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Abstract. Computing the coefficients of the characteristic polynomial is about as hard as matrix 
multiplication. 

1. Introduction 

Since the development  of  the first fast matrix multiplication algorithm, fast matrix 
multiplications have been used for fast computations of other problems [3, 6, 7]. 

So, for example, the inverse or the determinant of  an n × n matrix may be computed 
in O(M(n)) time if  two n x n matrices may be multiplied with M(n)  nonscalar 
multiplications and divisions, where M(n)= g(n)n a with a > 2 and g monotoni- 
cally increasing. Comput ing  the coefficients of  the characteristic polynomial  with 
classical algorithms costs O(n 3) nonscalar multiplications/divisions and with an 
algorithm by Winograd,  O(g(n)n "~+~/2) [2, 5]. In this paper we give a straight line 
algorithm for the computat ion of the characteristic polynomial with a time bound 
of O(M(n)). On the other  hand,  if there is an algorithm to compute the coefficients 
of  the characteristic polynomial  of an n x n matrix with cost F(n) ,  two n x n matrices 
may be multiplied with cost O(F(n)) (this follows from [1]). 

In this paper  we give three algorithms. All compute the coefficients of the 
characteristic polynomial .  For simplicity we call them the simple, the fast, and the 
branching algorithms. The fast algorithm has a time bound of O(M(n)) ,  the other 
two algorithms have a time bound of  O(M(n) log n). 

The main idea of  all three algorithms is to transform the input matrix A by a 
similarity t ransformat ion to Frobenius form. If  we do not have to deal with special 
matrices, we transform to simple Frobenius form: 

A ~  U-IAU = 

0 

1 

n - I  I 
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Indeed, the coefficients of the last column of U - t A U  are up to the sign equal to 

the coefficients of the characteristic polynomial.  
If we interpret this transformation as a base transformation of k n from the unit 

vectors (ej, e2 , . . . ,  en) = e to the base e ' =  (e~, e L , . . . ,  e ' )  = eU, this means that 

U = e'= (e~, Ae~, A2e~ , . . . )  and the characteristic polynomial  essential describes 
! A"e] as a linear combinat ion of the e~. 

In this paper, log n denotes the binary logarithm of n ; 1 the unity of k, of the 

integers, or of a (square) unity matrix; 0 the zero of the integers, of  k, or of a 
(rectangular) zero matr ix;  and [c] the smallest integer not smaller than c. 

2. The two computational models 

In this paper we use two computational models: the model of  straight line 
algorithms and the model  of branching algorithms. 

A straight line algori thm computes an m-tuple of rational functions in n variables 
over a field k. An algori thm is a sequence of  (gi), where g~ is a product  or a quotient 
of linear functions in the variables, and the gj, wi th j  < i, and the rat ional  functions (the 

results) are linear in the variables and the gi. r is the cost or time of  the algorithm. 
That means that only nonscalar  operations are counted. 

A branching algori thm may take decisions of the form 

IF A =  B T H E N . . .  E L S E . . .  

free of charge and hence gets tree structured. It evaluates a function f on a set M 

of inputs. Counted operat ions are division and multiplication if nei ther  of the factors 
is a constant (nonscalar  operations). The cost of the algorithm is a function on M. 
In this paper we only consider worst-case complexity, that is the maximum of the 
cost function on M. 

The following theorem shows that for rational functions both models have the 
same time bounds on nearly all inputs. 

Theorem 2.1. Let k be an infinite field, and let f be an m-tuple o f  rational functions 
in n variables over k. Then there is a straight line algorithm over k that computes f i n  
time t i f  and only i f  there is a nonempty M c k" open in the Zarisky Topology of  the 
k" and a branching algorithm that computes m~->f(m) for m e M in time t [8]. 

In this paper we only count  nonscalar operations, but our theorems still hold if one 
counts all operations (and tests). .For simplicity we have defined M ( n ) = g ( r ) n  ~ 
with a > 2. But if  two n × n matrices may be multiplied with M ' ( n )  = n2g'(n) such 

that g' is monotonical ly  increasing, then the time bound for the fast algorithm is 
O(M' (n )  log n), and O ( M ' ( n )  log 2 n) for the two other algorithms. 
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3. The simple algorithm 

Let A be an  n × n matr ix  wi th  i nde t e rmina t e  coefficients and  e # 0 a vector  f rom 

k". Then  U =  (e, Ae, A2e, Aae,..., A"-~e) is a regular  n × n  matr ix  and  U - 1 A U  has 

s imple  F roben ius  form.  

N o w  let k = [ log n ] - 1 and  c o m p u t e  the  fo l lowing matrices:  

A ,  A 2, A 22, A 2 3 , . . . ,  

Ae 

(Aae, A2e) 

( A7 e, A6 e, AS e, A4 e) = A4(A3 e, AEe, Ae, e), 

A 2k, 

= Ae, 

= A2(Ae, e), 

(A2"2k- l e ,  . . . , A2ke) = A2k (A2k - l e , . . . ,  e). 

In  this way  we c o m p u t e  U and  h e n c e  the coefficients o f  the character is t ic  po lynomia l  

in O(log n M ( n ) )  t ime.  

4. A fast version of Gaussian elimination 

In this chap t e r  we  descr ibe  an a lgor i thm by SchSnhage  [6, and  private c o m m u n i c a -  

t ion, modi f ied] ,  tha t  we  need  in Sect ion 5 for  the b ranch ing  a lgor i thm.  This a lgor i thm 

t ransforms a mat r ix  A to s tep- form as follows: 

A---> UA = 

> (  • . . . . . .  • . ° 

> (  ° ° ° • . . . . .  

X . . . . . .  

) <  - . ° • 

0 × 

with e lements  no t  0 in the pos i t ions  m a r k e d  with x and  U regular .  

Algorithm Pl. I f  m <~ n <~ 2m, B an  (n - m)  × m matrix,  R, an  u p p e r  t r iangular  m × m 

matrix,  and  

A(:) 
then  p~ c o m p u t e s  an  n x n mat r ix  U and  an uppe r  t r iangular  m × m matr ix  R2 with  
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where d e t ( U )  = 1. For m = 1 one  easily finds an appropr ia te  U (one  test and  some 

ari thmetic) .  For  m >  l, p~ works  analogously  to the a lgor i thm descr ibed  in [6, 
Chapter  1]. 

Algorithm P2. To an n x n mat r ix  A, P2 computes  an n × n matrix U with d e t ( U )  = 1 

such that  R = UA is u p p e r  triangular.  For  m > 1, P2 works ana logous ly  to the 
QR-a lgor i thm in [6, Chapte r  2]. 

Algorithm P3- P3 t ransforms an  n x n matrix R in uppe r  t r iangular  fo rm to step-form. 
More  precisely,  it computes  matrices U and  Q, where  UR = Q, d e t ( U )  = 1, and  Q 
in s tep-form. 

Algor i thm P3 works recursively. We assume n = 2m (for odd  n the a lgor i thm 
works similarly)  and  show the  algori thm in the  fo l lowing diagram: 

l! (! () t! 3 ) 2 • 

0 R 2 R2 

The Ri are uppe r  t r iangular  m x m matrices,  B is an m x m matrix,  the Qi are 

rank(Qi)  x m  matrices in s tep-form,  C is some rank ( Q ~ ) × m  matrix and  D some 

( n - m - r a n k ( Q ~ ) ) × m  matrix.  For tl we use P3 recursively to f ind an U~ with 

U~ R~ = Q~; then  t~ is a lef tmult ipl icat ion with the  n x n matrix 

t 2 u s e s  Pl  t o  t ransform 

and t 2 is an expans ion  o f  this t ransformation.  Finally,  t3 is an expans ion  of  the 
t rans format ion  

which is c o m p u t e d  by P3 recursively. 

Algorithm P4. P4 t ransforms an  n x m matr ix  A to step-form. Again,  P4 computes  
the regular  t rans format ion  matr ix  U, such that  UA = Q has step-form. If m <~ n, we 

conca tena te  zero-co lumns  to  get a square  matrix,  t ransform it wi th  P2 to uppe r  

t r iangular  and  then  with P3 to  step-form. I f  m > n, we do the fol lowing:  

a C, l (Q 2 ( 0  ° 0) 
~ .  ,, ) ) .  o 

0 Q2 
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Here, B is an n × n matrix, t~ transforms it to (°ol) in step-form as described above. 
QI is a rank(B)  x n matrix in step-form and t2 is an expansion of the transformation 
of  the (n - rank(Q1)) x (m - n) matrix E to Q2 in step-form, and this transformation 
is computed recursively by P4. 

Algorithms Pl, P2, and P3 have cost O ( M ( n ) )  and this is also true for P4 if m <~ 2n. 

5. The branching algorithm 

Theorem 5.1. There is a computation tree that computes the coefficients o f  the charac- 
teristic polynomial o f  an n × n matrix A from k ~2 in O( M ( n ) log n) time. 

Proof. We modify the simple algorithm, such that it works on arbitrary matrices. 
Let us introduce a k[x]-module structure of  k n by xv := Av  for v from k n, and 

let el, e 2 , . . . ,  en be a k-base of k n. Then it suffices to compute U = U(A) ,  which is 
defined as follows: 

(i) U = (Ut,  U 2 , . . . ,  U,) where Uj is an n x mj matrix with mj t> 0 (to simplify 
notation, we allow mj = 0). 

(ii) Uj - -  (ej, Aej, A2e j , . . . ,  Am-~ej) if  mj > O. 

(iii) The columns of  (U1, U 2 , . . . ,  U~) are a k-base of  the k[x]-module generated 
by el, e 2 , . . . ,  ei. 

Indeed, U is a uniquely defined regular n × n matrix and U-~AU has the form 

U - I A U  = 

Ai B2 

B2 
A2 

A3 
B,, 

0 "" 

An 

where Aj is in simple Frobenius form and Bj has all zeroes except for the last 
column• To see this we interpret the conjugation with U as a base transformation. 

Thus, the characteristic polynomial  of A is the product of the characteristic 
polynomials of  the Aj and this product  can be computed from Aj with O(n 2) 
operations. 

We compute U by successively computing the matrices 1 = Vo, Vi, V2, V3 , . . . ,  
Vr = U where r =  [log n] and I//= (Vii, Vi2, . . . ,  Vi,), where the submatrix Vii has n 
rows and between 0 and 2 i columns and V# = (e~, Aej, A2ej , . . . ) .  To define V~+ l we 
show that its computat ion after V~ has already been computed: 

First we compute the matrices W 0 defined as follows: 

{(A if V# has less than 2' columns, 
W° = 2'Vii, Vo) otherwise. 
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For this it is sufficient to compute A 2'V~. Then, V~+~,j is the submatrix of W~j that 
consists of  the first l o - 1  columns of W~j, where the 10th column of W~j is the first 
one which is linearly dependent on the preceding columns of  W~, and all columns 
of the matrices W . , . . . ,  W~,j_~. (Note that  V~+~,j may be empty.) To find the V~+~.~, 
we have to transform W~ = (W, ,  W~2,..., Win) to step-form. 

To show that Vr = U we notice that the k-vector-space generated by the columns 
of  V~j and by the k[x]-module generated by el, e2 , . . . ,  ej_l lies in the k[x]-module 
generated by el, e 2 , . . . ,  ej, and they are equal if V~j has less than 2 ~ columns. 

To compute U we need r - 2  matrix multiplications for the A 2', r - 1  matrix 
multiplications for the W~, and r - 1 transformations to step-form, for which we use 
P4 from the last section. In this way, the computat ion of U and hence also of  the 
coefficients of the characteristic polynomial  costs O ( M ( n )  log n). [] 

6. The fast algorithm 

Theorem 6.1. There is a straight line algorithm for the coefficients o f  the characteristic 
polynomial o f  an n × n matrix with indeterminate entries with cost O( M ( n ) ). 

We transform the input-matrix A to simple Frobenius form without computing 
the transforming matrix. This algorithm has been inspired by the algorithm by 

Danilewski [2]. 

6.1. The algorithm 

We say a matrix is in m-Frobenius form if it has the following form: 

0 

1 

1-Frobenius form is a simple Frobenius form and an arbitrary n x n matrix is always 
in n-Frobenius form. For simplicity we also call any n x n matrix in m-Frobenius 

form for m ~ n .  
Now let r an integer with 2 r~  > n > 2 r-~. We transform A successively to the similar 

matrices Ar = A, Ar_~, A , _ 2 , . . . ,  A~, Ao where Ai has 2i-Frobenius form. For the 
transformation from Ai+~ to Ai we compute step by step the similar matrices 
Ai,o = Ai+~, A~, A~2,. . .  , A~si = A~ where s~ = [n /2  ~ ] - 1. We get A~j+~ by conjugating 
Aij with U~j, the matrix in 2~-Frobenius form whose last 2 i columns are the last 2 ~ 
columns of  Ai~ (the regularity of U0 will be proved later). This is shown in Fig. 1, 
which also defines various submatrices. 
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Fig. 1 holds forj<~ s~-2.  Bi, s; is empty (has zero columns and B;,s,_ 1 has n mod 2; 
columns (2 i if  n = 2"). 

6.2. Correctness of the algorithm 

It rests us to show that U 0 is regular, and we have to find an inversion algorithm 

that does not fail on any U 0. It is easy to see that after the inversion of the top 
2 ~ ×2; matrix of C 0, s~ multiplications of 2 ~ x 2  ~ matrices suffice to compute U~ I. 

This 2 i × 2; matrix may be inverted by any inversion algorithm as its coefficients are 

algebraically independent  over k; moreover, we prove this for the coefficients of 

(B0, Co). The coefficients of A=Aro are indeterminates over k. By induction it 
suffices to show that the algebraical independence of the coefficients of (Bo, C~) 
implies the existence of (Ei,~, C~.j+I) and that its coefficients are algebraically indepen- 

dent ( indeed B~j+t = E o f o r j  < s~ - 1 and B~s, = 0, and in any case B~o+ 1 is a submatrix 
of  E0). 

To prove this we first notice that if the coefficients of (Bo, Co) are algebraically 

independent ,  A 0 and U o are regular and hence Aid+l = U~AoUo and A0= 
F~IA;.j+IFo hold. This means that the coefficients of A,j are rational functions in 
the coefficients of (A;d+~, F~,j), and vice versa. So the algebraic independence of the 

coefficients of (B0, Cu) implies the algebraic independence of  the coefficients of 
( C ,j+ ,, E,j ). 

6.3. Speed 

The computat ion of U 0 is free, to invert it one needs one inversion and si 

multiplications of 2 ix2 ;  matrices. Overall, the computation of U~IAoUo costs 
O(M(2;)n/2;). For every i we have to do this about n/2 ~ times, while i is varying 
from r - 1  to 0. So the cost of the whole transformation is less than 

r - - I  r - - I  

c Y~ n2M(2')/22i<~ cg(n)n 2 Y. 2 i('-2) = O(M(n)) 
i = 0  i = 0  

for an appropriate constant c. This proves the theorem. 
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