | pb ≠ pe, pb ∈ ε cb and pe∈ε ce

for an appropriate ε ∈ embeddings(type(cb))}

The relation rel(w) relates beginnings and endings of all paths in the Net that

• lay completely in the image of an embedding ε of the given type

• are not cyclic

• begin and end in the images of the given trace classes

Algorithm 88. Relationships from Types. �144�

computes all relationships and stores them in a table in NetStructure. The table maps
paths to relations. This is a slight generalisation over tuples of trace classes that will be
needed later.

Relationships in computer science are built over two sets which are defined in advance. This
is not the case here. We start from the relationship and thereafter only determine which sets
sit at both ends. They should possibly be designated as virtual relationships to indicate the
deviation from the usual situation.
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At the start of this paragraph we called the used type paths elementary. The co-notated
generalisations comes in two different forms

• for the same type system, compose the paths and the corresponding relations.

• compose the types as in section 4.3.2. Then, use the elementary paths of the expanded
type system.

These two composition techniques are similar. They share the problem of combinatorial
explosions. The first approach composes relationships of path concatenations, the second
combines embeddings of types. We will discuss the first technique in more detail later in
paragraph 4.5.2.

Looking back to section 4.3.3 the reduction by neighbourhood algorithm generated the
equivalence relation from the types. They could be derived from the relationships instead:

Algorithm 89. Membership from Relationships.

NetStructure>>membershipFromRelationships
| mark mShip |
mShip := Dictionary new.

self relationships do: [:rel |
mark := Array with: rel with: #origin.
rel origin do: [:ori |
(mShip at: ori ifAbsentPut: [self newSet]) add: mark].

rel isSymmetric ifFalse: [
mark := Array with: rel with: #image.
rel image do: [:ima |
(mShip at: ima ifAbsentPut: [self newSet]) add: mark]]].

^ mShip ♦

This computes exactly the same result as paragraph 4.4.2. Only a deviation over relationships
was taken. But the relationships allow further analyses which may be used afterwards.

How to compute the 1:n relationships? If the nodes on both sides of a 1:n relationship are
contained in the same trace class the reduction algorithm cannot separate the two sides. The
nodes of both sides are mixed up because their images are mapped to the same node of the
reduction. This happened in our running example for positions and parts. So the algorithm
should

• detect 1:m relationships within a single trace class

• separate the one from the many side

• classify the nodes accordingly in the membership dictionary)

The method computes two collections:

• pairs: a pair consists of two elements of the relation that are related exclusively to each
other. A pair is completely symmetric. It needs to be handled in a special way otherwise
its symmetry may destroy the general asymmetry of the two sides.

• oneSide: this is the collection of elements that are related to more than one element. If
the relation is indeed 1:n all these elements must reside on the one-side. In addition, all
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elements that they are related to must reside on the many-side. The many side is computed
only temporarily in order to verify the consistency of the computed split.

Algorithm 90. Analyse sidedness.

Relationship>>analyseSidedness
| many |
self assert: [self isSymmetric].
many := self newSet.
self
pairs: Dictionary new;
oneSide: self newSet.

self originImagesAllDo: [:ori :imaColl |
self assert: [imaColl notEmpty].
(imaColl includes: ori) ifTrue:
[^ self oneSide: nil; pairs: nil]. "it is not 1:n !"

imaColl size = 1
ifTrue: [ (self allAt: imaColl single) size = 1
ifTrue: [(self pairs includesKey: imaColl single)
ifFalse: [self pairs at: ori put: imaColl single]]

ifFalse: [
self oneSide add: ori.
many addAll: imaColl]].

(self oneSide includesAny: many)
ifTrue: [self oneSide: nil; pairs: nil]. "it is not 1:n !"

This method uses heavily the symmetry of the relation which is the receiver. For example, if
an element is related to a single element which is in turn related to a single element these two
elements form a pair. A test of equality of the two elements is superfluous. The test at the end
is essential: if the one side and the many side overlap the relation does not split in a one and a

many side. The same is true if an element is related to itself ♦

It is straightforward to add this analysis to the classification:

Algorithm 91. Memberships compatible with sidedness. �145�

Only a selection of the 1:n relationships are used for the classification. This prevents that
overlapping relationships are compromised by the arbitrary distributions of pairs. The non-
overlapping 1:n relationships are selected arbitrarily. We did not experiment with domain
heuristics because their was no need for it in any of our examples.

In summary, the reduction algorithm using relationship analysis reduces a net N in the
following steps

• compute a type system for N

• translate the types into a set of relationships

• split the symmetric relationships into a one and a many side if possible

• classify the nodes of N by the relationships, and refine the classification by a selection of
compatible relationship splits
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• apply the reduction with neighbourhood algorithm to N with this classification

Applied to the spare part system this yields exactly the design from Figure 29. Hence the
design diagram has been fully recovered from low-level data. Of course an invisible
difference is left, parts or positions in 1:1 pairs might be swapped but the algorithm has
absolutely no information to prevent this.

4.5.2 Colouring

The next step is to retrieve the colouring information. Colouring means assigning colour-sets
to nodes and colour relationships to arcs. This allows filling a simple reduction diagram with
the full information of the origin net. Moreover by just looking at the colours of the reduction,
we get additional insights of the structure of the analysed net.

To recover the colouring the concept of relationships is used again - this time in the concrete
instead of the virtual meaning. The following is a step by step explanation of the colouring
algorithm.

The first step is to compute the relationships from the reduction. The relationships are the
origins of the arcs:

Algorithm 92. Relationships from reduction.

NetReduction>>createRelationships

self structure relationships: Dictionary new.
self source arcs do: [:arc |
self structure
relationshipOrigin: arc from
image: arc to
path: (Array with: (self at: arc from) with: (self at: arc to))]♦

A second non-obligatory step is to compose the relationships in order to get relationships over
longer paths in the reduction. As previously mentioned this may lead to combinatorial
explosions. Hence the following algorithm must be applied with care:

Algorithm 93. Composing paths. �145�

The third step is to analyse each relationship for itself for relationship cardinality.

The fourth step is to select the colours. More precisely, we have to partition the nodes in the
reduction in classes of nodes with the same colour. We do not use the cardinalities of the
origin sets for this purpose. We prefer something less arbitrary which relies on stable facts
from the analysis. We have chosen the 1:1 relationships. This requires that the arcs of the net
generate a bijection rather than the mere existence of a bijection. The following algorithm
computes the minimal equivalence relation over the nodes of the reduction that relates two
nodes iff they are connected by a 1:1 relationship:

Algorithm 94. Colour equivalence. �146�
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Each equivalence class stands for one colour that colours the elements of the class.

The fifth step creates the colour-sets and assigns the colours to the nodes of the source nets:

Algorithm 95. Colouring the nodes. �146�

The colouring is done compatible. I.e. the arcs corresponding to the relationships in
connections are coloured with the identity relationship over the colour-set.

The sixth step is the last: colour the arcs of the reduction net. But this is straightforward. For
every arc in the reduction we already computed a relationship. We translate this relationship
on source nodes to relationship on colour-sets and eliminate duplicates. So we get a set of
colour relationships.

If we apply this six-step algorithm to the spare part system and pack the information in a

single diagram we get Figure 48. The colour-set of a node is painted as a pattern inside the

node. There are six colour-sets besides the neutral one for the places defining and done.
There is so much information for arc colouring, that the figure is overloaded although
inscription for arcs are dropped iff its colour-relationship is the identity or is used only once

The interesting colour relationships are

• rp: which describes the five arcs from parts to the allocate, ship and pack transitions

:1

shipping

:1

:n
rp

:1

:n
rp

:n

:n

:n

start

startS

pack

defining

allocating

packing

done

oPos

aPos

sPos

pPos

oPart

aPart

sPart

ship

allocate

finish

startA

next

:1ra

:n :1ra

:1rs

:n :1rs

:1rs

:n :1rs

:1

:n
rp

:1

:n
rp

:1

:n
rp

:0..1

Figure 48. The final reverse-engineering analysis.
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• ra: colours the two arcs between the transition allocate and the place allocating.

• rs: colours the four arcs between the transitions ship and pack and the place on their
right hand side.

The startA and finish transitions have different colours, although, in reality, they are
1:1. The problem is that the way between them is too long, especially because the branch over

next, that seems shortest is a dead end: a packing place in the origin net is either connected

to next or to finish, never to both. But we can identify these colours, just by composing
colour relationships to paths of the necessary size. This modification does not have any bad
side effects it only identifies the two colours wanted. This is a sign for the stability of the
algorithm.

In fact this diagram is better than our analysis diagram from section 4.2.1 Of course it was
information that we read in between the lines when implementing the system. This illustrates
the fact, that coloured Petri net notation is potentially more precise than the usual software
engineering notation. And the presented algorithm is able of recovering this additional
information.

Another interesting fact is that our algorithm finds the net reduction without search. This
means that we do not have to bother about evaluating alternatives. We can select them in
advance by tailoring the algorithm to our need.

4.6 Extensions, Variations and Applications

The last chapter culminated in a reverse-engineering algorithm able to discover better analysis
diagrams for the spare-part system than the ones we have started from. Hence, the major goal
of this work has been reached. This final chapter highlights relationships to other approaches,
variations and possible applications.

We mentioned several times that the algorithm offers three dimensions of variation. However,
up till now, only adjacency and similarity have been elaborated. Choice will be explored in
the next section.

There are different strategies to deal with choices:

• Up to now, all the possibilities have been applied together. This approach is in line with
universal constructions, leading to a unique solution and avoids combinatorial explosions.

• If relevant information is available a rational choice becomes possible. Examples are the
feedback mechanism from section 4.3.4 and the domain heuristics in section 4.5.

• An simple method is selecting an arbitrary alternative. As depicted in Figure 17 this is an
appropriate strategy in situations that require a pure alternative. Complications arise if
there are dependencies between multiple alternatives. E.g. in the current example a merger

of aPlace and aPosition is only avoided if all choices for all origins are compatible.

• Avoid the choice. Instead, analyse at the structure of the set of all alternatives.

A motivation for the last strategy is that at the time when a choice is selected the
consequences are not yet known. In the end, certain choices will yield the same result and
many choices will not make sense. But this may be revealed by the analysis of the complete
solution set and enable rational choice. A formalism based on relations is introduced. It allows
to represent and compute the set of all different choices in product form.
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Reductions are morphism from the net under investigation whereas components and patterns
are morphisms from a simpler net into the analysed net. Typically these morphisms are
epimorphic for reductions, monomorphic for components and more general for patterns.

Components are building blocks of a system. They should have a small interface, high
cohesion, low adhesion and be reusable. Traditionally components are detected as follows:

• The system is split up into subsystems, e.g. by syntactical means.

• The similarity of the subsystems is measured and similar ones identified with reused
components

Contrarily, our approach first detects similar structures and then interprets them as
components. Its capability for component detection is tested on a net with a deeply nested
structure. Although this method has some restrictions it detects interesting components.

Next, the integration of a cliché library in the developed method is studied. In general such a
library is not necessary for us but there is a natural point for integration, which allows co-
operation between the two approaches.

The experience of many years of reverse engineering demonstrates that no single analysis
works for all cases. There are too many different styles of implementation and too many ideas
of design. So we have to use a wide variety of algorithms to analyse and combine different
analysis results. In reverse engineering that it is often better trying different light-weight
methods than spending excessive resources on a single analysis. The results from such a deep
search are often trivial or unusable. From this observation some ideas of how to integrate our
method in a reverse-engineering framework are derived.

Next, a multi-level application of the algorithm is presented. If a first reduction is not
satisfactory then a second one with a different merging criterion is applied. In the current
example this allows to deal with less homogeneous input.

In this work many Petri nets are used to explain software systems. They seem a powerful
model for systems even ignoring concurrency. Similarly, folding-based techniques seem
valuable in areas traditionally occupied by purely clustering-based methods. In conclusion,
we advocate Petri nets as an engineering metaphor. As a visualisation we introduce
commutative net diagrams. These combine commutative diagrams from category theory and
Petri nets and highlight properties of relationships. These properties are important for system
understanding, implementation and tuning but normally not made explicit.

4.6.1 Choice

The goal of this section is to compute the set of all possible choice reductions of a net. To
avoid combinatorial explosions during both the computation and the analysis, a product form
of the solution set is indispensable. Section 4.4.1 described the central data structure of the
reduction algorithm as an equivalence relation which reflects the mergers of nodes during the
algorithm. Here, the (intermediate) sets of solutions are expressions in relational algebra. We
will remain on this abstract level and refrain from details. In particular, no attempt is made to
determine a cost bound.

Definition 96. The following operators work on relations:



Walter Keller. Petri Nets for Reverse Engineering. 87

• IdP = the identity relation on P (P may be omitted)

•  π ⊆ π': π is finer then π', or π' is coarser, which means that the tuples of π are a subset of

those of π'

• π'∩π" = intersection of the two relations

• π'∪* π" = minimal equivalence relation containing the tuples of both relations

• π|σ = {(r, s)∈π | r∈σ and s∈σ} the restriction of a relation to a subset of its base set.

For sets of relations Π' and Π" define:

• Π' ≤ Π" iff (∀π'∈Π' ∃π"∈Π" with π'⊆π") and (∀π"∈Π" ∃π'∈Π' with π'⊆π")

• Π' opx Π" = {π' op π" | π'∈Π' and π"∈Π"} for any binary operator op on relations.

• op
x

π
π

∈Π
( )  = if Π = {} then IdP else π' opx ( opx

π
π π

π
∈
≠

Π
'

( ) ) for π'∈Π 

Let N be a net and select one type of reduction, e.g. choice reductions with fixpoints. Let Φ
the set of relations corresponding to the set of all such reductions:

• the elements of Φ are equivalence relations over the nodes of N

• Φ contains coarsest relations (i.e. ψ∈Φ with if φ, ψ∈Φ with φ ⊆ ψ then φ = ψ)

The first thing to do with Φ is to look at the union and the intersection:

• Φ∪ = ∪*x Φ
• Φ∩ = ∩x Φ
We have already calculated Φ∪ by
the computation in section 4.4.1
using the strategy to apply all choices
together.

Φ∩ does not merge parts and
positions as shown in Figure 49. It is
not even a net because the

allocate, ship and pack
transitions are merged but their
surrounding places are not. However,

a comparision of Figure 49 for Φ∩

and Figure 46 for Φ∪ clearly reveals
that further investigations on parts
and positions are needed whereas the
rest of the net is already understood.
Furthermore, a local analysis

becomes possible, e.g. on aParts

and aPos. Thus it may profit from
better performance and separation of
concerns. In the current example the
choices in different clusters are
independent. This yields the

following product structure of Φ:

startP

startS

pack

defining

allocating

shipping

packing

done

aPart/aPos

sPart/sPos

pPos

oPart/oPos

ship

allocate

finish

startA

next

Figure 49. The intersection Φ∩ of all reductions.
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• Let r∪ : N→N∪ the reduction from N to the net N∪ corresponding to the relation Φ∪.

• �
φφ

x (x)r|φΦ
1

∈

∪−
=  the projection of Φ to the origin of each node x in the reduction N∪

• �
∪∈

=
Xx

x

*x
ΦΦ

I.e, the relation set Φ is union of the projections to the origins of the nodes of the reduction

F∪. This factorisation is used as an inspiration for the general case.

A tree will represent a set of relations. Each node n of the tree is assigned a relation ρ(n). A

subtree with root n represents a set of relations Π(n)

Π(n) = �
x* }n of child a c|)c({)}n({ Πρ

ω(n) = if n is the root then Id else if p the parent of n then ω(p) ∪* ρ(p)

The relation ω(n) is combined from the path from n upwards to the root and contains
everything that is unique for n whereas the children deal with the variations. For any set C
that contains a node of every path from each leaf to the root r of the tree holds

Π(r) = �
Cn

x*
)n()}n({

∈
Π∪ω

Algorithm 97. Computes all reductions using relational algebra. �147�.

The algorithm starts with a tree which consists only of a root and the identity relation. Step by

step it is mutated into a tree representation of Φ. First the unique parts are processed and only
thereafter the variations downwards in the tree.

4.6.2 Component Detection

Because the current example does not have a component structure the telephone net from
Figure 37 will be used to test the component detection capability of the reduction algorithm.
This net comes from a different application area from a different software engineering
method. Thus it is really a hard test for our method. The component structure is deeply nested:

telefon: 10 arcs
hook : 1 transition , 1 place 2 arcs
dialer: 2 transitions. 1 place, 13 arcs
tonePulse: 1 place 1 arc
tone_dialer: 3 transitions, 3 places, 14 arcc
dtmf => 7arcs
{HighFreq. LowFreq}: 3 transitions, 5 Places, 15 arcs
a: 1 transitions, 2 places, 5 arcs

pulse_dialer: 5 transitions, 4 places, 14 arcs
keyboard: 1 transition, 1 place, 2 arcs
controller: 6 transitions, 9 places, 35 arcs
stateMachine: 5 transitions, 5 places, 25 arcs
dialState: 7 transitions, 10 places, 79 arcs
{h, h1, h2, h3, h4, h5}: 2 transitions, 3 places, 8 arcs
{dial, redial, onHook}: 7 transitions, 10 places, 27 arcs

line: 8 transitions, 5 places 16 arcs
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Some of the components consist of more interfaces than internals, e.g. those without nodes
but with many arcs. Running the neighbourhood reduction over this (unfolded) net yields 6
colour-sets:

• a set of 3 colours that colours 15 of the 17 nodes of {dial, redial, onHook}

• a set of 2 colours that colours the remaining 2 nodes of {dial, redial}. These two nodes are
an input place and an input transition.

• a set of 6 colours containing 3 of the 5 nodes of {h, h1, h2, h3, h4, h5}

• a set of 4 colours with the two remaining nodes of 4 components of{h, h1, h2, h3, h4, h5}

• a set of 2 colours with the two remaining nodes for the two remaining components of {h,
h1, h2, h3, h4, h5}

• a 1 colour-set, for all the remaining nodes.

This result at first sight looks rather disappointing: we detected only two of fifteen
components and even these two components are different.

But 12 of the 13 components not detected are used only once. Our reduction and colouring
method has no chance to detect a single occurrence of a component. Anyway, it might not be
a bad idea to focus on components actually reused rather than on components only claimed to
be reusable. With this principle only one out of three components are lost. The two instances
of the lost component are connected in a way that conflicts with the neighbourhood definition
used. This is another principle: a specific adjacency criterion is applied.

The differences between the detected components and the design are border effects. It is
rather surprising that they are so small. Principally they cannot be avoided but only minimised
by tuning the analysis.

In conclusion, the neighbourhood reduction algorithm uses two principles, namely

• it detects components actually reused (used twice or more)

• if they are connected compatible with the adjacency definition.
Under these preconditions and although the reduction algorithm was not developed for this
task it detects interesting components.

4.6.3 Using a Cliché Library

A cliché Library may be used to explain a program in terms of a set of basic programming
clichés from the library. Whether this will scale to a real-word programs is still subject to
active research. The approach is especially attractive within the current trend of thinking in
patterns [Gam95].

The developed reduction algorithm does not need a cliché library. This has the advantage, that
the algorithm finds structures actually reused and such a library needs neither to be
constructed nor to be searched. The latter is expensive – NP-hard (in the size of the library not
in size of program [Woo98]).On the other hand, structures that are used only once cannot be
discovered, even if they are very common.

The challenge of cliché recognition is that a single cliché can be applied in many ways. Take
the example of a controlled loop. It can be so simple that it fits on half of a line, for instance
the following print-out of the square below 1000:
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1 to: 1000 sqrt do: [:i | i * i printOn: aStream cr]

Such a loop can be decomposed in six parts

• a start expression for the index

• a stop expression

• an increment expression

• a comparison of the index with the stop expression

• the block of code executed for every index

• the increment of the index
and each of these parts can grow to arbitrary size and complexity. Also, a programmer has the
choice between many constructs offered by the language or the class library. Thus, a cliché
may show up with unexpected deformations – and it is in these cases that reverse engineering
is most needed. Furthermore, it is not very useful to extract all instances of all clichés. Crucial
is to select the clichés that explain the pertinent piece of code.

A natural way to integrate a cliché library in the reduction algorithm is to insert the clichés in
the type system. Section 4.3.1 described how to build the type system from the transitions in
the investigated net and section 4.3.2 how to compose them. But computing costs become
exorbitant for large compositions. However, if the type system is initialised from a type
library using only a single composition path the overhead is reduced. Furthermore, there is a
hope that there are meaningful clichés that are easier to recognise.

Using the type system to detect clichés, means detecting subnets or monomorphisms. This is
far away from the flexibility needed to recognise clichés as explained above. To compensate
for this inflexible matching we propose to run the matching in different stages of the
reduction. At first, it seems that such a technique has an extremely low probability of
detecting a cliché. However, at a speculative level, there are two arguments as to why the
chance would not be so bad:

• A reduction algorithm concentrates certain aspects of a program text. If it finishes, it
should contain a certain abstraction rather than a random transformation. If the cliché
library contains the typical results the chances for matches get improved.

• Inserting the cliché library into the type system implicitly modifies the search strategy. A
possible improvement is to explicitly modify the search strategy so that the search paths
get attracted by the clichés nearby.

4.6.4 Flat Search

During the research for this work, we experienced the following many times: When the
system required a long time for a task then it looped around a programming error or the
results were not useful. For example composing large types is very slow and the resulting
reduction gets split up in too many different cases. This phenomenon shows a principle that is
true for many methods in reverse engineering:

•  It is better to use several flat searches than a single very deep search.
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Its nearly linear cost definitely makes the developed algorithm to a candidate for a light-
weight analysis in a reverse-engineering framework encompassing various different analyses.
This 'take it easy' principle may be formulated as a funny application of complexity theory:

• Here is a hard problem and a set of algorithms. Solve the problem by applying an
algorithm as long as it runs fast. As soon as it starts to slow down switch to another
algorithm.

This would translate to a reverse-engineering framework as follows:

[self isProblemSatisfactoryAnalysed] whileFalse: [
self tryToAnalyseFurtherBy: self chooseAnAnalysisAlgorithm]

Syntactically this is an algorithm but it contains mainly open questions:

• how to measure whether an analysis is satisfactory

• how to process results of one algorithm by another

• how to decide whether an algorithm is worth trying

• how to detect when an algorithm passes from useful work to the complexity dead end.

4.6.5 Reducing the Reduction

For the current example the
reduction algorithm yields a perfect
analysis, but it is still possible to
make it more difficult. The data we
analysed up till now, always used
complete orders. I.e. each order

started with a token in defining
and terminates with a token in done.
But a system trace for an arbitrary
time interval contains orders already
started at the beginning and not
finished at the end of the interval.

To investigate the related problems
the input data is modified to contain
orders stopping

• at defining: complete order as
used till now

• at packing: order still has to do

more packs or to finish
• at allocating after a next

transition: order has still more
work.

For such an input the algorithm
computes the reduction shown in

Figure 50. The packing place

becomes doubled. The packing

next

packing

pPos

startP

pack

defining

allocating

done

oPos

aPos

sPos

oPart

aPart

sPart

ship

allocate

finish

startA

shipping

Figure 50. Analysis of incomplete orders.
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places in the origin net, that are connected to a next or a finish transition are separated

from the places that are connected to none of them. This split propagates to the startP and

pack transitions and to the pPos places. Furthermore the places get additional colours.

To get a further reduction from this net the neighbourhood reduction is applied a second time
with a different merger criterion. Node and their colour-sets will become merged in a
compatible way.

The situation for the place shipping and the two startP transitions should be
transformed as depicted in
Figure 51. The first step allows
merging the two transitions

• either because their colours
are already embedded in a
bigger colour,

• or because the two colours
can be merged.

The second step detects that the
new colour can be embedded in the colour of shipping and identifies them.

What are the necessary checks?

• The second reduction induces a map of the colours.

• The initial origins of a reduction node are 1:1 with its colours. This may be weakened to a
subset relationship, if the colours of merged nodes form disjoint subset of the new colour-
set.

• The colour mergers should not be arbitrary but reflect facts from the net. This will lead to
a more natural modelling with more arcs labelled with identities or functions carrying
semantic
information.

To keep track of colour
embeddings we use a

class ColourWood. As
the name suggests it
contains a collection of
trees. This collection is a
graph with colours at the
nodes and colour
relationships
(embeddings) at the arcs.

Up till now, Algorithm 84 used a collection of maps of allowed transition mergers. Now a
filter is applied which tries to find a consistent colouring. Moreover the colour structure
which must be kept in sync with the transition mergers, this is detailed in

Algorithm 98. Merging colours and nodes. �147�
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Figure 51. Colour mergers.
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Figure 52. The class diagram for colour reductions.
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Applying this algorithm to net from the beginning of this section gives the complete analysis
from Figure 48. Unfortunately this success does not reappear for more complicated situations.
If for example orders stop and start at any of the right hand side only, complete reduction is
no longer reached. There are two areas the second algorithm needs to be enhanced:

• colour mergers do not only issue from 1:{0,1} relationships, but also from 1:n
relationships

• flexibility allowing to use colour subsets.

These modifications are not difficult to implement but another problem arises: the reduction
merges things that it should not. To make this second reduction a powerful and stable
instrument a careful balancing of the different requirements is necessary, as we have done it
for the neighbourhood reduction algorithm. But this is left to further research.

4.6.6 Commutative Net Diagrams

In section 4.5.2 Colouring we got a reverse-engineering diagram that was superior to the usual
forward engineering design diagrams. This has two interesting consequences:

• Reverse engineering forces a closer look at the forward engineering methods. One detects
information that is essential for the correct functioning of a software system but is not
reflected in the forward engineering process. This is an instance of phenomenon in AI: the
automation of a human activity often fails if it considers only what humans think they do.
Usually the unconscious decisions and actions are crucial. Reverse engineering may help
to detect some of these implicit decisions, so they might become explicit or event built
into a method.

• Reverse engineering has to recover design. Maybe this is so difficult because important
parts of the design process are not explicit. As reverse engineering uses finished software
systems it is confronted with intimately interlaced effects of the explicit and the implicit
design. Analysis restricted to the explicit parts alone is only applicable in the most simple
situations which do not really need reverse engineering.

In this paragraph, we mention such a hidden concept. The diagram in Figure 48 can still be
enriched by information about commutative relationships and relationships composition. To
our knowledge the concept of commutativity has never been used in the context of software
analysis. Nevertheless it plays an important role for semantics, implementation and
optimisation.

Commutative diagrams are a corner stone of category theory. Entity Relationship diagrams or
Petri nets diagrams can easily be interpreted as diagrams in category theory. But the term
commutative gets a bit more complicated in our case. The reason is that relationships run in
both directions while morphisms are one way. Often, although a whole mesh might not be
commutative there are some important properties of 'local commutativity'.

Such generalised commutativity diagram for our spare part system is shown in Figure 53.
Each block arrow drawn concerns the elementary net mesh it resides in. The two types of
block arrows show two independent features:

• the circular arrows designate an elementary cell as commutative

• a straight arrow pointing to a node n says that the composition of the relationship around
the whole mesh from n to n equals the identity relationship.
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• relationship cardinalities are a third, different feature. They are not shown here but they
can be read of the colour diagram

Commutative cell - indicated by a pair of circular arrows - signifies the relationships along the
two paths around the circuit between two arbitrary nodes compose to the same relationship.

As an example take the left upper cell. From aPart to aPos there are two paths, one over

the transition allocate, the other over ship. Both compose the same relationship that
relates a specific part with all positions containing this part. This is an important semantic
information. It expresses that the many arrows form a single relationship from a user point of
view. Furthermore this constraint is crucial for understanding, simplifying and tuning object
navigation and database accesses.

The place aPart is indicated by the straight arrow as an ‘identity point’ in the same left
upper cell. This means a run around the loop from a specific part always returning to the same

part. This is not true for the transition allocate: the run may return to any allocate
transition of the same part, even belonging to a different order. Again such 'stabilising
elements' arc crucial for understanding of the application.

ship

allocate

pack

defining

allocating

packing

done

oPos

pPos

oPart

finish

Figure 53. A commutative net diagram.
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An application of these ideas would be a further reduction step in the reverse engineering
algorithms proposed in this paper. It would allow the merge of colours only if they are
compatible and reside in a commutative mesh. Again we refrain from elaborating any details.

We showed the commutative decorations in a Petri net diagram because we wanted to reuse
our running example. But this technique is not confined to nets. The explanation above
suggests that both class or entity-relationship diagrams can get decorated with such symbols
for cell commutativity. In fact this notation makes sense in any diagram with edges
symbolising a kind of relationship.

Of course there are more complicated situations that this simple notation cannot reflect. But
we do not aim for a complete classification of properties of relationships. Rather we want to
pinpoint novel analysis techniques for forward or reverse engineering arousing naturally from
our approach of using coloured Petri nets as an engineering metaphor.
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5 Conclusion

The net-theoretical part of this PhD thesis builds adjunctions between Petri-net categories
standing for the dichotomies of clustering and folding as well as of structure and behaviour.
They form a bridge between applications of Petri nets using clustering-based techniques for
software engineering and folding-based categorical methods offering deep theoretical
insights. The hope is that this bridge will allow the different paradigms to benefit from each
other. Furthermore, the categorical framework extends to coloured nets and semantics and
offers integration with graph-transformation techniques of different flavours.

The application of universal constructions from these categories to reverse engineering yields
a new analysis algorithm which can recover high-level design information from a flat net.
This is done without searching and hence at high speed - almost linear. At the same time, the
algorithm offers a wide range of variations allowing it to be adapted to different application
domains. As it is a Petri-net based method, most problems need a preceding translation to a
net – which may be done in many different intuitive ways.

In this work, we looked for synergies between Petri nets and reverse engineering and were
able to discover some attractive new techniques. With minor adaptations, many conventional
clustering-based reverse-engineering tools would apply to Petri nets. In fact they really are
necessary there. Nevertheless, we concentrated on the unconventional approach by applying
folding-based Petri-net techniques to the reverse engineering of legacy systems.
Consequently, the basic character of this work remains experimental and many questions
must remain open. We can only select a few:

• We showed how to formalise coloured Petri nets. However, it is more challenging and of
higher practical relevance to do this for hierarchical nets. On a theoretical level, it means
to complete the cube of Figure 27 with the three axes folding/clustering,
structure/behaviour/semantics and low-level/high-level.

• The use of examples from different application domains to validate and improve the
reverse-engineering algorithms proposed in this work.

• Integration of the algorithms into a reverse-engineering framework to find heuristics for
the situations in which they are preferable to current methods.

• Huge and confusing search spaces arise in reverse engineering. We were able to navigate
through them efficiently with the aid of universal constructions. Universal constructions
may also prove useful in other ways and in other domains to combat combinatorial
explosions.

The dialectic between the static graph of a net and its behaviour is one of the essentials of net
theory. Although obvious correspondences exist in software engineering, this work was
unable to make use of them. Translating a system to a bipartite graph already offers powerful
modelling and analysis features. In terms of intuition, however, the driving force is the Petri-
net dynamics behind the static structure. We conclude that folding-based Petri net methods
are a powerful tool in both forward and reverse engineering and that it is also worthwhile
devoting further research to them in other domains.
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7 Appendix: Proofs and Details for Petri Nets

7.1 Introduction

Remark 1. Category theory in computer science.

This remark explains the motivation for the use of category theory within this work and
reviews a few basic definitions. For a general introduction to category theory refer to [Lan71].

Category theory can be thought of as a smallest common denominator of mathematics – there
are other branches of mathematics with this flavour, e.g. logic. Using category theory in
computer science, therefore, stands for the attempt to reason about computers in a way
conforming to this smallest denominator. There are many reasons for that such as:

• to profit from the huge work done by mathematicians over the centuries

• to inherit some of the elegance and specially the compositional features of mathematics

• to choose by abstract arguments the better models with less try and error processes

It seems reasonable to do some crosschecks between computer science concepts and category
theory – without denying the necessity to crosscheck with other branches of mathematics or
sciences e.g. sociology. It is especially important to discuss conflicting hints coming from
different crosschecks. But this definitely is beyond the scope of this work.

A category C consists of objects and morphism. A morphism f: X→Y goes from a source
object X to a destination object Y and is drawn as a directed arc. C[X, Y] or simply [X, Y]
designates the set of morphisms from X to Y. The main axiom is that morphisms have an

associative composition. Beside, each object X must have an identity morphism IdX: X→X.
One level higher functors are defined. They map objects and morphisms from one category to
another one preserving morphism compositions and identities, i.e. F (gf) = (F g) (F f) and F
IdX = Id F X.

Surprisingly, in the very thin air of this abstraction many theories share non-trivial patterns.
Formulating something with categories and morphisms hence allows comparing it to other
theories and helps to discover or build patterns which proved useful in other contexts. For our
subject the use of category theory means to stress

• relationships between nets and

• relationships between net classes
rather than single transitions or places of a net. This is very natural for forward and reverse
engineering:

• a net is an implementation of a specification net

• a specification simulates a (projected) implementation

• two components behave similarly and could replace each other

A morphism may model such relationships. Thus, software engineering translates to the
construction of a morphism to a given specification and reverse engineering to the
construction of a morphism from a running system. Morphism composition corresponds to
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layered implementation, isomorphism to equivalent implementation and a functor to
modelling a formalism by another under preservation of the implementation relationships.

Software engineers like to see a system as static collection of program source text or graphs.
But the ultimate goal is the behaviour of the running system. The relationship between
structure and behaviour may also be modelled as morphisms or preferably as functors. This
modelling implies that composition of structures yields composition of behaviour - a
relationship that is far from trivial. Rather it means conciliating conflicting requirements.

Category theory is just a container which poses only minimal
requirements on morphisms – the art is to invent morphisms that give
the needed flexibility and nevertheless preserve enough properties to
allow meaningful analysis.

The main axiom allows drawing diagrams consisting of objects (e.g.
nets) connected by directed arrows which represent morphisms.
Figure 54 shows an example. A directed path in a diagram yields the
composition of its morphisms. If these compositions equal for every
two paths with the same source and destination the diagram is called
commutative. Hence in Figure 54 commutative means u'i' = u"i". This
is an intuitive, graphical and mathematical sound way to visualise
relationships between objects.

Diagrams allow building new objects and morphisms with especially nice properties – called
universal constructions. In fact, there are two types of universal constructions: limits and
colimits. The colimit of a diagram D is an object U together with morphisms from every
object of D to U having two properties, namely natural and universal.

• Natural means that the combined diagram (of D, U and connecting morphisms to U) is
commutative.

• Universal means that for every other such object Q with natural connecting morphisms

there is a unique q: U→Q making the whole diagram commutative.
The definition ensures that if a colimit exists it is unique (up to isomorphism).

Figure 54 shows a special colimit (U, u', u") called pushout of the diagram (I, i', i"). Here,

natural means again u'i' = u"i" and the universal property is shown in Figure 55. We use ∃! for
there exists one and only one. In software engineering a
pushout is the 'best' combination of two objects N' and N"
which are connected by i' and i" to a common interface I.
For the computation of a specific colimit and limits refer
to the proof of Proposition 3 �104.

Universal constructions arise everywhere in mathematics
– even centuries before the invention of category theory in
the fifties. A category C is called (co)complete iff every
diagram in C has a (co)limit. Checking (co)completeness
of a category is a good way to check the soundness of its
definition. That does not imply that a category with

u‘

u“

i“

i‘
I

N“

N‘

U

Figure 54. A commutative

diagram.

q"

q'

∃∃∃∃ ! u

u‘

u“
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i‘
I

N“

N‘

U

Q

Figure 55. The universal property.
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lacking universal constructions is bad - but one should have a plausible reason for it.

It is a widely used technique to specify languages by grammar rules (e.g. by syntax diagrams
or in computational linguistics). Such a rule may
simple be defined as a diagram of two morphism l
and r with a common source I. This rule directly
transforms an object G into an object H iff a
diagram such as Figure 56 exists. Figure 56 has two
pushout squares. This means that H is produced by
replacing L in G by R. This replacement is defined
by the rule and the embedding c' of the interface I
into the common object C. This simple but flexible
procedure is the famous double pushout approach which is used for example in graph
rewriting systems.

This illustrates our motivations to use a categorical approach – but it is used seldom in the
Petri net community. In fact there are not too many names publishing in this area. The
majority regards the categorical approach as too abstract for real work. Of course this is a
general feeling about category theory – but we think that in the field of Petri nets it has also a
more specific reason.

Most categorical approaches use morphisms that are pure foldings. This turns out to be very
attractive from a categorical point of view – folding morphisms transfer behaviour nicely and
allow categorical connections from and to many other models of concurrency opening deep
insights. The proposals allowing clustering do not transfer behaviour so nicely – if at all.
Hence there is not so much profit from category theory and the results are less exciting.

But in practice clustering is necessary – it is simply indispensable for real-world applications.
This is standard software engineering practice not only for Petri nets. A categorical tools
which does not support clustering is only of limited practical value.

It is the merit of this thesis to construct new net categories that allow clustering, folding,
universal constructions. Hence our work allows using more categorical Petri net theory in

software engineering practice. ♦ �23�

7.2 Preliminaries

7.2.1 Notation

7.2.2 Sets and Multisets

Proposition 3. SETP is cocomplete and complete.

Proof: For cocompleteness first construct the pushout in SETP. Let Π be a set containing a

special element undef and π, π' and π" be functions with:

• π: S→Π, π': S'→Π, π": S"→Π are injections

• Π is the disjoint union of π(S), π'(S'), π"(S") and {undef}

pushout

rl

h‘

h

c'

I

C

R

H

L

g
G

g'
pushout

Figure 56. The rule (l,r) transforms G into H.



Walter Keller. Petri Nets for Reverse Engineering. 105

The π‘s make the embeddings of the given sets in the
disjoint union explicit and the special element undef will
model elements on which the map must be undefined.

For s∈S let

• π s R' y iff π' f ' s = y or π" f " s = y for y∈S'∪S"

• π s R' undef iff s∉def f' ∪ def f"

• R⊆ΠxΠ the minimal equivalence relation generated
by R'

• P the equivalence classes of R not containing undef

• p: Π→P a partial map defined by p(s) = if (s R undef)
then undefined else the equivalence class of s in R

• p' = p π'

• p" = p π"

By construction f', f", p' and p" form a commutative
diagram in SETP shown in the middle Figure 57. It
remains to verify the universal property. Given q', q" and
Q in the lowest diagram spelling out commutativity
yields:

• p'(s')∈def(q) iff s'∈def(q') and analogously

p"(s")∈def(q) iff s"∈def(q")

• if s'∈def(q') then q(p'(s')) = q'(s') and analogously if

s"∈def(q") then q(p"(s")) = q"(s")

This completely determines q as the images of p' and p"
cover P. But it remains to show that q is well defined.

Otherwise there were p'(s') = p"(s") with q'(s') ≠ q"(s").
Let

• X = π' p' -1 p' s'∪π" p" -1 p" s" the equivalence class of
R containing s' and s" and

• Y = X∩(π' q'-1 q' s'∪π" q"-1 q' s')

π' s' is in Y and π" s" in X but not in Y hence Y is a
nonempty proper subset of X. There cannot be elements

x∈X and y∈Y connected by R' because then by
commutativity

q' s' =q' π' -1 y = q" π" -1 x = q" s" contrary to the
assupmtion. But such a partition of X contradicts that R
is minimal. This handles the case with all functions
defined on s' and s". For the other cases:

• If def q'∋s'∉def p' or def q"∋s"∉def p" then setting X
to the equivalence class of undef and Y as above
yields the same contradiction.

• If def p'∋s'∉def q' or def p"∋s"∉def q" then setting X
as above and Y to the equivalence class of undef

yields a contradiction to s'∈def q' or s"∈def q".

q‘

∃∃∃∃!!!!q

p‘

p“

f“

f‘

f“

f‘

f‘

f“

p“

S

S“

S‘

S

S“

S‘

P

p‘

Q
q“

S

S“

S‘

P

S‘

Figure 57. Pushout: starting point (top),
pushout square (middle) and universal

property (bottom).

q‘

∃∃∃∃!!!!q

f‘

f“

p“

p‘

Q

q“
P

S“

S‘

S

Figure 58. The pullback.
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Hence q is well defined in all cases which completes the proof of the universal property of the
pushout.

By a well-known result from category theory a colimit may be constructed as a coequaliser of
two coproducts. As the empty set is the zero object of SETP (but not in SET!) the coproduct
equals the pushout with two zero morphisms. The proof above has shown that this is the
disjoint union of the objects which exists for all possible discrete diagrams. Hence SETP has
all coproducts furthermore a coequaliser is a pushout with S' = S". This proves
cocompleteness.

For completeness first construct a pullback as in Figure 58. With the special element undef –
neither element of S' nor S" - define

• P = {(s', s") ∈ (S'∪{undef}) x (S"∪undef) | (if s'∈def(f') then f'(s) else undef)

= (if s"∈def(f") then f"(s") else undef)} \ {(undef, undef)}

• p': P→S' with

• def(p') = {(s', s")∈P | s' ≠ undef}

• p'((s', s")) = s'

• p": P→S" symmetrical
Clearly f'p' = f"p" forms a commutative square in SETP. And q has to get defined as

• def(q) = def(q')∪def(q")

• q(s) = ((if s∈def(q') then q'(s) else undef), (if s∈def(q")
then q"(s) else undef))

Again q is uniquely determined by commutativity which
proves the universal property. The existence of the limit of
a general diagram is derived dually as for a colimit.

♦�24�

Lemma 5. In MS there are finite diagrams without a
colimit or a limit.

Proof. To show an example a matrix representation is used:

• for every module or multiset we fix a base e = (e1, e2, ...
en)

• every element m is uniquely written as a column vector

v with m = e v. Reverse every v∈����
n respectively v∈����

n

gives an element.

• morphisms are represented by m x n matrices. n beeing
the dimension of the source space and m of the
destination space. The image of an element is the
multiplication of the column vector from the right.

• xt denotes the transposed of a vector or a matrix, i.e. the
exchange of rows and columns.

In the diagrams morphisms are indicated by their matrices. The dimensions of the object can

be inferred from the matrix sizes. For example, f' maps a number x to a vector (x, 2x)t. For ����-
modules (sets over integers instead over naturals as multisets) it is a pushout diagram. But,

p‘=

p“=

f“=

M

M“

M ‘

P

1  0

0  1

0  1

0  1

1  0

0  2

2

1

f'=
1

2

Q
q"

q'

∃∃∃∃!q

 0  1  -1

 0  0   0

 1  0   0

0  0   1

q'   q"q =

Figure 59. A lacking pushout.
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although, it is a commutative diagram in MS too it is not a pushout there. The morphism pair

q' = (2, 0), q" = (0, 1) has in the category of ����-modules the connecting morphism q= (2, 1, -1)
which is missing in MS. We have to show that this problem cannot be fixed.

A pushout can be represented by the matrix P, the concatenation of the matrices P' of p' and
P" of p". The columns of this matrix are p'((1, 0)t), p'((0, 1)t), p"((1, 0)t) and p"((0, 1)t).
Commutativity boils down to the matrix equation

P (1, 2, -2, -1)= 0.

The morphism pair q1' = (1, 0) and q1" = (0, 1) factorises over a q from P with
q1' f' (1) = 1 = q p' f'(1) = q1p' ((1, 2)t)
q1" f" (1) = 1 = q p" f"(1) = q1p" ((1, 2)t)

Hence the decomposition of p' ((1, 2)t) into base vectors (in MS) must contain exactly one

base vector say e1 with q(e1) ≠ 0. Further q(e1) = 1 and e1 cannot occur in the decomposition
of p'((0, 1)t). By linear dependence P (1, 2, -2, -1)= 0 e1 occurs also in the decomposition of
p"((0, 1)t) and symmetrically it cannot occur in p"((1, 0)t). Hence any pullback in MS must
have a line like the first one of P.

Similarly with q2' = (0, 1) and q2" = (1, 0) we get a line like the second of P, with q3' = (0, 1)
and q3" = (0, 2) one like the third of P and with q4' = (2, 0) and q3" = (1, 0) a fourth line equal
(2, 0, 1, 0). By

(2, 0, 1, 0) = (2, 1, -1) P
these four lines are linear dependent. We finish the proof by showing that such a linear
dependence contradicts the universal property of the pullback.

A product aP for a row vector a corresponds to
a linear dependence of the rows of P or a linear
map from the module P to the integers. A linear

dependence over � gives an integer row vector
a with a P = 0. The decomposition a = a+ - a- in
natural vectors gives morphisms in MS:

a+ , a-: P→���� with
a+ P' = a+ P" and
a+ P' = a- P"

The uniqueness of universal connection in
pushout gives a+ = a-. Hence the rows of P are
linear independent.

The same line of argumentation shows that

Figure 60 does not allow a limit ♦ �24�

7.2.3 One-Sets

Proposition 10. 1S is left adjoint to BN. There is a natural equivalence ε: IdSETP→B 1S and

there are isomorphisms δM: M→1S B M with B δΜ = εBM.

Proof. η  : 1S[1S S, M] → SETP[S, BN M]given by η f s = (fβ s, fγ s) is obviously a bijection
between the two sets of morphisms. Naturality follows straightforward. The functor

f‘

f“

p “

p ‘
P

M “

M ‘

M

1  2

1   0   2

0   1   0

2   1

0   1   1

1   0   0

Figure 60. A lacking limit.
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compositions of B and 1S give bijections on S respectively BM which yields the claimed

properties of ε and δ. δ is a ‘not natural transformation' for Id1S→1S B ♦ �26�

Proposition 11. 1S is cocomplete and complete.

Proof. For a given diagram D in 1S the colimit q: BN D→Q exits in SETP by Proposition 3.

Define the equivalence relation ∼ on the elements of Q generated by ~1

x ~1 y iff ∃ C an object of D, ∃c∈BN C, ∃λ∈����
+ with (BN qC) c=x and (BN qC) λ c = y

Let Θ⊆Q an equivalence class of ∼ and Φ(Θ) the set of functions compatible with
multiplication:

Φ(Θ) = {f: Q→����
+ | ∀c∈BN C, C an object of D, λ∈����

+ with BN qCc∈Q

holds (BN qC) λ c = λ (BN qC) c}

If Φ(Θ) is not empty it contains a minimal function φ(Θ) with

Φ(Θ) = ����
+ φ(Θ)

Now let PB the equivalence classes of ∼ with nonempty Φ and P the one-set with basis PB and

pC: C→P linear with ∀c∈BN C: pC c = if [c]∼∉PB then 0 else φ([c]∼) [c]∼
Clearly these are well defined 1S morphisms to P. Moreover they are natural transformations
because the restrictions to the base skeletons are.

To show that P has the required universal property

let r: D→R another natural transformation as shown
in Figure 61. By the universal property of Q there is

a unique rQ: Q→BN R making the diagram in SETP
commutative. Because each rC is a one-set

morphism the elements of an equivalence class Θ of

∼ are mapped either all to 0 or to the multiples of a

base element bΘ of R, the function

rΘ : Θ→���� by rΘ x = (rQ x) bΘ
is in Φ(Θ) and rΘ is a multiple of φ(Θ). Hence rQ

lifts in a unique way to a 1S morphism rP: P→R
finishing the proof that P is the claimed colimit.

Because BN has a left adjoint it preserves limits.
Hence the skeleton of the limit of a diagram D has

to coincide with the limit q: Q→BN D. To find a

multiplication of an element r of Q with a λ∈����
+ use

∀ objects C of D: qC (λ r) = if r∈def qC then λ qC r else undefined

By the universality of Q such a λr is unique because the elements of Q are in bijection with
the natural transformations from a singleton set to D. On the other hand, if x is an element of
Q it corresponds to such a natural transformation and by the linearity of the morphisms in D

also λr as defined above. Hence λr uniquely exists and by the same argument there is at most

one s with λs = r for any r∈q and λ∈����++++. The base in Q is simply the set minimal elements:

B Q = {b∈Q | ∀r∈Q, λ∈����
+: if b = λ s then λ = 1)

We claim that any r∈Q is the multiple of exactly one b∈BQ and hence Q = ����
+ x BQ. Assume

r = b λ = b' λ'. If λ = λ' then we showed already that b = b'. If λ ≠ λ' then r is divisible by the

R

p

q

r ∃∃∃∃? rP

D

BN D

P

Q BN P

BN R

BN r ∃∃∃∃! rQ

Figure 61. The colimit in 1S.
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least common multiple of λ and λ'. This contradicts that b, b'∈B M. Thus, r is a multiple of at

most one b∈BQ. Such a b exists if the set D = {s | ∃λ∈����
+: λ s = r} is finite. But there is a qC

that is defined on r and it maps D bijectively to qC D⊆{s' | ∃λ∈����
+: λs' = qC r} and the latter

set is finite ♦ �26�

7.3 Place-Transition Nets

7.3.1 Definitions and Basic Properties

Definition 12 tacitly assumes that PTNET is a well-defined category.

Proof: The composition of two morphisms f: N→N' and g: N'→N" is again a 1S morphism.
By

g f preN t = ) 
 tf pre

f(t)
 ( g

N' �
�
�

�
�
�

 =  

 t f g pre

 tf g

 tf g

 

N"

�
�

�
�

�

�
�

�
�

�

all possible combinations end up in g f t or preN" g f t as required for a PTNET morphism.
Together with the same calculation for post this proves compositionality. The proof is only
complete, because of the mentioned convention that the application of a pre or post function
implies the argument to be a transition multiset. The composition is associative, because it is

in 1S. Finally the identities in 1S are also the identities in PTNET ♦ �27�

Proposition 13. A PTNET morphism f: N→N' is

• epimorphic iff fβ is surjective

• monomorphic iff def(fβ) = X and fβ injective

• isomorphic iff f is unitary, fβ is a bijective and isolated places are mapped to places.

Proof: If fβ is surjective then clearly f is epimorphic. In the other direction we assume by

contradiction in a first case t'∈T'\im(fβ). We construct a net with “doubled t'” as follows:

• t"∉X'

• T" = T'∪{t"}

• pre"(t) = if t∈T' then pre'(t) else pre'(t')

• post"(t) = if t∈T' then post'(t) else post'(t')

• N"= (pre", post")

• g(x') = x'

• h(x') = if x' = t' then t" else x'.
This constructs a net N" and different morphisms g and h with g f = h f in contradiction to the
definition of epimorphic.

The second case is a place p' instead of t'. If p' is not isolated it is connected to a transition t'

that neither can be in im(fβ) and the first case applies. Otherwise take N" with two places and
no transitions. g and h are defined only on p' and map it to the first respectively the second
place of N". As above this is a contradiction to f epimorphic. Hence there is a contradiction in
all cases.

h

g

f
N‘ N“N

Figure 62. f is epimorph iff gf=hf implies g=h
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For the second claim it suffices to proof that if f is

monomorphic then fβ fulfils the two claimed

conditions. If def(fβ) is not the whole X we find as

above a y∈X such that
g(y) = if y=x then undef else y

is a morphism N→N. Together with idN it contradicts f to be monomorphic. For the second

condition left fβ(xg) = fβ(xh) for xg ≠ xh∈X. From the net N" with a single place p" and no
transition there are two different morphisms

g(p") = fγ(xh) xg

h(p") = fγ(xg) xh

with gf = hf in contradiction to monomorphic.

Finally, if f is iso it must be epi and mono. And fγ must equal 1, because this is the only
number with a reciprocal within the naturals. But this is not sufficient: Figure 5 shows a
morphism that fulfils all these conditions but its inverse is not a morphism. If a place is
mapped to a transition there exists no inverse because

• if the transition is not isolated then by bijectivity and commutativity with pre and post

• if the transition is isolated then the inverse must map it to an isolated transition too.

For the reverse direction non-isolated transition must map to transitions – otherwise the pre
and post sets would also map in the image of the transition, contradicting bijectivity.
Consequently non-isolated places map to places. By the above and the last condition this is
also true for isolated elements. All together this ensures that the inverse of f also commutes
with pre and post and hence is a PTNET morphism. This proves the last claim.

Remark. The proposition still holds for morphisms disallowed to map places to transitions.
The proof has to be adapted for the part about monomorphisms. If xg and xh are both
transitions and the pre and post sets are 1:1 a net with a similar transition (with pre and post
weights all 1) can map to both transitions and hence replace the single place net above.

♦ �28�

Proposition 15. PTNET: 1S→PTNET is the left adjoint of U. Moreover, they form a
coreflection.

Proof: The bijection between

PTNET [PTNET M, N'] → 1S [M, U N']
translates (by setting M = 1S P and U N' = 1S X') to

PTNET [PTNET 1S P, N'] → 1S [1S P, 1S X']
Obviously the interpretation the same morphism once in PTNET and once in 1S is natural.
The unit given by

Id ∈ PTNET [PTNET M, PTNET M] → εM ∈ 1S [M, U PTNET M]

is clearly an isomorphism and hence the adjunction a coreflection ♦ �29�

h

g

f
N‘N“ N

Figure 63. f is monomorph iff fg=fh implies g=h
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7.3.2 Clustering

Proposition 17. Let f: N→N’, Kf = XN\def(fβ) and S’⊆X’. Then

• def(fβ) is transition-bordered

• Kf is place-bordered,

• if S’ is place-bordered then also fβ
-1(S’)∪Kf

• if S’ is transition-bordered then also fβ
-1(S’)

• if S' is non-splitting then also fβ
-1(S’) relative def(fβ)

Proof: Let p∈•t and t∉def(fβ) then f t = 0 and by the definition of a PTNET morphism f pre t =

0. Thus f p = 0 and equivalently p∉def(fβ). With the similar argument for post this signifies

that no transition outside of def(fβ) is connected to the inside hence def(fβ) does not have
border places and is transition-bordered.

Let S' be transition-bordered, S = fβ
-1(S’) and p∈•t∩S. Clearly f p ≠ 0. If f pre t = pre f t then f

t∈S' because f p is and S' is transition-bordered. Otherwise f pre t = f t and f t∈S' because f p

is. In both cases f t∈S' yields t∈S and S is transition-bordered.

If S' is place-bordered, then X'\S' is transition-bordered and by the previous also f-1(X'\S') = f-

1(X'\S') = def(fβ) \ f-1(S'). Hence the complement is place-bordered.

The last claim is a direct application of the definitions ♦ �30�

7.3.3 Net Invariants

Proposition 19. Let f: N→N’ a morphism of place-transition nets. Then

• if i': XN'→���� is a place invariant of N' then i = �
∈Pp

p f i' is a place invariant of N.

• Semi-positive place invariants of N are 1 to 1 with morphisms to single place nets.

• if j∈1S TN is a transition invariant of N then j’ = �

≠
∈

 tf  t pre f
Tt

f(t) j(t)  = �

≠
∈

 tf post t  f
Tt

f(t) j(t) is a

transition invariant of N’.

• A semi-positive transition invariant corresponds to a unitary folding from a T-system (a

PTNET with all arc cardinalities 1 and |•p| = 1 = |p•| for all places).

Proof: Let i be a place invariant and iX be the linear function 1S X→���� given by

 iX (x) = if x∈P then i(x) else i pre(x).
Because i is a place invariant for each transition t holds
 iX t = iX pre t = iX post t.
We call a linear function fulfilling this equation an extended place invariant. Clearly mapping
i to iX is a bijection from place invariants to extended place invariants. Equivalent to the first
claim is iX f is an extended place invariant. But this is proved in the same way as the
compositionality of morphisms (for Definition 12, the absence of negative coefficients has not

been used). For the second claim we only need to identify ���� with the net consisting of a single

place PTNET ���� which turns the semi-positive invariant iX into a net morphism.

Hence a P-invariant can be lifted from N' to N. But surprisingly the propagation in the
direction of the morphism may fail as Figure 64 shows.
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For the third claim the following is derived:
0 = (post-pre) j
0 = f (post-pre) j

0 = f (post-pre) �

=
=

 tf post t  f
 tf  t pre f

 j(t)( + �

=
≠

 tf post t  f
 tf  t pre f

 j(t) + �

≠
=

 tf post t  f
 tf  t pre f

 j(t) + ) j(t)

 tf post t  f
 tf  t pre f

�

≠
≠

0 = f (post-pre) �

=
≠

 tf post t  f
 tf  t pre f

 j(t)( + �

≠
=

 tf post t  f
 tf  t pre f

 j(t) + ) j(t)

 tf post t  f
 tf  t pre f

�

≠
≠

0 = f �

=
≠

 tf post t  f
 tf  t pre f

 j(t) - f �

≠
=

 tf post t  f
 tf  t pre f

 j(t) - pre f �

=
≠

 tf post t  f
 tf  t pre f

 j(t) + post f �

≠
=

 tf post t  f
 tf  t pre f

 j(t) + (post-pre)f �

≠
≠

 tf post t  f
 tf  t pre f

 j(t)

The first two summands are transition multisets the last tree place multisets. Hence already
the first two terms vanish and their equality implies

j' = f �
≠  tf  t pre f

 j(t) = f �
≠  tf post t  f

 j(t) and

0 = (post – pre) j'
which is the third claim.

For the fourth claim T clearly is a transition invariant of a T-system and by the previous a
folding maps the transitions of a T-System to a transition invariant. For the reverse direction
let j a transition invariant of a net N and let

TJ = {(t, α) ∈ TN x ����
+ | 1 ≤ α ≤ j(t)}

PJ = {(t, p, β) ∈ TJ x PN x ����
+ | 1 ≤ β ≤ pre t p}

QJ = {(t, p, β) ∈ TJ x PN x ����
+ | 1 ≤ β ≤ post t p}

bp: {(u, p, γ) ∈ QJ} → {(t, p, β) ∈ PJ} bijective for p∈PN

preJ (t, p) = �
∈ JP  β) p, (t,

 β)p,(t,

postJ (t, p) = �
∈ JQ  γ) p, (u,

p  γ)p,(u,b

J = (preJ, postJ)

f: J→N with f(t, α) = t and f(t, p, β) = p
The bijections bp exist for every place p of N because j is a transition invariant which is
equivalent with pre j = post j. By construction of f preJ = preN f and f postJ = postN f hence f is

2

2

1

2

Z

0

1

Figure 64 A place invariant may not transfer because of global (left) or local (right) incompatibility.
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a morphism and even a folding. J is a transition system because |•p| = 1 = |p•| is a consequence

of the bp beeing bijective ♦ �31�

Remark 20. The major limitations of PTNET are the following: universal constructions do
not exist in general and behaviour transfer is complicated.

The category PTNET has several limitations.
Although pushouts exist for foldings neither
pushouts nor pullbacks exist in general. By
commutativity the black elements on the left
side of Figure 65 have to map to the same node
of the pushout. Should it be a transition or a
place? For a factorisation to the left bottom net
to a place but for the right bottom net to a
transition!
Because morphisms may mix transitions and
places arbitrarily the bipartite structure does not
transfer. Furthermore for pullbacks additionally
the pre and post functions may clash.

To see this remember that the underlying functor U: PTNET→1S has a left adjoint
(Proposition 15) so it preserves limits by a well-known result from category theory. Hence the
right hand side of Figure 65 shows the nodes of a pullback if it would exists. But there is no
way to define pre and post allowing both connecting morphisms.

Finally the transfer of behaviour gets complicated. As shown in Figure 66 there are five
possible combinations to map a transition and its neighbouring places - and these five cases

have to be reconsidered for every proof. ♦ �31�

7.3.4 From Clustering to Folding

Lemma 22. Let ∆x = (x,x) and pp = (pre, post) ∈ MS(MS T, MS P) x MS(MS T, MS P) ≅
MS(MS T, MS P x MS P). For a PTNET morphism f: N→N' the following properties are
equivalent:

• f is place-preserving

?

?

2

?

Figure 65. Diagrams without pushout (left) and without pullback(right).

Figure 66. The possible images of a transition.
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• (∀t∈T: f pp t = pp' f t or f pp t = ∆ f t) and

(∀p∈P∩def fβ: ∃p'∈P with fβ p'∈P' such that p and p' are connected by an undirected path

with all nodes in def(fβ)).

Proof: The cartesian product of two multisets equals the multiset over the disjoint union of the
bases and this equals the product as universal construction. Hence a pair of morphisms

MS T→MS P gives a universal connecting morphism MS T→MS P x MS P which is the
claimed isomorphism in the definition of pp.

Assume f place-preserving and t∈T. If f pre t = pre f t then f t is a transition and post f t = f t

would imply that the places of t• map to the transition fβt which contradicts place-preserving.
Hence post f t = post f t and f pp t = pp' f t. Otherwise if f pre t = f t then place-preserving

implies that f pre t is either 0000 or a multiple of a place. By the PTNET morphism definition

both cases result in f post t = f t and f pp t = ∆f t. Hence the first property includes the second.

Reverse, assume the second and let

Q = {p∈P | fβp∈P'}

Any place of N not in Q is connected to a place in q and on this path there is a transition t∈T

with •t• ≠•t•∩Q ≠ {} because each connection component of X contains a place in Q. If f pp t

= pp f t then fβ t is a transition and •t•⊆Q. If f pp t = ∆ f t then all places of •t• are mapped to

the same node as t and •t• is either a subset of Q or disjoint from it. Both cases result in a

contradiction hence f is place-preserving ♦ �32�

Proposition 23. The forgetful functor U has a right adjoint PP: PTNET→PPNET.

Proof: The basic idea is, to replace every transition by three transitions and a place as shown
in Figure 7. This deals with the five combinations of the image of a transition and its pre and
post sets for a PTNET morphism (see Figure 66) and is defined on a net N as follows:

• four new symbols

• d for direct,

• i for input,

• o for output and

• n for internal or inherited

• PPP = {xn | x ∈X}

• TPP = {ty | t∈T, y∈{d,i,o}}

• the xy notation is expanded to multisets in the natural way

• prePP ty = if y = o then tn else (pre t)n

• postPP ty = if y = i then tn else (post t)n

• PP N = (prePP, postPP: MS TPP→MS PPP)
Clearly PP N is a net. Furthermore,

• εN x
y = x: NPP→N

define a PTNET morphism εN: NPP→N. An f: N'→N factorises with a unique place-

preserving morphism g throug εN. g is defined on x'∈X' by

∃∃∃∃!!!! g

εεεεN

f

N

N'

NPP

Figure 67. The unique
factorisation g

.
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g (x') = if x'∈P' or f pre' x' = f x' = f post' x' then (f x')n

else if f pre' x' = f x' and f post' x' = post f x' then (f x')o

else if f pre' x' = pre f x' and f post' x' = f x' then (f x')i

else if f pre' x' = pre f x' and f post' x' = post f x' then (f x')d

Clearly g is place-preserving. The proof that it is a morphism, needs to check each case of the
definition. For an input transition t':

g t' = (f t')i

g pre t' = (f pre' t')n = (pre f t')n = pre g t'
g post t' = (f post t')n

 = (f t')n = post g t
and similarly in the three other cases.

To prove the unicity of g notice that the commutativity
of the triangle requires g x' = (f x')y. If x' is a place y =
n because g is place-preserving. If x' is a transition
there is only one possibility to select y such that g
fulfils the place-preserving-morphism-property on

{x'}∪•x'∪x'•, namely the one given above in the
definition of g.

If one redraws Figure 67 as Figure 68 one sees that εΝ is a universal arrow from U to N which
by a result from category theory ([Lan71], theorem 2, page 81) yields that PP is a functor and

that it is right adjoint to U with the counit ε  ♦ �32�

Proposition 24. Let PL: PPNET→PPNET be the functor dropping all transitions and keeping

the places of a net. U PL: PPNET→1S forms a coreflection with the left adjoint PP PTNET

and forms a reflection with the right adjoint MM2: 1S→PPNET.

Proof. Let M be an object of 1S and N of PPNET. PTNET M has only places, so PP has no
transitions to expand and produces an isomorphic object. Furthermore,

PPNET[PP PTNET M, N] ≅ 1S[M, U PL N]
is just a reinterpretation of the same function once as a place-preserving morphism and once
as 1S morphism between M and the multiset over the places of N. Clearly the units of this
adjunction are isomorphisms in 1S.

The construction of the claimed functor MM2 uses the same categorical technique as
Proposition 23 (see Figure 68). To a given one-set M = 1S S a net N = MM2 M contains a
node for each minimal combination of pre and post

X = {(m', m")∈M x M | ∀l', l"∈M, λ∈����++++:

if (m', m") = (λl', λl") then λ = 1 or m' = m" = 0}

The set of places is an embedding of S in X

P = {(1s, 1s)∈X | s∈S}

and pp is defined on a transition (m', m")∈T = X\P by

pp (m', m") = ( 1s) (1s, (s)m'
Ss

�
∈

, 1s) (1s, (s)m"
Ss

�
∈

).

The counit εM: U PL MM2 M→M is simply the projection with

εM (1s, 1s) = s for (1s, 1s)∈P

U g

εεεεN

f

N

U N'

U PP N

g

N'

PP N

PPNET PTNET

Figure 68 The unique factorisation g
 

as

universal arrow from U to N.
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Now, let f: U PL N' → M be a 1S morphism. If there exists a factorisation f = εM U PL g with
a place-preserving morphism g it fulfils

g p' = (fγ p') (1 fβp', 1 fβp') for p'∈P'

g t' = λt' ((1/λt') g pp' t') for t'∈T' and an appropriate λt'∈����
+

By the definition of X such a λt' is uniquely determined unless f pp' t' = 0. These equations
completely determine g, hence, g is unique. Conversely, these equations define a linear
function g which maps places to places and yields the wanted factorisation. That g is indeed a
PPNET morphism is derived by:

g pp' t' = ( �
∈Ss

1s) 1s, ( (s) ) t'pre' (f , �
∈Ss

1s) 1s, ( (s) ) t'post' (f )=
�
�
�

= ) t'(g pp  ) t'pp' (f pp
 t'g ∆

Thus εM: U PL MM2 M → M is an universal arrow from U PL to M which yields the claimed

adjunction ♦ �33�

Proposition 25. PPNET is cocomplete and complete.

Proof: Figure 70 shows how to construct a pushout in
PPNET from a pushout u', u", U in 1S.

PU = uβ' P'∪uβ" P" and
TU = B U\PU

defines a bipartite structure on U such that u' and u" are
place-preserving. Define projections

 π' x' = if x'∈T' and u'β x'∈TU then x' else 0

 π" x" = if x"∈T" and u"β x"∈TU then x" else 0

For a t∈T with fβ' t∈T' and fβ" t∈T" we get

u' pp' π' f' t = u' pp' f' t = u' f' pp t = u" f" pp t = u"

pp" f" t = u" pp" π" f" t
Because all other nodes of N are mapped to zero it
follows

u' pp' π' f' = u" pp" π" f" t
Hence there is a universal connection ppU from U to
MS PU.

To be precise u' pp' π' is not a 1S morphism but a
pair of multiset morphism. To fix this one uses the

projections (p*) from MS2 PU to ���� which evaluate
either the pre or the post multiset at a fixed place p.
The composition with the (p*) are 1S morphisms
and there is a unique ppp* and ppU is the formal sum
of all ppp*. ppU is unique because the composition
with all p* is unique.

The restriction of ppU to TU gives a net NU = ppU : TU→MS2 PU and clearly u' and u" are
connecting place-preserving morphisms.

q‘

∃∃∃∃!!!!q

u‘

u“

f“

f‘

Q
q“

N

N“

N‘

U

Figure 69. Definition of a pushout.

∃∃∃∃!!!!ppU

u‘pp‘ππππ‘

∃∃∃∃!!!!ppp*

u‘

u“

U f“

U f‘

MS
2
 PU

u“pp“ππππ “

U N

U N“

U N‘

U

N

(p*)

Figure 70. A pushout in 1S and PPNET.
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For commutative q' and q" there is a unique q∈1S[U, Q] by the universal property of U. It

suffices to verify that q is a place-preserving morphism. For a p∈PU there is a p'∈P' with

u'β p' = p or a similar p". As q' is place-preserving it maps p' to a place (or 0) and by
commutativity q maps p to the same place. Hence q is place-preserving.

If q is defined on t∈TU there is a t'∈TN' with q' defined on t' and qβ' = qβ uβ' or the analogous
for a t". Thus

q pp t = (1/uγ't') q u' pp t = (1/uγ't') q' pp t = (1/uγ't') 
�
�
�

�
�
�

 tq'

 tq' pp

= (1/uγ't') 
�
�
�

�
�
�

 tu' q

 tu' q pp
= 

�
�
�

�
�
�

u t q

 tq pp

This finishes the proof that (ppU) is the pushout in
PPNET. Again the coproducts are simply the
disjoint unions and exist for every diagram without
morphisms. Cocompleteness follows by the well-
known fact from category theory that every colimit
reduces to a coequaliser (which is a special pushout)
of coproducts.

Figure 71 shows the proof of completeness. Let v',
v", V the pullback in 1S and

PU = {p∈B V | vβ'p∈P' and vβ"p∈P"}
TV = B V\PU

TU = {(tv, y) | tv∈TV, y∈ (1S PU, 1S PU) with

v' y = if v'β tv∈P' then ∆ v' tv else pp' v' tv and

v" y = if v"β tv∈P" then ∆ v" tv else pp" v" tv }
ppU (tv, x) = x

Clearly NU = ppU is a net and

u' x = if x∈PU then v' x else if x = (tv, y)∈TU then v' tv

u" x = if x∈PU then v" x else if x = (tv, y)∈TU then v" tv

defines place-preserving morphisms NU→N' respectively NU→N" making the square
commutative. To proof the universal property let q', q", Q a connecting diagram and qv the
universal connection to V in 1S. If a connecting q exists it must fulfil

q x = if qv β x ∈PU then qv x else (qv x, qv pp x)
by commutativity and the definition of a morphism. If a connecting q exists it is uniquely

determined by the above equation. But does q exist? If qv β x ∉PU then either q'βx or q"βx is a
transition and hence also x. Because qV is natural

v' (qv pp x) = q' pp x = if q'β x∈P' then ∆ q' x else pp' q' x

= if v'β (qv x)∈P' then ∆ v' (qv x) else pp' v' (qv x)

v" (qv pp x) = q" pp x = if q"β x∈P" then ∆ q" x else pp" q" x

= if v"β (qv x)∈P" then ∆ v" (qv x) else pp" v" (qv x)

Thus (qv x) and (qv pp x) are multiples of a transition from TU, q is well defined and the
uniqueness argument from above shows that it is a place-preserving morphism. Hence NU is
the pullback.

qv

V

v"

v‘

q‘

∃∃∃∃ !!!! q

f‘

f"

u"

u‘

Q

q“
NU

N"

N‘

N

∃∃∃∃ !!!! q

Figure 71. A pullback in PPNET.
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A product of two objects equals the pullback with zero morphisms and clearly the above
construction generalises to products of arbitrary sets of nets. Hence PPNET is complete

♦ �33�

7.3.5 Folding Nets

Proposition 27. The underlying functor U has a right adjoint F: PPNET→FNET.

Proof. F N is constructed according to Figure 9:

• two new symbols q and r

• PF = {pq | p∈PN}

• TF = {xr | x∈XN}

• ppF xr = if x∈TN then (ppN x)r else (xr, xr)

• εN xy = x for y∈{r, q}

Again F N = NF is a net, εΝ a place-preserving morphism and there is a unique factorisation

g (x) = if fβ x = undef then undef else if fβ x∈ P' xq else xr

This is the unique way to define a commutative folding and the rest of the proof exactly

works as for PP (Proposition 23) ♦ �34�

Proposition 28. FNET is cocomplete and complete.

Proof: The pushout is the same as in PPNET the universal connection q automatically
becomes a folding if q' and q" are foldings. The pullback is different: transitions have to get
paired only with transitions. With this change the same construction and proof works

♦ �34�

7.4 High-Level Nets

7.4.1 Coloured Nets

Proposition 31. src and dst extend to functors SRC and DST: C*NET→*NET. DST is left
adjoint to ID (with ID N = IdN), forming a reflection, and SRC is right adjoint to ID, forming
a coreflection. The functors PP and F and their adjunctions with U lift to the categories
C*NET and commute with the former adjunctions.

Proof: Clearly, SRC f = f s and DST f = f d both define functors. η N,C : [ID N, C] ≅
[N, SRC C] defined by η k = ks is bijective. Naturality and adjointness are derived by direct

application of the definitions and may be read from Figure 72. Τhe unit εN : N→SRC ID N is
clearly an isomorphism, so that the adjunction is a coreflection. The proof for DEST is
analogous.

Purely categorical arguments show that SRC Q' = Q and DST Q' = Q lifts a functor Q to a
functor Q' in the comma category. This construction also lifts adjunctions. Because PP and F
map foldings to foldings, these functors are lifted to the coloured categories and this

construction clearly commutes with SRC, DST and ID ♦ �36�
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Proposition 32. CPPNET and CFNET both are cocomplete and complete.

Proof: Let D be a diagram in CPPNET or CFNET, us: SRC D→Us and ud: DST D→Ud be the
colimits in *NET which exist because these two categories are cocomplete as shown in Figure

73. Because the uC
d C: DST C→Ud for the coloured nets C of D form a natural transformation

SRC D→Ud there is a unique commutative U: Us→Ud. As DST has a right adjoint, it
preserves colimits so we had better not spoil anything there. Instead, we construct a morphism

uf: Us→Uf such that U factorises into a unitary folding d: Uf→Ud. Let

∼ be the minimal equivalence relation generated by {(t, p) ∈TsxPs | Uβ p = Uβ t ≠ 0 for

p∈•t•}.

Tf be the equivalence classes of ∼ whose elements are mapped by Uβ to a transition.

Pf be the equivalence classes of ∼ whose elements are mapped by Uβ to a place.

uf = (uf
β, Uγ): U

s→Uf with

uf
β (x) = if U x = 0 then undefined else ∼ equivalence class of x

ppf = pps (uf)-1

d: Uf→Ud with d uf x = U x

Because U is a place-preserving morphism, uf
β is injective on (uf

β)-1 Tf which implies that ppf

is well defined and d is a unitary folding. uf uC
s and uC

d form a natural transformation D→d in
CPPNET and CFNET respectively.

The claim is that d is already the wanted colimit. Given a natural transformation q: D→Q by
the universality of Us and Ud, there exist

commutative connections qU
s: Us→Qs and

qU
d: Ud→Qd. Commutativity and the

universality of Us yield Q qU
s = qU

d U and
hence qU. Because of this and because Q is a
unitary folding, qU

s factorises through qf uf for
an appropriate qf. Hence these qf and qd form

a connecting colour morphism d→Q. Also,
this connecting morphism is unique because
Us and Uf are universal and uf is epimorphic.
Hence d is the claimed colimit.

C
ηηηη N ,X

[Id  N , C ]

[Id  N ‘, C ‘]

[N , S R C  C ]

[N ‘, S R C  C ‘]

ηηηη N ‘,X ‘

C
s

C
d

C ‘
C ‘

s
C ‘

d

g
d

g
s

N

N ‘

f

k= (h, C  h Id )

(g
s
 h  f, g

d
 C  h f) g

s
 h f

h

Figure 72. Adjointness proof in C*NET.
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Figure 73. The construction of a colimit
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The situation for limits is different. N → (0: 0→N) which maps a net to the zero morphism to
this net is a functor yielding an adjunction. Thus if the limit of a diagram D exists it must
equal the commutative connection U from the limit of SRC D to the limit of DST D. It
remains to be shown that U is a unitary folding.

If U were to map a transition t∈Ts to a place, all the uC
s would also do so. However, this

would contradict the universal property of Us: a single place net mapping its unique place to
uC

s t would not factorise through Us. Hence U is a folding. Similarly, a contradiction is

derived first for a place p with Uγ p ≠ 1 and finally for a transition t with Uγ t ≠ 1 ♦ �36�

7.4.2 Hierarchical Nets

7.4.3 Iterated Couniversal Constructions

Proposition 35. A cocomplete category possesses all maximal ι reductions.

Proof: Let D be the diagram consisting of all epimorphisms c: N→C such that c factorises

every ι reduction of N. The colimit R of D exists and has the required couniversal property. It

remains to be shown that r: N→R is a ι reduction.

Assuming the contrary, there are f, f'∈I with rf

≠ rf' and (r f, r f')∈ι (refer to Figure 74). Let v:

R→V the colimit (called coequaliser) of the
diagram consisting of rf and rf'. A reduction q:

N→Q factorises to q = q' r and hence (q f, q f')

= (q' r f, q' r f')∈ι, and because Q is an ι
reduction, q' r f equals q' r f'. By the universal
property of the coequaliser V, there exists a

commutative connection V→Q. Thus vr: N→V

factorises every ι reduction, it is contained in

the diagram D and there exists a v': V→R with
r = v' v r. But vrf = vrf' implies v'vrf = v'vr f' and r f = r f', which contradicts the assumption rf

≠ rf' ♦ �39�

Proposition 36. If ι is a relation on morphisms as in Definition 34 and κ is the least relation

fulfilling points (i) to (iii) from below then an r is an ι reduction of N iff it is a κ reduction.

(iv) ι⊆κ
(v) if (f, f')∈κ then (f g, f' g)∈κ for each compositional morphism g

(vi) if ∀ (f, f')∈κ,  (e g, e g')∈κ and h, h', fh and gh are morphisms fulfilling the points

(a) to (d) from below then (h, h')∈κ (refer to Figure 15):
(e) f = h fh and f' = h' fh,
(f) g = h gh and g' = h' gh,
(g) e is the coequaliser of f and f'

 ∀ x, x': Nh →Nx holds x = y iff (x fh = y fh and x gh = y fh)

Proof: If r is a κ reduction, it is clearly a reduction of the sub-relation ι. It remains to be

shown that an ι reduction r equalises all morphisms related by κ. This is clear for (i). For (ii),
if r equalises f and f' it also equalises fg and f'g. Because r equalises f and f' in case (iii), it

f‘f

ιιιι
∀∀∀∀

v'

v
q'

∀∀∀∀ Q

∃∃∃∃!

C

V

q

r

N

R

N'

Diagram D

Figure 74. The existence proof.
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factorises through e and hence ι also relates rg and rg', then g and g' are equalised by r and

this implies that r also equalises h and h'. Hence r equalises all morphisms related by κ and,

because all steps commute with left multiplication, r is a κ reduction♦ �39�

7.5 From Structure to Behaviour and Semantics

7.5.1 Net Systems

Proposition 41. SYS0: *NET→*SYS forms a coreflection with NET. PP and F lift to
systems yielding the commutative adjunction diagram of Figure 21.

Proof: Clearly [SYS0 N, S] ≅ [N, NET S] by interpreting the same morphism once in a

system and once in a net is natural and injective. Because f 0 = 0 ≤ IS it is also surjective and

hence bijection as required by the claimed adjunction. The unit ID→NET SYS0 adds and
removes an initial marking from the same net which is an isomorphism and turns the
adjunction into a coreflection.

Let S' = (N', I') a place-preserving system. Interpret for a moment N' as an object of PPNET.

The unit εN': N'→NET PP N' gives a place-preserving morphism ε': N'→PP N'. Hence ε' I' is a

marking in PP N' and PP S' = (PP N', ε' I') is well defined. Although ε' is not natural for

ID→PP it is ‘natural on places’ which is sufficient for

 (PP f) IPP S = (PP f) ε IS = ε' f IS ≤ ε' IS'

hence PP is well-defined on morphisms.

Let η N,N': PTNET[NET N, N'] → PPNET[N, PP N'] the natural equivalence given by the

adjunction from U and PP. η lifts to systems as ηN,N' : PTSYS[NET (N, I), (N',I')] →
PPSYS[(N, I), (PP N', ε' I')] because of the same reason that ε' is natural on the initial marking
I'.

F is lifted in the same way. Commutative adjunctions means that left adjoints are composed
with left adjoints and right adjoints with right adjoints. That these compositions are

commutative follows directly from the construction ♦ �44�

Proposition 42. IM: *SYS→*SYS has a right adjoint, namely MM2I for PTSYS and PPSYS
and FMM2I for FSYS.

Proof. We have to lift the functor MM2 and the appropriate part of Proposition 24 o systems.

For that define the object function and counit εS by
MM2I S = (MM2 IP S, I)

εS = ιS εIP S: IM MM2I S → S with

εIP S: U PL MM2 IP S → IP S is the counit of the adjunction of U PL and MM2 and

ιS: IP S→NET S the natural embedding.
This works fine on the initial marking and the universal property follows from that in PPNET.
This proves the claim for PPSYS. It implies the claim for PTSYS because IM f is place-

preserving for any place-transition morphism f: S→S' by

fβ supp I ⊆ supp I' ⊆ P' .

Finally, for FSYS we must define
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FMM2I S = (F MM2 IP S, εMM2 IP S I)

IM FMM2I S equals IM MM2I S thus the counit εS may be defined as above and F lifts the

universality of MM2I to FSYS by Proposition 27. ♦ �45�

Proposition 44. A diagram D in *SYS

• has a colimit iff IM D has a colimit j: IP

D→J and the combined diagram

NET (j: IM D→J, ι: IM D→D) has a
colimit in *NET

• has a limit iff IM D and NET D have a
limit

As prerequisite the universal construction for
IM D only needs naturality, uniqueness may
be dropped.

Proof: Let u: D→U the colimit of a diagram D
in *SYS. By Proposition 42 IM has a right
adjoint, preserves colimits and IM U is the
colimit of IM D.

To show that NET U is the colimit in *NET
let q = {qC} a natural transformation from
NET Dc to a net NQ in *NET with Dc the

combined diagram (IM u: IM D→IM U, ι: IM
D→D) as shown in Figure 75. Then
 Q = (NQ , MAX {qC IC | C an object of D}
(with max the multiset maximum e.g. the
maxima of each component) lifts NQ to a
system Q and q to a natural transformation (u:

IM D→IM U, ι: IM D→D)→Q in *SYS.
Thus by the universal property of U there is a
unique connecting qU in *SYS. NET qU is - up
to natural isomorphism - a natural connection
from NET U to NQ. Another such connection
q' would lift back to the diagram in *SYS
because commutativity implies the
preservation of the initial marking. Thus, the
universal property of U in *SYS implies q =
q'. Hence NET U is the colimit of the diagram
in *NET.

For the if direction let j: IM D→J the colimit
and NU the colimit of the diagram NET Dc in
*NET. As shown in Figure 76 Dc is this time

the combined diagram (j: IM D→J,

ι: IM D→D). The diagram is simplified over
the previous one by using Diagram D instead

diagramm D
c

qU

ui

ιιιιU

IM ui

ιιιιi
IM Si

IM U

Si

U

qi

∃∃∃∃!!!!q

Q

NET IM ui

NET ιιιιi
NET IM Si

NET IM U

NET Si

qi

NQ

NET ui

ΝΕΤ ιΝΕΤ ιΝΕΤ ιΝΕΤ ιU
NET U

Figure 75. How IM and NET transfer the colimi U.

qU

qNET J

u

ιιιιJ

j

ιιιι
IM D

J

D

U

q

Q

NET j

NET ιιιι
NET IM D

NET J

NET D

q

NQ

NET u

ΝΕΤ ιΝΕΤ ιΝΕΤ ιΝΕΤ ιJ
NET U

qJ

∃∃∃∃?

diagramm D
c

Figure 76. Construction of the colimit U.
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of example object Si. Now NU is lifted to *SYS by

U = (NU, ιJ IJ)
again u preserves the initial marking by

uC IC = uC ιC IIM C = ιJ jC IIM C ≤ ιJ IJ = IU

To show that U has the claimed universal property let q a natural transformation D→Q in

*SYS. Sending the whole diagram to NET yields a unique q: NU→NET Q. It preserves the
initial marking

qU IU = qU ιJ IJ = qJ IJ ≤ IQ

because qJ does. If q' is a connection from U to Q NET q' is a connection from NU to NET Q.
Hence by the universality of NU and J follows q = q' and the universal property of U.

Given a J' that allows a natural connection that needs not to be unique
define a subsystem J of J' as depicted by Figure 77:
 IJ = MAX {jC' IC | C an object of D}

 XJ = {p∈PJ' | IJ(p) ≠ 0}

 j': J→J' the obvious embedding.
J has still the property to factorise every natural transformation

IM D→R. But additionally the connecting r is unique because every
node of J is in the image of some jC. Hence J is the colimit. The
situation is shown in Figure 77. The bottom square is a simple push
out square because NET j' is mono. u' is an embedding of NU in NU'
with

XU' \ u' XU = uJ' (XJ' \ (NET j') XJ)
NU' is just NU glued together with the extraneous nodes of J'. Hence
the colimit NU' exists exactly if the colimit NU exists which implies by the above the colimit
of the original diagram in *SYS. This proves the colimit case for the weakened prerequisite.

For the claim for limits let U the limit of D in *SYS as shown in Figure 78. A natural

transformation r: R→IM D gives a natural transformation ι r : R→D and hence a unique

rU: R→U by the universality of U. But this rU maps R to the initial marking of U hence it

uniquely retracts to an rIM U: R→IM U with ιU r = r' and r is a unique factorisation of ρ
through IM U. Thus IM U is the limit of IM D. Further NET U is the limit of NET D because
NET has a left adjoint. Hence we got the only if direction for limits.

Reverse use Figure 79 with NU the limit of NET D and J the limit of IM D. The diagram NET

j: NET J→NET D is a natural transformation in *NET and

yields by the universality of NU a jU: J→NU. NU may be
lifted to *SYS by
 U = (NU, jU IJ)
and

 uC IC = uC jU IJ = ι j IJ ≤ IC for an object C of D
shows that u is a natural transformation in *SYS.

Given a natural transformation q: Q→D in *SYS the
universality of NU yields a unique connecting qU in *NET.

IM q is a natural transformation IM Q→IM D yielding a

u‘

j

ιιιι
IM D

J

D

u

ιιιι J U

j‘

J‘ U‘
ιιιι J‘

Figure 77. The weakened

precondition.

u

ιιιι

IM u

ιιιι U

IM U

IM D

U

D

q

∃∃∃∃ !!!! qU

Q

r

∃∃∃∃ !!!! rU
R

Figure 78. How IM and NET transfer a

limit U.
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connection qJ making the left triangle in *SYS in Figure 79 commutative. Sending qJ to *NET

gives two connections NET (jU qJ) and NET (qU ιQ) from NET Q to NET U ≅ NU. By the
universal property of NU these two connections equal and hence the upper trapezoid in the
diagram in *SYS also gets commutative. Finally

 qU IQ = qU ιq IIM Q = ju qJ' IIM Q ≤ jU IJ = IU

shows that qU is a *SYS morphism and hence the
claimed natural connection.

The uniqueness of qU in *SYS follows from the
uniqueness in *NET. Hence U is the claimed limit.
Because no uniqueness property of J has been used the

amendment is proved too ♦ �45�

7.5.2 Reachability and Liveness

Proposition 46. Unfolding the steps of a system to a

state machine extends to a functor SM: PPSYS→SM.

Proof. Given a system S=(N, I) define SM S = (N', I')

• P' = all markings of S reachable from I including I itself

• T' = {(m, σ) | m∈P' σ∈1S T such that the step σ is enabled at m'}

• pp(m, σ) = (m, m') with m' the follower marking from m under occurrence of σ, i.e.

m[σ>m'.

• I' = I
Clearly this defines a state machine and it corresponds to the step unfolding of S. To define

SM on morphisms let f: S→S', m[σ>m' a step occurrence in S and σ = �

∈
∈

T' t f

and Tt

B

  tσ(t)  then

 SM f m = f m

 SM f (m, σ) = if σ = 0 then f m else (fm, f σ)

The first line is well defined because f is place-preserving. For the second line

 m [σ>

 � m ≥ pre σ ≥ pre σ
 � f m ≥ f pre σ = pre f σ

� fm [σ>

shows that f σ is enabled at fm and from m [σ> m' we derive

 f m' = f (m + (post - pre) σ)
 = f (m + (post - pre) (σ + (σ - σ)))
 = f m + f (post - pre) σ + f (post – pre) (σ - σ)

 = f m + f (post - pre) σ
= f m + (post' - pre') f σ
= (SM f) m + (post' - pre') (SM f) σ

shows that SM f is a place-preserving morphism. f I = I' implies that SM maps the initial
marking of S to that of S' and by induction over the length of step sequences in S that it maps
reachable markings to reachable markings.

qJ

u

ιιιι

j

jU
J

IM D

U

D

q

∃∃∃∃?qU

Q

IM q

IM Q

ιιιιQ

Figure 79. The construction of a limit.
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Hence SM f is a morphism from SM S→SM S'. Compositionality on markings follows
directly from the definition and on transitions from the place-preserving property. This

finishes the proof that SM is a functor ♦ �46�

Proposition 48. SM: PPSYS→SM has neither a left nor a right adjoint.

Proof: Let Nm-k the net consisting of a single transition with m input places, k output places,
all arc weights one and all m+k places disjoint. SM sends any Nm-k to N1-1. Let ? a left adjoint

to SM. What is ?N1-1? Consider [?N1-1, N3-1] ≅ [N1-1, N1-1 = SM N3-1]. If the initial marking of
?N1-1 is zero there are either 1 or infinitely many morphisms in the left morphism set. Hence
there must be at least one place with a single token. But the permutations of the three legs are
automorphisms of N3-1. Hence if there is not only the 0 morphism in the considered set there
are at least 4 morphisms. Contradiction to a bijection between the two morphism sets.

For a right adjoint consider [N1-1 = SM N3-1, N1-1] ≅ [N3-1, ?N1-1]. Again the initial marking
cannot be zero and with the permutations of the input legs of N3-1 there are more morphisms

in the right morphism set ♦ �46�

Proposition 49. Let *ND the full subcategory of *SYS with neither dead transitions nor never

marked places. The functor ND: *SYS→*ND removing dead transitions and never marked
places forms a coreflection with the underlying functor.

Proof: Clearly ND is a functor. η: [U L, S] → [L, ND S] is just the interpretation of the same
morphism once in *ND and once in *SYS. This is well defined because no transition in UL is

dead and hence its image under a morphism is neither. Hence η is the required natural

bijection and each unit εL: L→ND U L is obviously isomorphic yielding the claimed

coreflection ♦ �46�

7.5.3 Processes

Lemma 53. The image of a finite maximal place cut of a process is a reachable marking of
the system. Any step sequence of a system is the image of a step sequence in an appropriate
process.

Proof: Let r: R→S a process, C a maximal place cut of R and ρi = transitions of F* C with
depth i. Then

 I = C0 [ρ1> C1 [ρ2> C2 ... [ρi> Ci ...
is a step sequence of R with the Ci maximal place cuts. This is proved by induction over i.

Induction start i=0. I is a maximal place cut by the definition of a process.

Induction step from i-1 to i. σi is enabled because the input places of each transition in σi have
a depth less than i and all these transitions occurred already and produced the tokens and
because no place has more than one output transition the token is still there.

The occurrence of σi produces a marking Ci which is a place set by the properties of a

process. We will show by contradiction that it is even a cut. If there were x,y∈Ci with x F* y
then x and y can not be both in Ci-1 because this was a cut by induction hypotheses. They can
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not both be disjoint from Ci-1 neither because then both had the same depth i which is

incompatible with comparable. The last case x∈Ci and y∉Ci. Then x F* •y and there is at least

one place p∈••y with x F* p or x = p. The equality is not possible because •y consumed the
token in p. Neither is the first case because Ci-1 was already a cut. Hence by contradiction Ci

is a cut.

The same argumentation shows that Ci is maximal. Furthermore, because C is finite the

maximal depth of elements of C is finite say k. p∈Ck implies the transition •p in some Ci but

no transition in p• in any Cj. This implies

 p∈F* C and F* C∩p• = {}

and p∈C. Hence Ck⊆C and by maximality Ck = C.

That r is folding and r IR ≤ IS implies that rρi is a step sequence in S. Together this is the first
claim.

For the second claim build R and ρi by induction for a step sequence σi of S.

Induction start. R0 has | IS | places with one initial token and no transitions. Choose a unitary
r0 such that r0 P0 = IS.

Step for i-1 to i. Add new transitions

τi = {(t, i, k) | k∈[1, σi(t)]}

Ti = Ti-1∪τi

ri an extension of ri-1 with ri (t, i, k) = t

prei an extension of prei commutating with ri and •v are disjoint for all v∈τi

posti an extension of posti that is commutating with ri and v• are disjoint from each other
and Pi-1

Because σi is enabled it is possible in each step to find the necessary pre places of each new

transition which makes the whole construction well defined and ri τi = σi maps the step

sequences ♦ �48�

7.5.4 Weighted Occurrence Systems

Lemma 55. The image of the transitions of a process of a weighted occurrence system is a cut
step and each cut step is such an image. Hence a marking is reachable iff it equals (I –

 pre γ + post γ) for a cut step γ. A process of a weighted occurrence system of a system S
yields a process of S.

Proof: Let r: R→O a process of weighted occurrence system and σ ï the transition of TR of
depth i. Because R is a process

 pre ρi ≤ IR + (post- pre) �
−1i

1

kσ

and because r is a folding

pre r ρi ≤ IO + (post- pre) �
−1i

1

kσr 

hence r ρi is an enabled step sequence. If σ is
a cut step

Ug
∃∃∃∃  ! g

f

εεεεS

U WOCC S S

U O'

WOCC S

O'

WOCC FSYS

Figure 80. WOCC by an universal arrow from U to S.
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 σi = �
∈ idepth  with T t

 tσ(t)

is an enabled step sequence because pre σi consists of places of depth less i that got marked in

a previous step and because σ is a cut step got at least as many tokens as all follower

transition in σ consume together. Hence the sequence σi is the image of a process of O.

Finally let o: O→S a weighted occurrence system of S and r: R→O a process of O. (o r):

R→S is a process of S because o and r are unitary ♦ �49�

Proposition 56. There is a functor WOCC: FSYS→WOCC which is right adjoint to the
underlying functor U forming a coreflection..

Proof. As in the proof of Proposition 23, it is sufficient to unfold a system S into a weighted

occurrence system WOCC S, to construct an universal arrow εS from U to S and to verify that
the units are isomorphisms. The proof translates constructions from [MMS92] in our
framework.

WOCC S is constructed as

the colimit Oω of the
infinite diagram in Figure

81. There, Oω is
approximated by a
sequence of weighted
occurrence systems Oi of

maximal depth i. The diagram is constructed by induction. Induction start: ε0 is the natural
embedding from O0 = IM S into S.

Induction step from Oi to Oi+1. Oi is expanded as follows:

Ti+1 = Ti∪{(m, t) | t∈TS is a transition of depth i+1 and

m is a reachable marking of Oi with εi m = pre t}

Pi+1 = Pi∪{(m, t, p) | (m, t) ∈Ti+1\Ti and p∈t• }

pp i+1 (t') = if t'∈Ti then ppi t' else if t' = (m, t) then (m, �
•∈tp

p)t,(m, (p)) ((post t) )

This defines an occurrence system Oi+1 = (ppi+1, Ii) and the morphism ei: Oi→Oi+1 is the

embedding used in the construction. εi+1 is the unique extension of εi with

εi+1(m, t) = t for (m, t)∈Ti+1\Ti

εi+1(m, t, p) = p for (m, t, p)∈Pi+1\Pi

It is straight forward to see that with εi also εi+1: Oi+1→S is a weighted occurrence system of S

and ei is a monomorphism with εi = εi+1 ei.
This defines an infinite diagram D = (e0, e1, e2, ...) and IM S is isomorphic to all initial

markings hence by Proposition 44 the colimit o: D→Oω exists. By the universal property of

Oω there is a unique εω : Oω→S making the combined diagram commutative.

We claim that εω : Oω→ S is a weighted occurrence system of S. εω and oi are unitary because

εω oi = εi which is unitary by construction. The oi are monomorphic because Xω is simply the

union of the Xi. This implies that the preset of each place of Pω consists of a single transition,

that Fω is acyclic, Fω
∗ x is finite for any node x of Xω and, thus, Oω is an occurrence system.

e0
IS=O0

e1
O1

e2
O2

e3
O3.........

S

εεεε  1 εεεε  0

εεεε  2εεεε3

Oωωωω

εεεε ωωωω

o0o1o2o3

Figure 81. The infinite diagram and its colimit Oω..
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Next we prove that εω : Oω→S is a universal arrow from U to S as depicted in Figure 80. Such

an f: U O'→S may be expanded to the diagram in Figure 82. Its upper part redraws the

construction of Oω = WOCC S. In the lower part each Oi' is the subnet of U O' which consists

of the nodes of depth at most i. The ei' and εi' are the natural embeddings. O' equals the

colimit Oω' of the diagram (e0', e1', e2', ...) and the monomorphisms oi' = εi': Oi'→Oω' make the

diagram (e0', ε0', o0', e1', ε1', o1', e2', ...) commutative.

By induction over i we show that there exist unique gi which make the combined diagram

(without gω) commutative. Induction start: g0 must equal IM f. Step from i to i+1. If such a
gi+1 exists it is defined on all nodes of depth less or equal i by gi+1 ei' = ei gi because ei' is

monomorphic. For any transition t'∈Ti+1' of depth i+1 it must fulfil
pre gi+1 t' = gi+1 pre t' = ei gi ei'

-1 pre t' and

εi+1 gi+1 t' = f εi+1' t'.
This implies by the construction of Oi+1

gi+1 t' = (fλ εi+1' t') (m, t) with

t = fβ εi+1' t' and

m = (1 / (fγ εi+1' t')) gi ei'
-1

pre t'
which uniquely determines the
image of t'. For the postplaces of
t' follows similarly:

gi+1 p' = (fλ εi' p') (m, t, fβ εi'

p') for p'∈t'•

Together, this uniquely
determines the morphism gi+1 :

Oi+1'→Oi+1.

To verify the existence of gi+1

notice that there is a step

sequence σ' of U O' enabling t' by the definition of an occurrence system. εi gi σ' is a step

sequence of S which enables f εi+1' t' and thus t as defined above. Hence, (m, t) is indeed a
transition of Oi+1 and gi+1 is well defined by the above equations.

The oigi form a natural transformation from the diagram (e0', e1', e2', ...) to Oω. The universal

property of Oω' yields a unique connecting morphism gω: Oω'→Oω making the combined

diagram commutative and g = εω'-1 gω is the required connecting morphism.

Thus, the existence of a connecting g is proved. For another g" which factorises εω, the image

of oi' g" consists of nodes of depth less or equal i and oi' g" retracts to a gi": Oi'→Oi. This
yields again the diagram of Figure 82 for which we proved that the gi are unique. Hence, gi"

equals gi and the universal property of Oω' implies that g" equals g.

Finally, a unit εO: WOCC U O→O of a weighted occurrence system is obtained in Figure 81
by setting S = U O. But as already mentioned, in this situation the Oi are simply the subnets of

U O of nodes of depth less or equal i, and both U O and Oω are the colimit of the diagram.

g2

e0
IS=O0

e1
O1

e2
O2Oωωωω ......

g1 g0

U O'

f

Sεεεε ωωωω

εεεε0

gωωωω

e0'

IO'=O0'

e1'

O1'

e2'

O2'O'ωωωω=O'......

ιιιι '0
εεεε 'ωωωω=Id

Figure 82. Universality of oω: Dω→Oω.
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Hence, they are isomorphic and the unit εω = εS is isomorphic. This finishes the proof that U

and WOCC form a coreflection ♦ �49�

7.5.5 Safe Occurrence Systems

Proposition 61. The underlying functor U: DEC→WOCC1 has a right adjoint

DEC: WOCC1→DEC.

Proof. Proof: The proof is similar to that of Proposition 56. Let S be a weighted occurrence
system of WOCC1. Again, DEC S is constructed as the colimit of the infinite diagram from
Figure 81. O0 is simply IM S. Induction step from Oi to Oi+1. To the transitions of Oi we add
all combinations of presets of multiples of transitions of depth i+1 and decorations of output-
places:

Ti+1 = Ti ∪ {(m, λt, φ) | m∈1S Pi, λ, φm ∈ ����
+, t∈TS, σ: [1, φm] → ����

+ t• with

t has depth i+1, λt is not dead in S, εi m = pre λt and �φ
φ

=

m

1k

(k)  = post(λt)}

Pi+1 = Pi ∪ {((m, λt, φ), k) ∈Ti+1 x ����
+ | k ≤ φm}.

ppi and εi are extended by

ppi (m, λt, φ) = �
�
�

�
�
�
�

�
� φλ

+∈φλ 1iP)k),,t,m((

)k),,t,m((,m

εi+1 (m, λt, φ) = λt

εi+1 ((m, λt, φ), k) = φ(k)

and ei is the obvious embedding of Oi in Oi+1. Then the colimit o: D→Oω exists. A decoration

Φ on Oω is defined by

Φ o0 (p) = 1 and

Φ oi ((m, λt, φ), k) = k for i > 0

which turns DEC S = (Oω, Φ) into a decorated occurrence system.

To show the universality of εω: Oω = U DEC S→S Figure 82 is reused. Induction start: IM g
yields g0 because IS is a set. Induction step from gi to gi+1. If such a gi+1 exists it must fulfil for

any transition t' of Oi+1' of depth i+1 and for all (b', k'), (b", k")∈t'•∩def fβ
pre gi+1 t' = gi+1 pre t' = ei gi ei'

-1 pre t',

εi+1 gi+1 t' = f εi+1' t'
Furthermore, gi+1 must correspond to a decorated morphism, especially it must be binary. This
yields by the construction of Oi+1

gi+1 t' = (gi ei'
-1 pre t', f εi+1' t', σ) with

σ : [1, |t≠ |] → ����
+ T' with t≠ = {p'∈t'• | f εi+1 p' ≠ 0},

σ (k) = f εi+1 p' for the p'∈t≠ with k = | {p"∈t≠ | Φ' p" ≤ Φ' p'} |
which uniquely determines the image of t' and its post-places. Thus, gi+1 is unique.

The existence of gi+1 follows from the facts that gi ei'
-1 pre t' is reachable in S because pre t' is

reachable in Oi' and σ ([1, |t≠ |]) = post f εi+1' t'. It is easy to see, that the colimit of the εi yields
the claimed morphism g. On the other hand, such a g' yields a similar diagram with gi'. But,

we have shown that gi equals gi' which implies the equality of g and g' ♦ �51�



Walter Keller. Petri Nets for Reverse Engineering. 130

8 Appendix: Proofs and Details for Reverse Engineering

8.1 Introduction

8.2 Petri Nets as a Modelling Tool

8.2.1 Forward Engineering by Folding

Remark 64. Colouring of orders, shipments and boxes.

Define the colour morphism C: NPOSB → Nu by

Cβ
-1(allocating) ≅ Cβ

-1 (startA) ≅ ORDER

Cβ
-1 (shipping) ≅ Cβ

-1 (startS) ≅ {(ord, shi) ∈ ORDER x SHIP
| shi is a shipment of ord}

Cβ
-1 (packing) ≅ Cβ

-1 (startP) ≅ {(os, bo) ∈ Cβ
-1 (shipping) x BOX

| bo is a box of os}

Cβ
-1 (oPos) ≅ {(old,ord) ∈ PART x ORDER | ord orders old}

Cβ
-1 (allocate) ≅ {(old, new, ord) ∈ PART x PART x ORDER

| (old, ord) ∈C(oPos) and new is a valid replacement of old}

Cβ
-1 (aPos) ≅ {(new, ord) ∈ PART x ORDER | ∃ old with (old, new, ord) ∈ C(allocate)}

Cβ
-1 (ship) ≅ Cβ

-1 (sPos) ≅ {(pos, shi) ∈ Cβ
-1 (aPos) x SHIP | shi is a shipment of pos}

Cβ
-1 (pack) ≅ Cβ

-1 (bPos) ≅ {(pos, b) ∈ Cβ
-1 (sPos) x BOX | b is a box of pos}

The pre and post functions of the startS and ship transitions are as follows

pre(startS, ord, shi) = (allocating, ord)

post(startS, ord, shi) = (shipping, ord, shi)

pre(ship, par, ord, shi) = (shipping, ord, shi) + (aPart, par) + (aPos, par, ord)

post(ship, par, ord, shi) = (shipping, ord, shi) + (sPart, par) + (sPos, par, ord, shi)

Analogously the other transitions are modified. These modifications are straightforward, but,
we ignore certain application logic such as:

• (startS, order, ship) must produce a unique combination of (order, ship)

• if all shipped positions (of an order) are packed, either next fires (iff the order has

additional positions to allocate or ship) or finish.
Such application logic may be modelled by the non-deterministic firing of concurrently

enabled transitions, by a marking dependent guard or by additional nodes ♦ �58�.

Algorithm 65. The procedures next and allocate.

next checks whether all shipped parts are packed. If this is not the case then the FAIL
statement rollbacks the database transaction:

PROCEDURE next (anOrder; aShip; aBox);
BEGINTRANSACTION;
IF EXISTS ( SELECT * FROM SPos WHERE order = anOrder) THEN FAIL ENDIF;
DELETE packing WHERE order = anOrder AND ship = aShip AND box = aBox;
INSERT INTO allocating (order) VALUES (anOrder);
COMMIT;

END next
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PROCEDURE allocate(oldPart; newPart; anOrder);
BEGINTRANSACTION;
IF NOT isReplacedByAvailablePart(oldPart, newPart) THEN FAIL ENDIF;
LOCK allocating WHERE order = anOrder;
UPDATE OPart SET (tokens := tokens - 1)
WHERE part = oldPart AND tokens >= 1;

UPDATE APart SET (tokens := tokens + 1) WHERE part = newPart;
UPDATE OPos SET (tokens := tokens -1)
WHERE order = anOrder AND part = oldPart AND tokens >= 1;

IF EXISTS (SELECT * FROM APos
WHERE order = anOrder AND part = newPart) THEN

UPDATE APos SET (tokens := tokens + 1)
WHERE order = anOrder AND part = newPart

ELSE
INSERT INTO APos (order, part, tokens) VALUES (anOrder, newPart, 1)

ENDIF;
COMMIT

END allocate;

isReplacedByAvailablePart is a boolean function that checks whether newPart is an

available and legal replacement of oldPart, otherwise the FAIL statement will ROLLBACK the
database transaction. The former function implements the check of the colouring set of

allocate which contains major application logic i.e. the replacement rules.

The LOCK statement is an extension to SQL, to lock the allocating tuple for other transitions,
as update statements implicitly do. The last IF statement implements an update insert switch.

If an appropriate tuple of aPos already exists in the database the tokens attribute is increased
otherwise a tuple is created.

Again the procedure corresponds to the input and output functions of the transition. The

LOCK and the UPDATE/INSERT switch may either be considered as bridge between the two

paradigms or as an optimisation. ♦ �59�

Remark 66. Main Driver.

There are different options how to deal with the missing driver which decides when to fire
which transition:

• Keep it missing: the Petri net model is abstracting from the driver.

• Write the driver as a Petri net simulator. I.e., the driver arbitrarily selects a procedure and
executes it with arbitrarily selected parameters. If it fails then the corresponding coloured
transition hasn’t been enabled and the database rollback will cancel all effects of the failed
procedure.

• Rewrite the procedures in order to win efficiency. For example
isReplacedByAvailablePart would not test whether the input parameter

newPart is a replacement but compute the appropriate value of newPart.
• Write the driver as a specialised Petri net interpreter using the concrete topology of the net.

E.g., after firing of ship, startP could be fired for the same order and then pack for
the part shipped before. Such an implementation could include additional business logic,
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e.g. the rules to reduce the number of shipments and boxes without delaying emergency
parts.

• As a variant, we could localise the specialised simulator and give every procedure the
knowledge, which procedure/parameter combinations should be checked for transition
enabledness.

♦ �59�

8.3 Simple Reductions

Remark 67. Used Smalltalk constructs.

All coding fragments are formulated in Smalltalk. But, they are normally not a copy of the
implementation in Smalltalk. They should illustrate the basic ideas. So often

• implementation details are skipped

• different methods are combined into one

• declarations or call arguments are not complete

• pseudo code or mathematical notation is used
The following is a cursory introduction to the pertinent Smalltalk constructs.

Comments are embedded in pairs of double quotes:
"this is a comment "

whereas strings are delimited by single apostrophes. In Smalltalk variables are references to
objects. An assignment

var := 'abcd'.
assigns a reference to a string object to the variable var. Dots are used to separate statements.

Method headers for methods without arguments take the form
ClassName>>unaryMessage
ClassName class>>unaryMessage

The first is an instance method the second a class method. By convention Class names and
global variables start with an uppercase character other variable and method names with a
lowercase character. Embedded uppercase characters are used to enhance readability for
names consisting of multiple words. Keyword messages use a varying number of keywords
terminated by colons, the names of the formal arguments are declared after the colons:
ClassName>>messageNameWith: argumentOne andAnother: argumentTwo

The method name above is messageNameWith:andAnother: the first formal argument

is called argumentOne, the second argumentTwo. After the header follows the
declaration of local variables enclosed between vertical bars:
| localVariable anotherLocalVariable |

The basic Smalltalk construct is sending a message to a receiver with arguments. The format
depends on the message type. For unary messages it looks like:
Array new.

 self size
On the first line the message new is sent to the class Array. On the second line the message
size is sent to the pseudo variable self which designates the current receiver. Binary messages
consist of one or two special characters:
 3 + 4
 x == y
The first example sends the message + to the object 3 with an argument of 4. The second
sends the message == to the object x with argument y. The priority of message sending is
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• expressions within parentheses

• primary messages

• binary messages

• keyword messages

• within the same message class strictly from left to right (contrary to usual mathematical
notation!)

example:
 newEmbs add: (self
 embeddingAtNodes: emb image ∪ nd withNeighbours

ifAbsent: [self combine: emb newType:
(self embeddingAtTrans: nd)]).

The evaluation of this expression is depicted in Figure 83. Message names are shown on a
grey background. From top to bottom the message are in the temporal order of message
sending. There is one exeception, namely the expression in square brackets which is a block.

It is passed as a code fragment to the method embeddingAtNodes:ifAbsent: which
may evaluate it an arbitrary number of times.

Messages can be cascaded by semicolons:
x root add: 1; add: (1+1); add: 3

A message after a semicolon is sent to the same receiver as the previous message. The
message sequence of the example is depicted in Figure 84.

Each invocation of a method returns a result. This is coded as
^ x + y

to return the result of x + y. If a method execution reaches the end of a method it returns

self. The ^ jumps out of method that contains the ^ . Execution of a ^ in a block which is
passed as an argument to a method may terminate a whole cascade of method invocations.

newEmbs add:

self embeddingAtNodes:ifAbsent:

∪∪∪∪

emb

emb image

nd withNeighbours

self combine:newType:

self embeddingAtTrans: nd

Figure 83. The evaluation of a nested Smalltalk expression.
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A code fragment called a block is coded
in square brackets possibly with
arguments and local variables:
[x]
[:argument | argument doit]
[:argument | | var1 | ....]

A block can refer to variables of the
declaring procedure which supports the
powerful feature of lexical closure. To
evaluate a block send it the message
value or value: or value:value: etc.
depending of the number of arguments. It
returns the value of the last expression

and an empty block returns nil.

The pseudo variable self holding the receiver has already been mentioned. Also super
designates the receiver but method search starts only from the superclass of the method
containing super. There are three further pseudo variables designating unique objects
(singletons):

• nil: the uninitialised object

• false: the boolean value false

• true: the boolean value true

The message yourself simply returns the receiver. This is useful at the end of a cascade of
messages: it returns the receiver instead of the result of the last message.

Flow control is implemented by messages and blocks:
x < y ifTrue: ['less'] ifFalse: ['otherwise']

sends the keyword message ifTrue:ifFalse: to the boolean result of the comparison.
Sent to true the first block is evaluated, sent to false the second. As the example shows this
flow control construct may also be used for conditional expressions. A loop is coded as
[ix * ix < 100] whileTrue: [ix := ix + 1]

The message whileTrue: is sent to a block. If it evaluates to true the second block is
evaluated and loop cycles back by evaluating again the first block. There are some variants of
these messages – the names are self-explaining.

Smalltalk offers a rich variety of collection classes. The basic iteration message is do:
(5 to: 10) do: [:number | sum := sum + number]

5 to:10 creates a collection of the integers from 5 to 10. The do: method evaluates the
passed blocked for each element of the collection, passing the element into the block by the

argument. Arrays and Dictionaries use the at: message to retrieve an element by a key. E.g.
dict at: 'eins'

returns the object stored under the key 'eins'. If the collection does not contain the key the
message fails badly. To avoid a failure code
dict at: 'eins' ifAbsent: [do something]

If the key is found the corresponding object is returned otherwise the result of evaluating the
block. There are useful variants like
dict at: 'eins' ifPresent: [:object |
object doSomethingObjectIsPresent].

add:

x root

1

1 + 1

add:

add: 1

Figure 84. The evaluation of a cascaded Smalltalk

expression.
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dict at: 'eins' ifAbsentPut: [newObjectThatWillBeAddedForKey].
The first example evaluates the block if the key is present with the object passed as an

argument otherwise returns nil. The second adds an object if the key is missing. The add:
message is used to add an object to collections without keys for example
(OrderedCollection new add: 2; add: 3: add: 5; yourself)

This creates a new instance of OrderedCollection, adds 3 prime numbers and returns
the newly created collection. The yourself is really necessary because probably for historic

reasons add: returns the added argument not the receiving collection.

It is Smalltalk tradition to use very long names – if necessary half sentences – to make
programs as readable as possible. So we stop the description of methods here and hope that
the reader is able to guess the function of the methods not covered in this short introduction

♦ �66�

8.3.1 Seed Types

Lemma 70. The seed types may be computed with cost O(e) with e the number of arcs of the
net N.

Proof: The critical points for this bound are

• an efficient hash table, that limits the cost of an access with a key of length k to O(k).

• the representation of the automorphisms of a type. In our implementation we represent
every automorphism as table of origin nodes to destination nodes. This has a worst case
complexity of O(k k!) for a transition with k arcs. We use the small transition precondition
of Definition 69, that k is a globally limited small number. If this condition would not
hold, one could use the trace classes to give a more compact representation of the
automorphism group. This is easy here, but will become less harmless for iterations over

automorphisms ♦ �68�

8.3.2 Combining Types

Algorithm 73. The combination of two types.

If we combine a subnet we get the situation

shown in Figure 85. connA and connB are
partial maps making the two triangles
commutative.

The computation of the automorphisms and
embeddings of typeNew checks every pair of

embeddings from typeA and typeB. For
every such pair with every pair of

automorphisms from typeA and typeB respectively it adds the merger of

newA°autoA°connA and newB°autoB°connB to the collection embs, if they are not
conflicting. The test for conflicts uses a little optimisation: it tests only on the common origins

of connA and connB: This is sufficient, because all involved maps are injective and the
union of the images has the correct size. But obviously the following code fragment is written
to clarify the basic ideas, not for efficiency:

typeA typeB

typeNew

net

embA embB

embN

connA connB

Figure 85. The combination of two types.
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NetStructure>>createAutomorphismsEmbeddings.......
.............

common := (connA origin ∩ connB origin) asArray.
typeA embeddings do: [:newA |
typeB embeddings do: [:newB |
(union := newA image ∪ newB image) size = embN size ifTrue: [
embs := OrderedCollection new.
typeA automorphisms do: [:autoA |
typeB automorphisms do: [:autoB |
(connA atAll: (autoA atAll: common))

= (connB atAll: (autoB atAll: common)) ifTrue: [
embs add: ((newA ° autoA ° connA)

∪ (newB °autoB ° connB))]]].
embs isEmpty ifFalse: [(union isSameSet: embN image)
ifTrue: [typeNew automorphisms addAll: embN-1 ° embs]
ifFalse: [self embeddingAtNodes: union ifAbsent: [
self embeddingAdd: embs first]]]]

Efficiency cannot be too good for this algorithm because it allows to compute all

automorphisms of typeNew and applied iteratively all automorphisms of the net, which is a
NP-hard (subgraph isomorphism in [Gar79]) problem. So we try to avoid creating big types

♦ �68�

Algorithm 74. Expanding problematic types.

The problematic types are identified by the argument that contains a collection of
embeddings. The source of each embedding is the type and the image the location in the net at
which the conflict occurred.

NetStructure>>newLiTypesExpandingAll: embeddingColl
"expand each type embedding in embeddingColl
until there are new types created"

| oldSize oldEmbs newEmbs |

newEmbs := embeddingColl.
oldSize := self types size.
[self types size = oldSize] whileTrue: [
oldEmbs := newEmbs.
newEmbs := OrderedCollection new.
oldEmbs do: [:emb |
emb image graphNeighbours do: [:nd |
nd isTransition ifTrue: [newEmbs add: (self
embeddingAtNodes: (emb image ∪ nd withNeighbours)
ifAbsent: [(self
combine: emb
newType: (self embeddingAtTrans: nd))])]]]].

This method expands the embeddings by one transition, until new types are created and added

to the net structure ♦ �69�



Walter Keller. Petri Nets for Reverse Engineering. 137

8.3.3 Classifying the Nodes

Algorithm 75. Classification by type membership.

The cost of this algorithm as coded at �69� increases with the number of automorphisms.
But this can be corrected by the use of trace classes of nodes (as discussed in 4.3.1 Seed
Types):

NetStructure>>membershipForTypes "optimised version"
...
self types do: [:type |
type embeddings do: [:emb |
type trace equivalenceClasses do: [:eqCla |
eqCla elements do: [:node | (byNode
at: (emb at: node)
ifAbsentPut: [self newSet]) add: eqClass]]]]

....

byNode now maps a node to an equivalence class of type nodes instead of collection of
nodes. The union of the elements of the equivalence classes equals the collection formerly
computed. The final effect is hence the same but automorphisms decrease complexity instead

of increasing it ♦ �69�

Algorithm 76. Convert membership classification to an equivalence relation.

NetStructure>>equivalenceForMembership: membership
| first relation |

relation := self newEquivalenceRelation.
first := Dictionary new.
membership keysAndValuesDo: [:nod :mbrId |
relation relate: nod to: (first at: mbrId ifAbsentPut: [nod])].

first := nil. "relate all nodes, not contained in membership"
self net nodes do: [:nd | relation
equivalenceClassAt: nd
ifAbsent: [first isNil
ifTrue: [first := nd]
ifFalse: [relation relate: first to: nd]]].

^ relation

This method translates the classification received as an argument called membership to an
equivalence relation. Additionally it relates all nodes of the net that are missing in

membership ♦ �70�

8.4 Neighbourhood Reductions

8.4.1 Algorithm

Algorithm 83. Merging Maps.
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The code looks more complicated than it really is. Figure 45 shows the situation including the
names used in the following Smalltalk code.

Transition>>mergeMapsTo: aTrans info: info
| res map myEmb othEmb fixPoints myNd othNd myRed othRed |

res := OrderedCollection new.
myEmb := info structure embeddingAtTrans: self.
othEmb := info structure embeddingAtTrans: aTrans.

myEmb source automorphisms
do: [:auto |
map := IdentityDictionary new.
fixPoints := self newSet.
((myEmb source places conform: [:tyNd |
map
at: (myNd := myEmb at: (auto at: tyNd))
put: (othNd := othEmb at: tyNd).

(myRed := info reduce at: myNd) = (info reduce at: othNd)
ifTrue: [fixPoints add: myRed].

info relation is: myNd equivalent: othNd])
and: [fixPoints notEmpty]) ifTrue: [
res add: map]].

^ res

The method computes the fixpoints for each automorphism of the receiver transition. If there

are fixpoints the map is added to the result ♦ �76�

Algorithm 84. Adapting to different adjacency criteria.

Transition>>mergeMapsTo:info: is the only method that needs to be modified to
implement the different adjacency definitions. This is already prepared there because the
whole fixpoint set is computed which is not necessary for the existence of fixpoints alone.
The following lines of Smalltalk must be added before the loop:

redInt := (search reduce atAll: (myEmb image)) ∩
(search reduce atAll: (othEmb image)).

redInt contains the intersection of the image of the receiver and argument transition in the
reduction. Then the variations of Definition 37 are implemented as follows:

• overlap: redInt notEmpty
• common fix point: fixpoints notEmpty (as coded)

• common intersection: redInt isSameSetAs: fixpoints
• clean intersection the last expression in the conform: block must be replaced by:
((redInt includes: myRed) or: [redInt includes: (info reduce at:

othNd)])
ifTrue: [myRed = (info reduce at: othNd)]
ifFalse: [info relation is: myNd equivalent: othNd]]) ♦ �76�
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8.4.2 Analysing the Spare-Part System

8.4.3 Complexity

Proposition 87. The reduction algorithm has in the worst-case cost of

O(e log (min (maxDeg(N'), | P |) γ)) with

• e the number of edges in the source net,

• maxDeg(N') the maximum number of arcs incident to a place of the reduced net,

• log the binary logarithm and

• γ a slowly increasing inverse of the Ackermann function, which does not surpass 3 in any
real case

Proof. Let’s first count how many times each message is sent. A place is added to the toDo
list, whenever two places are merged, thus, maximally |P| times. If it is used also for

initialisation the number doubles in the worst case. For each place in toDo
PlaceReduction>>mergeArcsInfo is called once.

PlaceReduction>>merge: is only called after two places are merged thus maximally |P|

times. Place>>merge:info: is called for every merged transition, for every neighbour,
for every automorphism. Let maxAuto the maximal number of automorphisms of a single
transition type. With this the limit gets maxAuto by the number of arcs e. Again we remark
that this is acceptable by the small transition property (Definition 69).

We designate the number of runs of PlaceReduction>>mergeArc:at:info: with α
and will calculate them in a moment. The remaining two methods run for each α for each arc

at the same key, which is limited by the small constant Γ from the small transition

property. So we get the following table:

method execution worst case count

toDo add: 2 |P|

Place>>merge:info: maxAuto e

PlaceReduction>>merge: |P|

PlaceReduction>> mergeArcsInfo: 2 |P|

PlaceReduction>>mergeArc:at:info: α ≤  e log(4 min(maxDeg(N'), |P|))

Transition>>mergeMapsTo:info: α Γ
Transition>>tryToMerge:info: α Γ

e is the number of edges of the source net and maxDeg(N') the maximum number of edges of
a place in the reduction. With this notation the following three lemmas will be proved:

Proposition 87 / Lemma (i). The invocation count α is limited by
e log(4 min(maxDeg(N'), |P|)). �140�

Proposition 87 / Lemma (ii). The total cost of the algorithm excluding the operations on
equivalence relations is limited by O(α). �141�

Proposition 87 / Lemma (iii). The operations on equivalence relations cost O(α γ).
�142�

Together this proves the proposition ♦ �78�
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Proposition 87 / Lemma (i). The invocation count α is limited by
e log(4 min(maxDeg(N'), |P|)).

Proof. The invocations of PlaceReduction>>mergeArc:at:info can be partitioned
in three groups:

• During initialisation we get e invocations, to copy each arc. This results in an initial set of

place reductions with a totally e1 ≤ e edges.

• The latter invocation either merge the new arc with an existing, which cannot happen
more than e1 times

• or add the remaining β times the new arc to the receiver.

Let

• r be an instance of PlaceReduction at a certain point in the algorithm

• e(r) be the number of edges already merged, i.e. arcsByKey size
• e1(r) be the sum of the number of edges from initial placeReductions that have been

merged until now into r

• origs(r) the places of the original net that have been merged until now into r

• o(r) be the cardinality of origs(r) which equals the number of initial placeReductions
that have been merged until now into r

• β(r) the accumulated number of β-runs, moving the e1(r) initial edges to the e(r) current
edges.

At the end of the algorithm we obviously get β as the sum of the β(r) over each r

corresponding to a place in the reduced net. Because α ≤ β + 2e and e1 ≤ e it suffices to prove

• β(r) ≤ e1(r) log(o(r))

• β(r) ≤ e1(r) log(e(r))

This proved by induction over β(r) starting with β(r) = 0. This corresponds to the moment in
the algorithm immediately after the initialisation, when the arcs of the source nets are copied
in the arc maps of the place reductions. There is still one place reduction for each place in the

original net. In this situation o(r) = 1, e(r) = e1(r), β(r) = 0 thus the start is ok.

Step: Let the last invocation of PlaceReduction>>keysAndArcsTreeDo: merge r'
and r" into r with

• e' = e(r')    ≥    e"= e(r")

• e'   ≤   e = e(r)    ≤     e' + e"

• e1' = e1(r'), e1" = e1(r"),

• e1 = e1(r)   =   e1' + e2'

• o(r) = o(r') + o(r")

• β(r) = e – e' + β(r') + β(r")

For the first limit we get:

β(r) = e – e' + β(r') + β(r")

≤ e" + e1' log(o(r')) + e1" log(o(r"))

≤ e1' (1 + log(o(r'))) + e1" log(o(r")) because e" ≤ e' ≤ e1'
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≤ e1' log(o(r)) + e1" log(o(r)) case (i) o(r') ≤ o(r")
= e1 log(o(r))

In the case (ii) o(r') is greater than o(r") and the 1+ in the middle line has to be moved to the
right side term. Similarly we proof the third limit:

β(r) = e – e' + β(r') + β(r")

≤ e" + e1' log(e') + e1" log(e")
= e-e' + e1' log(e) - e1' log(e/e') + e1" log(e")

≤ e1 log(e) + (e – e') – e' log(e / e') because e' ≤ e1'

≤ e1 log(e) + (e – e') – e' log(1 + (e – e') / e')

≤ e1 log(e) + (e – e') – e' ((e – e') / e')
= e1 log(e)

In the first step we used, that e and e1 coincide for
initial place reductions and in the second last step the
inequality for the binary logarithm shown in Figure
86.

The application of this lemma needs some care
because the edges counted by e(r) and e1(r) do not
exactly correspond to real edges in the source or
reduced net. The arcs in a place reduction correspond
really to trace classes of transition types. Thus edges
belonging to the same trace class are merged, but, if
edges belonging to different classes are merged then
the map still contains them in each class. According to the small transition assumption we can
ignore this for performance considerations.

The second limit may by improved by simply subtracting the value computed for o(r) = 1:

β(r) ≤ e1(r) log(e(r)) - �
∈origs(r)q

1 ))(q)log(e(qe

= � −
∈origs(r)q

log(e(q)))(log(e(p)) e(q)

= �
∈origs(r)q

)
e(q)

e(r)
e(q)log( ♦ �139�

Proposition 87 / Lemma (ii). The total cost of the algorithm excluding the operations on
equivalence relations is limited by O(α).

Proof. Obviously, we have to show that the net cost of each method invocation is limited by a
constant. However,. charging each statement to its method does not work because of the

loops. But, in most loops there are method calls that are counted in α. If all the statements in a
loop and the control logic of the loop are charged to a method invocation within this loop then

our goal is reached. This works fine except for Transition>>mergeMapsTo:info:.

But here, we can use the constant Γ from the small transition property.

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3

Figure 86. The inequality log(1+ x) ≥ x in the
interval [1,2].



Walter Keller. Petri Nets for Reverse Engineering. 142

But is the cost of all these statements limited by a constant? There is one area to check: sets
and maps. Both are implemented by hash tables. So, a single access or update at a key has
constant cost if the overhead of the re-hashing is distributed to the updates.

A prerequisite is that the hash function generates a well behaving distribution. This is
normally taken for granted, but, it might get tricky. The reason is that three different
requirements have to get balanced:

• equal objects must get the same hash

• uniform distribution

• fast computation
For example it is not obvious how to implement that for a set with equality. One
implementation used bit buckets and mapped thousands of different sets to hash 0 which

forced a total redesign. ♦ �139�

Proposition 87 / Lemma (iii). The operations on equivalence relations cost O(α γ).

Proof: The algorithm uses equivalence relations dynamically. I.e., the merging of equivalence
classes and the access to the equivalence classes are done interleaving. The requirement to
fulfil is that a single access and a single merge are done in constant time. The problem is that
the merger of two classes needs to redirect all elements of one class to the other. The
alternative is linking the classes. With this approach the access paths get longer and longer.
Even with accountancy tricks to redistribute the costs they don’t fall below O(log(n)).

The solution we present
here combines all three
techniques:

• linking

• redirecting

• accountancy.

EquivalenceRelation
contains the map from element to class, and delegates linking and redirecting to the
equivalence classes:

EquivalenceRelation>>equivalenceClassAt: anElement
^ (self classByElement at: anElement) finalReference

finalReference follows the links and on the way redirects all links:

EquivalenceClass>>finalReference
^ self reference isNil
ifTrue: [self]
ifFalse: [self
reference: self reference finalReference;
reference]

To relate two elements should neither create cyclic references nor overwrite existing
references:

EquivalenceClassEquivalencRelation

reference

classByElement

0..*

0..1

Figure 87. The class diagram for an equivalence relation.
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EquivalenceRelation>>relate: firstElement to: secondElement
(self classByElement at: firstElement)
swallow: (self classByElement at: secondElement)

EquivalenceClass>>swallow: secondClass
self finalReference swallowFinal: secondClass finalReference

EquivalenceClass>>swallowFinal: secondClass
self == secondClass ifTrue: [self].
secondClass reference: self

This implements the basic functionality of equivalence relations. The code shows some add-
ons such as lazy creation of absent equivalence classes. If the elements of the equivalence

class are also needed a tree structure like the one shown for PlaceReduction>>
mergeArcsInfo in Algorithm 79 may be used.

The computation of the cost of this algorithm is not easy. The problem is known from the
literature as Union-Find and the algorithm as quick merge with path compression. Under the

precondition that the secondClass has less elements than the receiver [Tar75] (cited in
[Lee90] or [Meh86]) proved an upper limit for the cost of

O(s + f α(f, s+1)) for s invocations of swallow: and f > s invocations of

finalReference.

Here, α is a slowly growing inverse of a variant of the Ackermann function:

α, A : ���� x ����→����
+

α(f, s) = min{z∈����
+ | A(z, 4 �f/s�) > log s}

A(0, x) = 2 x ∀x ≥ 0
A(i, 0) = 1 ∀i ≥ 1
A(i+1, x+1) = A(i , A(i+1, x)) ∀x ≥ 0

α(m, n) is less or equal to 3 for log(n) < A(3, 4) which is already a really astronomical figure
(216 nested powers of 2).

There are other approaches in the literature to deal with the cost of this algorithm. [Knu78]
considers the sequence of finds and unions as a random process and computes the average
cost. Even for the slower algorithm which for each union merges the sets, the cost is linear in
the number of finds and unions. However, this depends on the definition of the random
process. Our algorithm produces a random process somewhere between the faster and slower
variant discussed in [Knu78].

[Gut98] gives an algorithm with cost linear in the number of finds if the unions are done
compatible to certain classes of graphs. Again these limits do not directly apply to our

algorithm. The paper mentions a lower bound of O(m α(f, s+1)) for pointer machines. But for
a RAM machine the paper gives linear cost for restricted classes of graphs and conjectures
linearity for the general case.

The first result settles linearity for all practical cases and the further results show the

possibility for linearity in general, hence, we do not investigate this any further ♦ �139�
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8.5 Integrating Domain Heuristics

8.5.1 Reduction Refinement

Algorithm 88. Relationships from Types.

NetStructure>>relationshipsFromTypes
self relationships: Dictionary new.
self types do: [:typ |
typ embeddings do: [:emb |
typ places do: [:from |
typ places do: [:to | from = to
ifFalse: [self
relationshipOrigin: (emb at: from)
image: (emb at: to)
path: (Array
with: (typ traceEquivalence equivalenceClassAt: from)
with: (typ traceEquivalence equivalenceClassAt: to)
)]]]]].

The used method relationshipOrigin:image:path: adds a tuple to the relation in
the table corresponding to the path with the usual lazy initialisation trick:

NetStructure>>relationshipOrigin: from image: to path: path
(self relationshipAt: path ifAbsentPut: [

(self newRelationship source: path first;
dest: path last; yourself)])

origin: from image: to

The last technicality is to bother about the direction of paths. As we deal with undirected
paths a path and its reverse have to match:

NetStructure>>relationshipAt: path ifAbsentPut: aBlock
^ self relationships

at: path
ifAbsentPut: [
self relationships
at: path reverse
ifPresent: [: rel | ^ rel inverse ].

aBlock value]

In fact, this contains another technicality...: The inverse of a relationship is not a copy, but a
dynamic extension of the original relation such that an update of the original or the inverse is

automatically propagated to the other relation. ♦ �80�
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Algorithm 91. Memberships compatible with sidedness.

NetStructure>>membershipAddRelationshipsCompatibleOneSide: mShip
self relationships do: [:rel  |
rel oneSide isNil ifFalse: [
self membershipAddRelationship:rel compatibleOneSide: mShip]]

NetStructure>> membershipAddRelationship: rel compatibleOneSide: mShip
| mark mbrVal|

rel oneSide do: [:one |
mbrVal := mShip ocAt: one.
(rel allAt: one) do: [:at1 |
((mShip at: at1) isSameSet: mbrVal) ifFalse: [  ̂self]]].

rel pairs keysAndValuesDo: [:from :to |
((mShip at: from) isSameSet: (mShip at: to)) ifFalse: [^ self]].

mark := Array with: rel with: #oneSide.
rel oneSide do: [:one | (mShip ocAt: one) add: mark].
rel pairs keysDo: [:one | (mShip ocAt: one) add: mark]. ♦ �82�

8.5.2 Colouring

Algorithm 93. Composing paths.

The Loop to compose paths is straightforward:

1 to: relLength - 1do: [:len | self relationshipsComposePlusOne: len].

The method used expands the paths of relationships with maximal path length by 1:

NetStructure>>relationshipsComposePlusOne: length
| myPaths |

myPaths := OrderedCollection new.
self relationships keysAndValuesDo: [:path :rel |
(path first ~= path last and: [path size = (length + 1)]) ifTrue: [
myPaths add: path]].

myPaths do: [:path |
path first prePostNodes do: [:nd |
self relationshipCompose:
(Array with: nd with: path first) with: path].

path last prePostNodes do: [:nd |
self relationshipCompose:
path with: (Array with: path last with: nd)]].

This method checks whether the two paths concatenate to a simple path and whether the

resulting path has not been added yet. If so it composes the relationships. ♦ �83�

Algorithm 94. Colour equivalence.
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NetReduction>>selectBijectiveRelationshipsRelating: imageRel
| connections |
connections := OrderedCollection new.
self structure relationships keysAndValuesDo: [:path :rel |
((imageRel is: path first equivalent: path last) not

and: [rel isTo1
and: [rel isFrom1
and: [rel forward size = (self originsAllOf: path first) size
and: [rel reverse size = (self originsAllOf: path last) size]
]]]) ifTrue: [

imageRel relate: path first to: path last.
connections add: rel]]].

^connections

This methods runs through all relationships. If the start and the end nodes of the path are not
related yet and the relationship is a bijection between the sets of origins the two nodes then
get related and the relationship is added to the collection of connecting relationships.

♦ �83�

Algorithm 95. Colouring the nodes.

NetReduction>> colourNodesForEquivalence: imageRel
| colSet origs root ima |

imageRel  do: [:imaCla |
origs := self originsAllOf: (ima := imaCla elements any).
colSet := ColourSet new: origs size.
root := self newRelationship source: colSet; dest: ima.
colSet colours with: origs do: [:col :or |
root origin: col image: or].

self colourByImage at: ima put: root analyse].

This method only colours one node for each colour-set the remaining nodes get coloured
along the connecting bijective relationships:

NetReduction>>colourNodesForConnectionCompositions: connections
| atSource atDest |
self colourByImage keys do: [:rootIma |
<starting from rootIma traverse the graph of connections> do: [:conn |
atSource := self colourByImage at: conn source ifAbsent: [nil].
atDest := self colourByImage at: conn dest ifAbsent: [nil].
atSource isNil
ifTrue: [self colourByImage
at: conn source
put: (conn inverse ° atDest)]

ifFalse: [self colourByImage
at: conn dest
put: (conn ° atSource)]]]. ♦ �84�
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8.6 Extensions, Variations and Applications

8.6.1 Choice

Algorithm 97. Computes all reductions using relational algebra.

The algorithm starts with a tree consisting only of the root and mutates it step by step into a

tree representation of Φ :

(i) It arrives at a leaf n of the tree being built.

(ii) check all transitions around places that are related in ρ(n), and try to merge them

(analogous to PlaceReduction>>mergeArcsInfo: from Algorithm 79)
(iii) If a merger of two transitions is possible then each possible merger is represented

as a relation and the union of these relations as {ψ} ∪* Ψ with a relation ψ and a set of

relations Ψ. ψ and Ψ are normalised such that

(iv) {ψ} ∪* Ψ is minimal, i.e. as coarse as possible. This means that there are no

redundancies with ω(n) ∪* ρ(n)

(v) ψ is as coarse as possible

(vi) Ψ is a set of disjoint relations

(vii) ψ is merged with ω(n) and Ψ is added to the set ∆.
(viii) The algorithm loops back to (ii). to search further transitions to merge around

places related in (the modified) ω(n) until there no more mergers are possible.

(ix) Now, the set ∆ contains the multiple choice parts of all mergers for this node. A
representation

{ψ} ∪* Ψ = � x* )(∆

with a maximal relation ψ and a minimal disjoint set of relation Ψ normalised as above

is computed. If ψ is non-trivial (that is not the identity) once more ψ is merged with

ρ(n), ∆ is set to {Ψ} and the algorithm loops back to (ii). to search for additional merges.

(x) If ψ is trivial ∆ is transformed into the children of n (n was a leaf before).
(xi) the newly added children of n are processed recursively starting at (i).

The algorithm to be careful about the different relations. It has to search place reductions to

merge in ρ(n) and not in ω(n) because the reductions in ω(n) belong to the level above n
which has fewer variations. But the check whether two transitions may be merged has to be

done in ω(n) ∪* ρ(n). Only here conflicts in the final reduction may be avoided. Further, one
has to decide what to do with common consequences of different alternatives. Should they be
identified in every step of the algorithm and transferred to parent nodes. Or alternatively,

should they be rationalised only after the computation of the whole tree? ♦ �88�

8.6.2 Component Detection

8.6.3 Using a Cliché Library

8.6.4 Flat Search

8.6.5 Reducing the Reduction

Algorithm 98. Merging colours and nodes.
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In Algorithm 84 Transition>>mergeMapsTo:info: produces a collection of maps

that Transition>>tryToMerge:info: applies to the current reduction. Now a filter is
switched in between:

NetReduction>>maps: mapCollection filter: equivalence inColourWood: wood
| conf lastEqui currEqui fallback res |
lastEqui := equivalence.
res := mapCollection select: [:map |
currEqui := lastEqui copyCollection.
conf := map keysAndValuesConform: [:from :to |
fallback := wood currentChanges.
currEqui relate: from to: to.
(wood join: (self colourByImage at: from) source
with: (self colourByImage at: to) source
detect: [self isEquivalence: currEqui

disjointInColourWood: wood]
) ~= false].

conf
ifTrue: [lastEqui := currEqui]
ifFalse: [wood undoChangesTo: fallback].

conf].
^ res

For every map in the collection this method tries to find a consistent colouring. If none the
changes already done for this map are undone before proceeding to the next map. There are
two methods for undoing changes:

• For the equivalence a copy is used to keep the old state. In case of a fallback this copy is
activated.

• In the colour wood changes are undone by removing arcs in the reverse add order.

ColourWood>>join: colour with: other detect: aBlock
| emb othEmb fallback |
(emb := self finalEmbeddingCompositionOfColour: colour) dest

== (othEmb := self finalEmbeddingCompositionOfColour: other) dest
ifTrue: [aBlock value ifTrue: [̂  true]]
ifFalse: [
self
colour1to1ConnectionsFromLeavesOf:

(self trees nodeAt: emb dest)
to: (self trees nodeAt: othEmb dest)
do: [:conn |
fallback := self currentChanges.

self combineColours: conn.
aBlock value ifTrue: [^ true].
self undoChangesTo: fallback]].

^ false

This method tries the different paths between the leaves of the colours to be merged, until the

caller is satisfied with a connection. ♦ �92�
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9 Index

The following table contains all symbols and terms used in this work except if they are
elementary or used only locally.

symbol explanation ����

R

L

C D

An adjunction between category C and D. The triangle between
the functor arrows points from the left adjoint L to the right
adjoint R,

24

R

L

C D

A coreflection, the units Id→R L being isomorphic

24

R

L

C D

A reflection, the counits L R→Id being isomorphic

24

≤ Π' ≤ Π" for sets of relations means that for each relation in Π'

there is a coarser relation in Π"

86

• •x is the preset and x• the postset of a node x

∪ set union. S∪{e} is abbreviated to S∪e if clear from the context

→ f: X→Y designates a function, morphism, functor or natural
transformation from X to Y

∃! unique existence quantifier: there exists one and only one. 102

∪* π' ∪* π" is the minimal equivalence relation containing the

tuples of both relations π' and π".

86

* R* is the reflexive and transitive (finite) closure of a relation R

*MM2I the functor *MM2 crumples a net saving only the initial marking
and inventing transitions to allow morphisms.

45

*ND the full subcategory of *SYS with neither dead transitions nor
never marked places

46

*NET any of the categories PTNET, PPNET or FNET usually used
paired with the corresponding *SYS category.

44

*SYS any of the categories PTSYS, PPSYS or FSYS usually used
paired with the corresponding *NET category.

44

[> m[σ>m' the occurrence of a step σ leading from marking m to

m'. m[σ> means σ is enabled at m.

[X, Y] the set of morphisms C[X, Y] from object X to object Y in
category C. If C is clear from the context it may be dropped.

[x,y] the interval of integers from x to y

[x]R the equivalence class of x for the equivalence relation R

| restriction of a function or a relation 86
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symbol explanation ����

| s | the cardinality of a set or a multiset for example |x + 2y | = 3

0 the zero element of a multiset or a vector space

1S 1S: SETP→1S is the functor embedding sets into one-sets 25

1S the category of one-sets having multisets as objects but only a
subset of the linear functions as objects.

25

adjacency criterion the reduction algorithm determines by an adjacency criterion
which similar subnets to merge.

40

adjoint, adjunction a relationship between two categories formed by two functors.
One functor is called left adjoint and the other (in the reverse
direction) the right adjoint.

allocate the transition in the spare-part ordering system representing that
a part is allocated

56

allocating the place in the spare-part ordering system representing the state
of an order in which parts get allocated

56

aPart the place in the spare-part ordering system representing
allocated parts

56

aPos the place in the spare-part ordering system representing
allocated positions

56

B B: 1S→SETP is the functor mapping a one-set to its base being
the support

25

basic types the basic subnets used in the reduction algorithm. 67

binary a PTNET morphism fulfilling fγ X⊆{0, 1}. Hence it corresponds
to a partial function of the base sets.

27

BN BN: 1S→SETP is the functor mapping a one-set to its base
skeleton being the non zero multiples of the support

25

C*NET one of the categories CPTNET, CPPNET, CFNET of coloured
Petri nets.

36

CFNET the category of coloured nets with foldings 36

clustering a morphism or structuring principle that may collapse
neighbourhoods in a single object

10

cocomplete a category is cocomplete if the colimit of each diagram exists. 102

colimit the limit of a diagram D is an object U and a transformation

u: D→U which is natural and (co)universal

102

coloured net a Petri net with nodes and arcs that are coloured by colour-sets.
This allows a compact formulation of a large net.

36

commutative
diagram

in category theory a diagram consisting of objects (nodes) and
morphisms (arrows) with the composition of arrows
corresponding the composition of morphisms.

102

commutative net
diagram

a net diagram showing certain properties of relationships. 94

complete a category is complete if the limit of each diagram exists. 102

coreflection an adjunction with the units being all isomorphisms 24

counit the natural transformation LR→ID with L a functor left adjoint
to R

24

CPN A special class of coloured nets from [Je92]. 36
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symbol explanation ����

CPPNET the category of coloured nets with place-preserving morphisms 36

CPTNET the category of coloured place-transitions nets 36
d superscript for the destination of a coloured net C: Ns→Nd 36

def the elements of X of a function f: X→Y on which the partial
function f is defined

defining the place in the spare-part ordering system representing the
initial state of the life-cycle of an orders

56

Dictionary A class from the Smalltalk class library implementing a function
(from key to value) by a hash table.

done the place in the spare-part ordering system representing the final
state of the life-cycle of an orders

56

DST the functor mapping a coloured net to the destination 36

dst the destination Y of a function f: X→Y

e e(r) is the number of edges currently in the arc map of the place
reduction r

140

e the number of edges of a graph or a net

e1 e1(r) is the number of original edges merged until now into a
place reduction r

140

env the environment of a node that is the node itself plus its direct

neighbours: env x = •x∪x∪x•

F the functor F: PPNET→PNET adds to each a place a transition 32

F the flow relation of a net F ⊆ PxT ∪ TxP

finish the transition in the spare-part ordering system changing the
state of an order from packing to done.

56

FNET the category of nets with foldings as morphisms 33

folding a PTNET morphism fulfilling fβ P⊆P' and fβ T⊆T'. This means
mapping places to places and transitions to transitions.

10

FSYS the category of systems with foldings as morphisms 44

full subcategory A is a full subcategory of B if A is a subcategory of B and all
objects X, Y of A have the same morphisms in both categories.

fβ is B f the retraction of a 1S morphism to a partial map between
the base sets

25

fγ the coefficients of an f∈1S [X, Y] that is a function X→����. 25

H*NET the categories of hierarchical nets, HPTNET, HPPNET or
HFNET

37

hierarchical net A Petri net class which may express hierarchical structuring

ic instruction counter 63

Id identity morphism or relation. If necessary the object or relation
is indicated by a subscript.

ID Identity functor or functor ID: *NET→C*NET mapping an
object X to IdX.

36

IM the functor IM: *SYS→*SYS maps restricts a system to the
places o f the support of the initial marking.

44

im the image of a function f: X→Y being the subset f X⊆Y
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symbol explanation ����

invariant a net invariant is either a place invariant or a transition invariant. 31

IP the functor IP: *SYS→*NET maps a system to the net
consisting of the places of the support of the initial marking.

44

IS the initial marking of a system S. The subscript S may be
dropped.

li-component a net or subnet which cannot be reduced by local injections. 68

limit the limit of a diagram D is an object U and a transformation

u: U→D which is natural and universal

102

local injective a morphism which is injective on the environment of each
(single) transition.

34

log the binary logarithm

maxAuto the maximal number of automorphisms of a connected single
transition subnet

maxDeg maximal degree. The maximal number of (incoming plus
outgoing) arcs of a node in a graph or a net

78

maximal ι
reduction

a morphism from a net to a smaller net with certain universal
properties

38

MM2 the functor MM2 keeps the places of net and adds transitions for
each combination of pre and post.

33

MS MS: SETP→MS the functor embedding sets in multisets 24

MS the category of multisets and linear functions. 24

����
the natural numbers including zero

����
+ the naturals numbers excluding zero

natural a synonym for commutative 102

natural
equivalence

a natural transformation with all ηX isomorphic.

natural
transformation

η: F→G is a natural transformation for two parallel functors F

and G iff ηX: FX→GX is a morphism such that for each

morphisms f holds ηdst f F f = G f ηsrc f

ND the functor ND: *SYS→*ND removes dead transitions and
never marked places.

46

neighbourhood
criterion

the reduction algorithm determines by an adjacency criterion
which similar subnets to merge.

40

NET the functor NET: *SYS→*NET maps a system to the
underlying net.

44

NP the spare part system as a net coloured only with parts 60

NPOSB the spare part system as a net coloured only with parts, orders,
shipments and boxes

60

Nu the spare part system as uncoloured net Nu 56

o o(r) is the size of op(r). 140

O in the order of magnitude of. g = O(f) means there are

coefficients α, β∈���� with g ≤ α f + β.
OCC the functor OCC: FSYS1→OCC unfolds a system in an

occurrence system.

51



Walter Keller. Petri Nets for Reverse Engineering. 153

symbol explanation ����

OCC the category of safe occurrence systems is a full subcategory of
WOCC.

48

op op(r) is the set of initial place reductions that are currently
merged into the place reduction r.

140

oPart the place in the spare-part ordering system representing
orderable parts

56

oPos the place in the spare-part ordering system representing
orderable positions

56

P the functor P: PPNET→PPNET drops the transitions and keeps
the places of a net

33

P, PN the set of places of a net N. The subscript N may be dropped. 33

pack the transition in the spare-part ordering system representing that
a part is packed

56

pack the transition in the spare-part ordering system representing that
a part is packed

56

packing the place in the spare-part ordering system representing the state
of an order in which parts get packed

56

part one of the places oPart, aPart, sPart in the spare-part
ordering system

56

PL the functor PL: PPNET→PPNET forgetting transitions and
keeping the Places

33

place invariant a linear function from the place multisets of a net to the integers
which does not change under transition occurrence.

31

place-preserving a morphism is place-preserving if it maps places to places.
PPNET is the category of nets and place-preserving morphims.

32

place-transition
net

a Petri net that is an object of the category PTNET which allows
clustering and folding

27

PN the set of places of a net N. The subscript N may be dropped.

position one of the places oPos, aPos, sPos, pPos in the spare-part
ordering system

56

post the post function of net assigning to every transition the multiset
of post places

27

PP the functor PP: PTNET→PPNET replaces each transition by
three transitions and one place

32

pp the combined pre and post function: pp = (pre, post) 32

PPNET the category of nets and place-preserving morphisms. 32

pPos the place in the spare-part ordering system representing packed
positions

56

PPSYS the category of systems with place-preserving morphisms 44

pre the pre function of net assigning to every transition the multiset
of pre places

27

PROC the category of processes is a full subcategory of OCC. 48

PTNET the functor PTNET: 1S→PTNET maps a multiset to a net
having the multiset base as places and not transitions

29

PTNET the category of place-transition nets with morphisms allowing
clustering and folding

27
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symbol explanation ����

PTSYS the category of place-transition systems 44

� the rational numbers

reachability graph the reachability graph of a Petri system consists of the reachable
markings (nodes) and enabled transitions (arcs).

reduction a morphism from a net to a smaller net with certain natural
properties

38

reflection an adjunction with the counits being all isomorphisms 24
s superscript for the source of a coloured net C: Ns→Nd 36

semi positive all coefficients being non negative

SET the category of sets and total functions

SETP the category of sets and partial functions 24

ship the transition in the spare-part ordering system representing that
a part is shipped

56

shipping the place in the spare-part ordering system representing the state
of an order in which parts get shipped

56

SM the functor SM: PPSYS→SM unfolds a system into it step
reachability graph (state machine).

46

SM the category of state machines is a full subcategory of PPSYS. 46

small transition
property

a net has the small transition property iff the cardinality of

transition pre and postsets are limited by a constant Γ.

68

Smalltalk an object-oriented language. 132

spare-part order
system

an application serving as running example. 56

sPart the place in the spare-part ordering system representing shipped
parts

56

sPos the place in the spare-part ordering system representing shipped
positions

56

SRC the functor mapping a coloured net to the source 36

src the source X of a function f: X→Y

startA the transition in the spare-part ordering system changing the

state of an order from defining to allocating.

56

startP the transition in the spare-part ordering system changing the
state of an order from shipping to packing.

56

startS the transition in the spare-part ordering system changing the
state of an order from allocating to shipping.

56

state machine a Petri net system with a single token which is preserved by all
transition occurrences.

46

step a multiset of transitions of a Petri net.

subcategory A is a subcategory of B if the objects and morphisms of A are
objects and morphisms respectively of B.

supp the support of a multiset being the set of elements with non zero
cardinality

SYS0 the functor SYS0: *NET→*SYS maps a net to the system with
the same net and initial marking 0.

44

telephone net An example of a telephone designed with Petri nets 65
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symbol explanation ����

TN the set of transitions of a net N. The subscript N may be
dropped.

transition invariant a multiset of transitions σ is a transition invariant if pre σ = post

σ.

31

T-system a Petri net with all arc cardinalities 1 and |•p| = 1 = |p•| for all
places, hence T is a transition invariant.

31

types the basic subnets used in the reduction algorithm. 67

U the underlying functor used for various categories

UFNET the category of nets with unitary foldings as morphisms 34

undef f x = undef means the partial function f is not defined on the
element x

24

unit the natural transformation ID→RL with L a functor left adjoint
to R

24

unitary a PTNET morphism fulfilling fγ X⊆{1}. Hence it corresponds to
a total function of the base sets.

27

universal an object through which every other natural object factorises
uniquely

102

universal
construction

either a colimit or a limit 102

VisualAge a development environment which includes Smalltalk.

WOCC the functor WOCC: FSYS→WOCC unfolds a system in a
weighted occurrence systems containing all processes.

49

WOCC the category of weighted occurrence systems is a full
subcategory of FSYS.

48

x Π' opx Π" for sets of relations means {π' op π" | π'∈Π' and

π"∈Π"} for any binary operator op on relations. Analogously
for a set of relation sets.

86

x A x B is the cartesian product of two sets A and B

����
the integer numbers

����-modules A ����-module over a set S is a function S→����. The category of ����-
module consists of finitely generated free Z-modules and linear
functions.

����λλλλ
the ring (or field) of the integers modulo λ

∆ the diagonal operator ∆x = (x,x)

Φ the set of relations corresponding to the set of all reductions 147

Γ A net has the small transition property iff the cardinality of

transition pre and postsets are limited by a constant Γ.

68

Π Π(n) the set of relations at the subtree with root n 88

α invocation count of PlaceReduction>>mergeArc:at:info: 139

β a 1S morphism fβ = B f is the retraction to the base set 25

β β(r) is the accumulated number of invocations of
PlaceReduction>>mergeArc:at:info: moving the e1(r) initial
edges to the e(r) current edges of the place reduction r.

139
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symbol explanation ����

γ fγ is the coefficient function of a 1S morphism 25

γ a slowly increasing inverse of the Ackermann function 78

ι reduction a morphism from a net to a smaller net with certain natural
properties

38

πB
the projection within the hierarchical net of the spare part system
along the dimension of boxes

60

πP
the projection within the hierarchical net of the spare part system
along the dimension of parts

60

ρ ρ(n) the relation at node n 88

ω ω(n) the relation from node n upward to the root 88
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