FAST ALGORITHMS FOR THE CHARACTERISTIC POLYNOMIAL

Walter KELLER-GEHRIG

Dietzingerstrasse 12, 8003 Zürich, Switzerland

Communicated by A. Schönhage
Received November 1982
Revised May 1984

Abstract

Computing the coefficients of the characteristic polynomial is about as hard as matrix multiplication.

1. Introduction

Since the development of the first fast matrix multiplication algorithm, fast matrix multiplications have been used for fast computations of other problems [3, 6, 7]. So, for example, the inverse or the determinant of an $n \times n$ matrix may be computed in $\mathbf{O}(M(n))$ time if two $n \times n$ matrices may be multiplied with $\boldsymbol{M}(n)$ nonscalar multiplications and divisions, where $M(n)=g(n) n^{\alpha}$ with $\alpha>2$ and g monotonically increasing. Computing the coefficients of the characteristic polynomial with classical algorithms costs $\mathrm{O}\left(n^{3}\right)$ nonscalar multiplications/divisions and with an algorithm by Winograd, $\mathrm{O}\left(g(n) n^{\alpha+1 / 2}\right)[2,5]$. In this paper we give a straight line algorithm for the computation of the characteristic polynomial with a time bound of $O(M(n))$. On the other hand, if there is an algorithm to compute the coefficients of the characteristic polynomial of an $n \times n$ matrix with cost $F(n)$, two $n \times n$ matrices may be multiplied with cost $\mathrm{O}(F(n))$ (this follows from [1]).

In this paper we give three algorithms. All compute the coefficients of the characteristic polynomial. For simplicity we call them the simple, the fast, and the branching algorithms. The fast algorithm has a time bound of $O(M(n))$, the other two algorithms have a time bound of $O(M(n) \log n)$.

The main idea of all three algorithms is to transform the input matrix A by a similarity transformation to Frobenius form. If we do not have to deal with special matrices, we transform to simple Frobenius form:

Indeed, the coefficients of the last column of $U^{-1} A U$ are up to the sign equal to the coefficients of the characteristic polynomial.

If we interpret this transformation as a base transformation of k^{n} from the unit vectors $\left(e_{1}, e_{2}, \ldots, e_{n}\right)=e$ to the base $e^{\prime}=\left(e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}\right)=e U$, this means that $U=e^{\prime}=\left(e_{1}^{\prime}, A e_{1}^{\prime}, A^{2} e_{1}^{\prime}, \ldots\right)$ and the characteristic polynomial essential describes $A^{n} e_{1}^{\prime}$ as a linear combination of the e_{i}^{\prime}.

In this paper, $\log n$ denotes the binary logarithm of $n ; 1$ the unity of k, of the integers, or of a (square) unity matrix; 0 the zero of the integers, of k, or of a (rectangular) zero matrix; and $\lceil c\rceil$ the smallest integer not smaller than c.

2. The two computational models

In this paper we use two computational models: the model of straight line algorithms and the model of branching algorithms.

A straight line algorithm computes an m-tuple of rational functions in n variables over a field k. An algorithm is a sequence of $\left(g_{i}\right)$, where g_{i} is a product or a quotient of linear functions in the variables, and the g_{j}, with $j<i$, and the rational functions (the results) are linear in the variables and the $g_{i} . r$ is the cost or time of the algorithm. That means that only nonscalar operations are counted.

A branching algorithm may take decisions of the form

$$
\text { IF } A=B \text { THEN } \ldots \text { ELSE } \ldots
$$

free of charge and hence gets tree structured. It evaluates a function f on a set M of inputs. Counted operations are division and multiplication if neither of the factors is a constant (nonscalar operations). The cost of the algorithm is a function on M. In this paper we only consider worst-case complexity, that is the maximum of the cost function on M.

The following theorem shows that for rational functions both models have the same time bounds on nearly all inputs.

Theorem 2.1. Let k be an infinite field, and let f be an m-tuple of rational functions in n variables over k. Then there is a straight line algorithm over k that computes f in time t if and only if there is a nonempty $M \subset k^{n}$ open in the Zarisky Topology of the k^{n} and a branching algorithm that computes $m \mapsto f(m)$ for $m \in M$ in time t [8].

In this paper we only count nonscalar operations, but our theorems still hold if one counts all operations (and tests). For simplicity we have defined $M(n)=g(r) n^{\alpha}$ with $\alpha>2$. But if two $n \times n$ matrices may be multiplied with $M^{\prime}(n)=n^{2} g^{\prime}(n)$ such that g^{\prime} is monotonically increasing, then the time bound for the fast algorithm is $O\left(M^{\prime}(n) \log n\right)$, and $O\left(M^{\prime}(n) \log ^{2} n\right)$ for the two other algorithms.

3. The simple algorithm

Let A be an $n \times n$ matrix with indeterminate coefficients and $e \neq 0$ a vector from k^{n}. Then $U=\left(e, A e, A^{2} e, A^{3} e, \ldots, A^{n-1} e\right)$ is a regular $n \times n$ matrix and $U^{-1} A U$ has simple Frobenius form.

Now let $k=\lceil\log n\rceil-1$ and compute the following matrices:

$$
\left.\begin{array}{l}
A, A^{2}, A^{2^{2}}, A^{2^{3}}, \ldots, A^{2^{k}}, \\
A e \\
=A e \\
\left(A^{3} e, A^{2} e\right) \\
\left(A^{7} e, A^{6} e, A^{5} e, A^{4} e\right)=A^{4}\left(A^{3} e, A^{2} e, A e, e\right), \\
\\
\left(A^{2 \cdot 2^{k}-1} e, \ldots, A^{2^{k}} e\right)
\end{array}\right)=A^{2^{k}}\left(A^{2^{k-1}} e, \ldots, e\right) .
$$

In this way we compute U and hence the coefficients of the characteristic polynomial in $O(\log n M(n))$ time.

4. A fast version of Gaussian elimination

In this chapter we describe an algorithm by Schönhage [6, and private communication, modified], that we need in Section 5 for the branching algorithm. This algorithm transforms a matrix A to step-form as follows:
with elements not 0 in the positions marked with \times and U regular.
Algorithm p_{1}. If $m \leqslant n \leqslant 2 m, B$ an $(n-m) \times m$ matrix, R_{1} an upper triangular $m \times m$ matrix, and

$$
A=\binom{B}{R_{1}}
$$

then p_{1} computes an $n \times n$ matrix U and an upper triangular $m \times m$ matrix R_{2} with

$$
U A=\binom{R_{\mathbf{2}}}{0}
$$

where $\operatorname{det}(U)=1$. For $m=1$ one easily finds an appropriate U (one test and some arithmetic). For $m>1, p_{1}$ works analogously to the algorithm described in [6, Chapter 1].

Algorithm p_{2}. To an $n \times n$ matrix A, p_{2} computes an $n \times n$ matrix U with $\operatorname{det}(U)=1$ such that $R=U A$ is upper triangular. For $m>1, p_{2}$ works analogously to the $Q R$-algorithm in [6, Chapter 2].

Algorithm $p_{3} . p_{3}$ transforms an $n \times n$ matrix R in upper triangular form to step-form. More precisely, it computes matrices U and Q, where $U R=Q, \operatorname{det}(U)=1$, and Q in step-form.

Algorithm p_{3} works recursively. We assume $n=2 m$ (for odd n the algorithm works similarly) and show the algorithm in the following diagram:

$$
\left(\begin{array}{cc}
R_{1} & B \\
0 & R_{2}
\end{array}\right) \xrightarrow{t_{1}}\left(\begin{array}{cc}
Q_{1} & C \\
0 & D \\
0 & R_{2}
\end{array}\right) \xrightarrow{t_{2}}\left(\begin{array}{cc}
Q_{1} & C \\
0 & R_{3} \\
0 & 0
\end{array}\right) \xrightarrow{t_{3}}\left(\begin{array}{cc}
Q_{1} & C \\
0 & Q_{2} \\
0 & 0
\end{array}\right) .
$$

The R_{i} are upper triangular $m \times m$ matrices, B is an $m \times m$ matrix, the Q_{i} are $\operatorname{rank}\left(Q_{i}\right) \times m$ matrices in step-form, C is some $\operatorname{rank}\left(Q_{1}\right) \times m$ matrix and D some $\left(n-m-\operatorname{rank}\left(Q_{1}\right)\right) \times m$ matrix. For t_{1} we use p_{3} recursively to find an U_{1} with $U_{1} R_{1}=Q_{1}$; then t_{1} is a leftmultiplication with the $n \times n$ matrix

$$
\left(\begin{array}{cc}
U_{1} & 0 \\
0 & 1
\end{array}\right)
$$

t_{2} uses p_{1} to transform

$$
\binom{D}{R_{2}} \mapsto\binom{R_{3}}{0}
$$

and t_{2} is an expansion of this transformation. Finally, t_{3} is an expansion of the transformation

$$
R_{3} \mapsto\binom{Q_{2}}{0}
$$

which is computed by p_{3} recursively.
Algorithm $p_{4} \cdot p_{4}$ transforms an $n \times m$ matrix A to step-form. Again, p_{4} computes the regular transformation matrix U, such that $U A=Q$ has step-form. If $m \leqslant n$, we concatenate zero-columns to get a square matrix, transform it with p_{2} to upper triangular and then with p_{3} to step-form. If $m>n$, we do the following:

$$
A=\left(\begin{array}{ll}
B & C
\end{array}\right) \xrightarrow{t_{1}}\left(\begin{array}{cc}
Q_{1} & D \\
0 & E
\end{array}\right) \xrightarrow{t_{2}}\left(\begin{array}{cc}
Q_{1} & D \\
0 & Q_{2}
\end{array}\right) .
$$

Here, B is an $n \times n$ matrix, t_{1} transforms it to $\binom{Q_{1}}{0}$ in step-form as described above. Q_{1} is a $\operatorname{rank}(B) \times n$ matrix in step-form and t_{2} is an expansion of the transformation of the $\left(n-\operatorname{rank}\left(Q_{1}\right)\right) \times(m-n)$ matrix E to Q_{2} in step-form, and this transformation is computed recursively by p_{4}.

Algorithms p_{1}, p_{2}, and p_{3} have cost $\mathrm{O}(M(n))$ and this is also true for p_{4} if $m \leqslant 2 n$.

5. The branching algorithm

Theorem 5.1. There is a computation tree that computes the coefficients of the characteristic polynomial of an $n \times n$ matrix A from $k^{n^{2}}$ in $\mathrm{O}(M(n) \log n)$ time.

Proof. We modify the simple algorithm, such that it works on arbitrary matrices.
Let us introduce a $k[x]$-module structure of k^{n} by $x v:=A v$ for v from k^{n}, and let $e_{1}, e_{2}, \ldots, e_{n}$ be a k-base of k^{n}. Then it suffices to compute $U=U(A)$, which is defined as follows:
(i) $U=\left(U_{1}, U_{2}, \ldots, U_{n}\right)$ where U_{j} is an $n \times m_{j}$ matrix with $m_{j} \geqslant 0$ (to simplify notation, we allow $m_{j}=0$).
(ii) $U_{j}=\left(e_{j}, A e_{j}, A^{2} e_{j}, \ldots, A^{m_{j}-1} e_{j}\right)$ if $m_{j}>0$.
(iii) The columns of $\left(U_{1}, U_{2}, \ldots, U_{i}\right)$ are a k-base of the $k[x]$-module generated by $e_{1}, e_{2}, \ldots, e_{i}$.

Indeed, U is a uniquely defined regular $n \times n$ matrix and $U^{-1} A U$ has the form

where A_{j} is in simple Frobenius form and B_{j} has all zeroes except for the last column. To see this we interpret the conjugation with U as a base transformation.

Thus, the characteristic polynomial of A is the product of the characteristic polynomials of the A_{j} and this product can be computed from A_{j} with $\mathrm{O}\left(n^{2}\right)$ operations.

We compute U by successively computing the matrices $1=V_{0}, V_{1}, V_{2}, V_{3}, \ldots$, $V_{r}=U$ where $r=\lceil\log n\rceil$ and $V_{i}=\left(V_{i 1}, V_{i 2}, \ldots, V_{i n}\right)$, where the submatrix $V_{i j}$ has n rows and between 0 and 2^{i} columns and $V_{i j}=\left(e_{j}, A e_{j}, A^{2} e_{j}, \ldots\right)$. To define V_{i+1} we show that its computation after V_{i} has already been computed:

First we compute the matrices $W_{i j}$ defined as follows:

$$
W_{i j}= \begin{cases}V_{i j} & \text { if } V_{i j} \text { has less than } 2^{i} \text { columns } \\ \left(A^{2^{i}} V_{i j} V_{i j}\right) & \text { otherwise }\end{cases}
$$

For this it is sufficient to compute $A^{2^{i}} V_{i}$. Then, $V_{i+1, j}$ is the submatrix of $W_{i j}$ that consists of the first $l_{i j}-1$ columns of $W_{i j}$, where the $l_{i j}$ th column of $W_{i j}$ is the first one which is linearly dependent on the preceding columns of $W_{i j}$, and all columns of the matrices $W_{i 1}, \ldots, W_{i, j-1}$. (Note that $V_{i+1, j}$ may be empty.) To find the $V_{i+1, j}$, we have to transform $W_{i}=\left(W_{i 1}, W_{i 2}, \ldots, W_{i n}\right)$ to step-form.

To show that $V_{r}=U$ we notice that the k-vector-space generated by the columns of $V_{i j}$ and by the $k[x]$-module generated by $e_{1}, e_{2}, \ldots, e_{j-1}$ lies in the $k[x]$-module generated by $e_{1}, e_{2}, \ldots, e_{j}$, and they are equal if $V_{i j}$ has less than 2^{i} columns.

To compute U we need $r-2$ matrix multiplications for the $A^{2^{i}}, r-1$ matrix multiplications for the $W_{i j}$, and $r-1$ transformations to step-form, for which we use p_{4} from the last section. In this way, the computation of U and hence also of the coefficients of the characteristic polynomial costs $O(M(n) \log n)$.

6. The fast algorithm

Theorem 6.1. There is a straight line algorithm for the coefficients of the characteristic polynomial of an $n \times n$ matrix with indeterminate entries with cost $\mathrm{O}(M(n))$.

We transform the input-matrix A to simple Frobenius form without computing the transforming matrix. This algorithm has been inspired by the algorithm by Danilewski [2].

6.1. The algorithm

We say a matrix is in m-Frobenius form if it has the following form:

1-Frobenius form is a simple Frobenius form and an arbitrary $n \times n$ matrix is always in n-Frobenius form. For simplicity we also call any $n \times n$ matrix in m-Frobenius form for $m \geqslant n$.

Now let r an integer with $2^{r} \geqslant n>2^{r-1}$. We transform A successively to the similar matrices $A_{r}=A, A_{r-1}, A_{r-2}, \ldots, A_{1}, A_{0}$ where A_{i} has 2^{i}-Frobenius form. For the transformation from A_{i+1} to A_{i} we compute step by step the similar matrices $A_{i, 0}=A_{i+1}, A_{i, 1}, A_{i, 2}, \ldots, A_{i} s_{i}=A_{i}$ where $s_{i}=\left\lceil n / 2^{i}\right\rceil-1$. We get $A_{i, j+1}$ by conjugating $A_{i j}$ with $U_{i j}$, the matrix in 2^{i}-Frobenius form whose last 2^{i} columns are the last 2^{i} columns of $A_{i j}$ (the regularity of $U_{i j}$ will be proved later). This is shown in Fig. 1, which also defines various submatrices.

Fig. 1 holds for $j \leqslant s_{i}-2 . B_{i}, s_{i}$ is empty (has zero columns and $B_{i, s_{i}-1}$ has $n \bmod 2^{i}$ columns (2^{i} if $n=2^{r}$).

6.2. Correctness of the algorithm

It rests us to show that $U_{i j}$ is regular, and we have to find an inversion algorithm that does not fail on any $U_{i j}$. It is easy to see that after the inversion of the top $2^{i} \times 2^{i}$ matrix of $C_{i j}$, s_{i} multiplications of $2^{i} \times 2^{i}$ matrices suffice to compute $U_{i j}^{-1}$. This $2^{i} \times 2^{i}$ matrix may be inverted by any inversion algorithm as its coefficients are algebraically independent over k; moreover, we prove this for the coefficients of ($B_{i j}, C_{i j}$). The coefficients of $A=A_{r 0}$ are indeterminates over k. By induction it suffices to show that the algebraical independence of the coefficients of ($B_{i j}, C_{i j}^{\prime}$) implies the existence of ($E_{i, j}, C_{i, j+1}$) and that its coefficients are algebraically independent (indeed $B_{i, j+1}=E_{i j}$ for $j<s_{i}-1$ and $B_{i s_{i}}=0$, and in any case $B_{i, j+1}$ is a submatrix of $E_{i j}$).

To prove this we first notice that if the coefficients of ($B_{i j}, C_{i j}$) are algebraically independent, $A_{i j}$ and $U_{i j}$ are regular and hence $A_{i, j+1}=U_{i j}^{-1} A_{i j} U_{i j}$ and $A_{i j}=$ $F_{i j}^{-1} A_{i, j+1} F_{i j}$ hold. This means that the coefficients of $A_{i j}$ are rational functions in the coefficients of ($A_{i, j+1}, F_{i, j}$), and vice versa. So the algebraic independence of the coefficients of ($B_{i j}, C_{i j}$) implies the algebraic independence of the coefficients of $\left(C_{i, j+1}, E_{i j}\right)$.

6.3. Speed

The computation of $U_{i j}$ is free, to invert it one needs one inversion and s_{i} multiplications of $2^{i} \times 2^{i}$ matrices. Overall, the computation of $U_{i j}^{-1} A_{i j} U_{i j}$ costs $\mathrm{O}\left(M\left(2^{i}\right) n / 2^{i}\right)$. For every i we have to do this about $n / 2^{i}$ times, while i is varying from $r-1$ to 0 . So the cost of the whole transformation is less than

$$
c \sum_{i=0}^{r-1} n^{2} M\left(2^{i}\right) / 2^{2 i} \leqslant c g(n) n^{2} \sum_{i=0}^{r-1} 2^{i(\alpha-2)}=\mathrm{O}(M(n))
$$

for an appropriate constant c. This proves the theorem.

Acknowledgment

The contents of this paper constitutes part of the author's Master's Thesis (Diplomarbeit, Institut für Angewandte Mathematik, Universität of Zürich, 1982). The author is indebted to Prof. V. Strassen who directed this thesis.

References

[1] W. Baur and V. Strassen, The complexity of partial derivatives, Theoret. Comput. Sci. 22 (1982) 317-330.
[2] I.S. Beresin and N.P. Shidkon, Das Verfahren von Danilewski, Numerische Methoden 2 (Deutscher Verlag der Wissenschaften, 1971) Chapter 8.4, 206-214.
[3] J. Bunch and J.E. Hopcroft, Triangular factorization and inversion by fast matrix multiplication, Mathematics of Computation 125 (1974).
[4] A. Borodin and I. Munro, The Computational Complexity of Algebraic and Numeric Problems (American Elsevier, New York, 1975).
[5] D.E. Knuth, The Art of Computer Programming Vol. II: Seminumerical Algorithms (Addison-Wesley, Reading, MA, 1969) 560.
[6] A. Schönhage, Unitäre Transformationen grosser Matrizen, Numerische Math. 20 (1973) 409-417.
[7] V. Strassen, Gaussian elimination is not optimal, Numerische Math. 13 (1969) 354-356.
[8] V. Strassen, Berechnung und Programm, Acta Informatica 1 (1971/1972) 320-335; Acta Informatica 2 (1973) 46-79.

