
Theoretical Computer Science 36 (1985) 309-317 309
North-Holland

FAST A L G O R I T H M S F O R T H E C H A R A C T E R I S T I C
P O L Y N O M I A L

Walter K E L L E R - G E H R I G
Dietzingerstrasse 12, 8003 Ziirich, Switzerland

Communicated by A. Sch6nhage
Received November 1982
Revised May 1984

Abstract. Computing the coefficients of the characteristic polynomial is about as hard as matrix
multiplication.

1. Introduction

Since the development of the first fast matrix multiplication algorithm, fast matrix
multiplications have been used for fast computations of other problems [3, 6, 7].

So, for example, the inverse or the determinant of an n × n matrix may be computed
in O(M(n)) time if two n x n matrices may be multiplied with M(n) nonscalar
multiplications and divisions, where M(n)= g(n)n a with a > 2 and g monotoni-
cally increasing. Comput ing the coefficients of the characteristic polynomial with
classical algorithms costs O(n 3) nonscalar multiplications/divisions and with an
algorithm by Winograd, O(g(n)n "~+~/2) [2, 5]. In this paper we give a straight line
algorithm for the computat ion of the characteristic polynomial with a time bound
of O(M(n)). On the other hand, if there is an algorithm to compute the coefficients
of the characteristic polynomial of an n x n matrix with cost F(n) , two n x n matrices
may be multiplied with cost O(F(n)) (this follows from [1]).

In this paper we give three algorithms. All compute the coefficients of the
characteristic polynomial . For simplicity we call them the simple, the fast, and the
branching algorithms. The fast algorithm has a time bound of O(M(n)) , the other
two algorithms have a time bound of O(M(n) log n).

The main idea of all three algorithms is to transform the input matrix A by a
similarity t ransformat ion to Frobenius form. If we do not have to deal with special
matrices, we transform to simple Frobenius form:

A ~ U-IAU =

0

1

n - I I

310 W. Keller-Gehrig

Indeed, the coefficients of the last column of U - t A U are up to the sign equal to

the coefficients of the characteristic polynomial.
If we interpret this transformation as a base transformation of k n from the unit

vectors (ej, e2 , . . . , en) = e to the base e ' = (e~, e L , . . . , e ') = eU, this means that

U = e'= (e~, Ae~, A2e~ , . . .) and the characteristic polynomial essential describes
! A"e] as a linear combinat ion of the e~.

In this paper, log n denotes the binary logarithm of n ; 1 the unity of k, of the

integers, or of a (square) unity matrix; 0 the zero of the integers, of k, or of a
(rectangular) zero matr ix; and [c] the smallest integer not smaller than c.

2. The two computational models

In this paper we use two computational models: the model of straight line
algorithms and the model of branching algorithms.

A straight line algori thm computes an m-tuple of rational functions in n variables
over a field k. An algori thm is a sequence of (gi), where g~ is a product or a quotient
of linear functions in the variables, and the gj, wi th j < i, and the rat ional functions (the

results) are linear in the variables and the gi. r is the cost or time of the algorithm.
That means that only nonscalar operations are counted.

A branching algori thm may take decisions of the form

IF A = B T H E N . . . E L S E . . .

free of charge and hence gets tree structured. It evaluates a function f on a set M

of inputs. Counted operat ions are division and multiplication if nei ther of the factors
is a constant (nonscalar operations). The cost of the algorithm is a function on M.
In this paper we only consider worst-case complexity, that is the maximum of the
cost function on M.

The following theorem shows that for rational functions both models have the
same time bounds on nearly all inputs.

Theorem 2.1. Let k be an infinite field, and let f be an m-tuple o f rational functions
in n variables over k. Then there is a straight line algorithm over k that computes f i n
time t i f and only i f there is a nonempty M c k" open in the Zarisky Topology of the
k" and a branching algorithm that computes m~->f(m) for m e M in time t [8].

In this paper we only count nonscalar operations, but our theorems still hold if one
counts all operations (and tests). .For simplicity we have defined M (n) = g (r) n ~
with a > 2. But if two n × n matrices may be multiplied with M ' (n) = n2g'(n) such

that g' is monotonical ly increasing, then the time bound for the fast algorithm is
O(M' (n) log n), and O (M ' (n) log 2 n) for the two other algorithms.

Fast algorithms for the characteristic polynomial 311

3. The simple algorithm

Let A be an n × n matr ix wi th i nde t e rmina t e coefficients and e # 0 a vector f rom

k". Then U = (e, Ae, A2e, Aae,..., A"-~e) is a regular n × n matr ix and U - 1 A U has

s imple F roben ius form.

N o w let k = [log n] - 1 and c o m p u t e the fo l lowing matrices:

A , A 2, A 22, A 2 3 , . . . ,

Ae

(Aae, A2e)

(A7 e, A6 e, AS e, A4 e) = A4(A3 e, AEe, Ae, e),

A 2k,

= Ae,

= A2(Ae, e),

(A2"2k- l e , . . . , A2ke) = A2k (A2k - l e , . . . , e).

In this way we c o m p u t e U and h e n c e the coefficients o f the character is t ic po lynomia l

in O(log n M (n)) t ime.

4. A fast version of Gaussian elimination

In this chap t e r we descr ibe an a lgor i thm by SchSnhage [6, and private c o m m u n i c a -

t ion, modi f ied] , tha t we need in Sect ion 5 for the b ranch ing a lgor i thm. This a lgor i thm

t ransforms a mat r ix A to s tep- form as follows:

A---> UA =

> (• • . °

> (° ° ° •

X

) < - . ° •

0 ×

with e lements no t 0 in the pos i t ions m a r k e d with x and U regular .

Algorithm Pl. I f m <~ n <~ 2m, B an (n - m) × m matrix, R, an u p p e r t r iangular m × m

matrix, and

A(:)
then p~ c o m p u t e s an n x n mat r ix U and an uppe r t r iangular m × m matr ix R2 with

312 W. Keller-Gehrig

where d e t (U) = 1. For m = 1 one easily finds an appropr ia te U (one test and some

ari thmetic) . For m > l, p~ works analogously to the a lgor i thm descr ibed in [6,
Chapter 1].

Algorithm P2. To an n x n mat r ix A, P2 computes an n × n matrix U with d e t (U) = 1

such that R = UA is u p p e r triangular. For m > 1, P2 works ana logous ly to the
QR-a lgor i thm in [6, Chapte r 2].

Algorithm P3- P3 t ransforms an n x n matrix R in uppe r t r iangular fo rm to step-form.
More precisely, it computes matrices U and Q, where UR = Q, d e t (U) = 1, and Q
in s tep-form.

Algor i thm P3 works recursively. We assume n = 2m (for odd n the a lgor i thm
works similarly) and show the algori thm in the fo l lowing diagram:

l! (! () t! 3) 2 •

0 R 2 R2

The Ri are uppe r t r iangular m x m matrices, B is an m x m matrix, the Qi are

rank(Qi) x m matrices in s tep-form, C is some rank (Q ~) × m matrix and D some

(n - m - r a n k (Q ~)) × m matrix. For tl we use P3 recursively to f ind an U~ with

U~ R~ = Q~; then t~ is a lef tmult ipl icat ion with the n x n matrix

t 2 u s e s Pl t o t ransform

and t 2 is an expans ion o f this t ransformation. Finally, t3 is an expans ion of the
t rans format ion

which is c o m p u t e d by P3 recursively.

Algorithm P4. P4 t ransforms an n x m matr ix A to step-form. Again, P4 computes
the regular t rans format ion matr ix U, such that UA = Q has step-form. If m <~ n, we

conca tena te zero-co lumns to get a square matrix, t ransform it wi th P2 to uppe r

t r iangular and then with P3 to step-form. I f m > n, we do the fol lowing:

a C, l (Q 2 (0 ° 0)
~ . ,,)) . o

0 Q2

Fast algorithms for the characteristic polynomial 313

Here, B is an n × n matrix, t~ transforms it to (°ol) in step-form as described above.
QI is a rank(B) x n matrix in step-form and t2 is an expansion of the transformation
of the (n - rank(Q1)) x (m - n) matrix E to Q2 in step-form, and this transformation
is computed recursively by P4.

Algorithms Pl, P2, and P3 have cost O (M (n)) and this is also true for P4 if m <~ 2n.

5. The branching algorithm

Theorem 5.1. There is a computation tree that computes the coefficients o f the charac-
teristic polynomial o f an n × n matrix A from k ~2 in O(M (n) log n) time.

Proof. We modify the simple algorithm, such that it works on arbitrary matrices.
Let us introduce a k[x]-module structure of k n by xv := Av for v from k n, and

let el, e 2 , . . . , en be a k-base of k n. Then it suffices to compute U = U(A) , which is
defined as follows:

(i) U = (Ut, U 2 , . . . , U,) where Uj is an n x mj matrix with mj t> 0 (to simplify
notation, we allow mj = 0).

(ii) Uj - - (ej, Aej, A2e j , . . . , Am-~ej) if mj > O.

(iii) The columns of (U1, U 2 , . . . , U~) are a k-base of the k[x]-module generated
by el, e 2 , . . . , ei.

Indeed, U is a uniquely defined regular n × n matrix and U-~AU has the form

U - I A U =

Ai B2

B2
A2

A3
B,,

0 ""

An

where Aj is in simple Frobenius form and Bj has all zeroes except for the last
column• To see this we interpret the conjugation with U as a base transformation.

Thus, the characteristic polynomial of A is the product of the characteristic
polynomials of the Aj and this product can be computed from Aj with O(n 2)
operations.

We compute U by successively computing the matrices 1 = Vo, Vi, V2, V3 , . . . ,
Vr = U where r = [log n] and I//= (Vii, Vi2, . . . , Vi,), where the submatrix Vii has n
rows and between 0 and 2 i columns and V# = (e~, Aej, A2ej , . . .) . To define V~+ l we
show that its computat ion after V~ has already been computed:

First we compute the matrices W 0 defined as follows:

{(A if V# has less than 2' columns,
W° = 2'Vii, Vo) otherwise.

314 W. Keller-Gehrig

For this it is sufficient to compute A 2'V~. Then, V~+~,j is the submatrix of W~j that
consists of the first l o - 1 columns of W~j, where the 10th column of W~j is the first
one which is linearly dependent on the preceding columns of W~, and all columns
of the matrices W . , . . . , W~,j_~. (Note that V~+~,j may be empty.) To find the V~+~.~,
we have to transform W~ = (W, , W~2,..., Win) to step-form.

To show that Vr = U we notice that the k-vector-space generated by the columns
of V~j and by the k[x]-module generated by el, e2 , . . . , ej_l lies in the k[x]-module
generated by el, e 2 , . . . , ej, and they are equal if V~j has less than 2 ~ columns.

To compute U we need r - 2 matrix multiplications for the A 2', r - 1 matrix
multiplications for the W~, and r - 1 transformations to step-form, for which we use
P4 from the last section. In this way, the computat ion of U and hence also of the
coefficients of the characteristic polynomial costs O (M (n) log n). []

6. The fast algorithm

Theorem 6.1. There is a straight line algorithm for the coefficients o f the characteristic
polynomial o f an n × n matrix with indeterminate entries with cost O(M (n)).

We transform the input-matrix A to simple Frobenius form without computing
the transforming matrix. This algorithm has been inspired by the algorithm by

Danilewski [2].

6.1. The algorithm

We say a matrix is in m-Frobenius form if it has the following form:

0

1

1-Frobenius form is a simple Frobenius form and an arbitrary n x n matrix is always
in n-Frobenius form. For simplicity we also call any n x n matrix in m-Frobenius

form for m ~ n .
Now let r an integer with 2 r~ > n > 2 r-~. We transform A successively to the similar

matrices Ar = A, Ar_~, A , _ 2 , . . . , A~, Ao where Ai has 2i-Frobenius form. For the
transformation from Ai+~ to Ai we compute step by step the similar matrices
Ai,o = Ai+~, A~, A~2,. . . , A~si = A~ where s~ = [n /2 ~] - 1. We get A~j+~ by conjugating
Aij with U~j, the matrix in 2~-Frobenius form whose last 2 i columns are the last 2 ~
columns of Ai~ (the regularity of U0 will be proved later). This is shown in Fig. 1,
which also defines various submatrices.

U
~

I
A

,-j

o
U

 o

=
A

ij
+

 l

D
u 2
i

1 0

0 1 0

2'

j2
'

0
0

0
1

2'

j2
'

2'

E
o

0 1

=
U

~
IA

o
 =

F

 U

2 ~

(j
 +

 1
)2

'

0 1

2'

(j+
 I)2

'(0
0

0

Bi
,j+

 I

Ci
,j+

 I

1

2'

(j
+

1)
2'

2'

t~

¢'
a

e~

.,q

Fi
g.

1.

316 W. Keller-Gehrig

Fig. 1 holds forj<~ s~-2. Bi, s; is empty (has zero columns and B;,s,_ 1 has n mod 2;
columns (2 i if n = 2").

6.2. Correctness of the algorithm

It rests us to show that U 0 is regular, and we have to find an inversion algorithm

that does not fail on any U 0. It is easy to see that after the inversion of the top
2 ~ ×2; matrix of C 0, s~ multiplications of 2 ~ x 2 ~ matrices suffice to compute U~ I.

This 2 i × 2; matrix may be inverted by any inversion algorithm as its coefficients are

algebraically independent over k; moreover, we prove this for the coefficients of

(B0, Co). The coefficients of A=Aro are indeterminates over k. By induction it
suffices to show that the algebraical independence of the coefficients of (Bo, C~)
implies the existence of (Ei,~, C~.j+I) and that its coefficients are algebraically indepen-

dent (indeed B~j+t = E o f o r j < s~ - 1 and B~s, = 0, and in any case B~o+ 1 is a submatrix
of E0).

To prove this we first notice that if the coefficients of (Bo, Co) are algebraically

independent , A 0 and U o are regular and hence Aid+l = U~AoUo and A0=
F~IA;.j+IFo hold. This means that the coefficients of A,j are rational functions in
the coefficients of (A;d+~, F~,j), and vice versa. So the algebraic independence of the

coefficients of (B0, Cu) implies the algebraic independence of the coefficients of
(C ,j+ ,, E,j).

6.3. Speed

The computat ion of U 0 is free, to invert it one needs one inversion and si

multiplications of 2 ix2 ; matrices. Overall, the computation of U~IAoUo costs
O(M(2;)n/2;). For every i we have to do this about n/2 ~ times, while i is varying
from r - 1 to 0. So the cost of the whole transformation is less than

r - - I r - - I

c Y~ n2M(2')/22i<~ cg(n)n 2 Y. 2 i('-2) = O(M(n))
i = 0 i = 0

for an appropriate constant c. This proves the theorem.

Acknowledgment

The contents of this paper constitutes part of the author's Master 's Thesis (Diplo-
marbeit, Institut fiir Angewandte Mathematik, Universitiit of Ziirich, 1982). The
author is indebted to Prof. V. Strassen who directed this thesis.

References

[!] W. Baur and V. Strassen, The complexity of partial derivatives, Theoret. Comput. Sci. 22 (1982) 3 ! 7-330.
[2] I.S. Beresin and N.P. Shidkon, Das Verfahren von Danilewski, Numerische Methoden 2 (Deutscher

Verlag der Wissensehaften, 1971) Chapter 8.4, 206-214.

Fast algorithms for the characteristic polynomial 317

[3] J. Bunch and J.E. Hopcroft, Triangular factorization and inversion by fast matrix multiplication,
Mathematics of Computation 125 (1974).

[4] A. Borodin and I. Munro, The Computational Complexity of Algebraic and Numeric Problems
(American Elsevier, New York, 1975).

[5] D.E. Knuth, The Art of Computer Programming Vol. H: Seminumerical Algorithms (Addison-Wesley,
Reading, MA, 1969) 560.

[6] A. Sch6nhage, Unit~ire Transformationen grosser Matrizen, Numerische Math. 20 (1973) 409-417.
[7] V. Strassen, Gaussian elimination is not optimal, Numerische Math. 13 (1969) 354-356.
[8] V. Strassen, Berechnung und Programm, Acta Informatica 1 (1971/1972) 320-335; Acta Informatica

2 (1973) 46-79.

