Incremental Refreshment of Data Warehouses :
The SIRIUS Approach

Athanasios Vavouras, Stella Gatziu, Klaus R. Dittrich

Department of Information Technology, University of Zurich
{vavouras, gatziu, dittrich}@ifi.unizh.ch

Abstract

Data warehouse refreshment incorporates issues in
how to capture and propagate updates occurring in
operational systems into the warehouse in order to
keep the data warehouse up-to-date. In this paper, we
propose an approach for the incremental refreshment
of data warehouses which considers the special nature
of warehouse data, e.g., its temporal and
heterogeneous dimension. Our approach can be used
for the integration of data from a wide variety of
heterogeneous operational sources and independently
of a particular database system used for storing the
warehouse data.

1 Introduction

The topic of data warehousing [4, 7, 10, 11, 23, 24,
27] comprises architectures, algorithms, models,
tools, organizational and management issues for
integrating data from several operational systems
in order to provide information for decision sup-
port, e.g., using data mining techniques or OLAP
(on-line analytical processing) tools. In contrast to
operational systems which contain detailed, atomic
and current data accessed by OLTP (on-line trans-
actional processing) applications, data warehous-
ing technology aims at providing integrated,
consolidated and historical data. The data ware-
house (DWH) can be realized either as a logical
(virtual) view of the data physically stored in the
various operational systems, or as a separate data-
base that stores integrated operational data (the
latter being the most typical case). A data ware-
house system (DWS) includes the data warehouse
and all components responsible for building, ac-
cessing and maintaining the DWH.

Implementing a concrete data warehouse solu-
tion is a complex task, comprising two major phas-
es. In the DWS configuration phase, the DWS

designer must determine (according to user re-
quirements for information) the desired operation-
al data, the appropriate operational sources, the
way data will be extracted, transformed and inte-
grated, and how the DWH data will be accessed
during analysis. After the initial load (the first load
of the DWH according to the DWH configuration),
during the DWS operation phase, warehouse data
must be regularly refreshed, i.e., modifications of
operational data since the last DWH refreshment
must be propagated into the warehouse such that
warehouse data reflects the state of the underly-
ing operational systems. Besides DWH refresh-
ment, DWS operation includes further tasks like
archiving and purging of DWH data or DWH moni-
toring.

In the context of our project SIRIUS (Support-
ing Incremental Refreshment of Information
Warehouses) we investigate the process of refresh-
ing a DWH. Our approach provides concepts for re-
freshing data warehouses independently of how
warehouse data are persistently stored, i.e., we
make no assumptions about the database system
used for storing the warehouse data [22]. The SI-
RIUS approach can be used in data warehouse en-
vironments consisting of a wide variety of
heterogeneous operational sources (various data-
base systems, flat files, etc.). Furthermore, it pro-
vides mechanisms regarding the special nature of
the warehouse data like derived and historical da-
ta.

One of the main goals of our approach is to pro-
vide mechanisms for refreshing a DWH incremen-
tally, i.e., to propagate only relevant updates in
operational systems (which have occurred since the
last DWH refreshment) into the warehouse. There
are several reasons for refreshing a DWH incre-
mentally in contrast to full reloads. First, today’s
DWH volumes can reach hundreds of gigabytes or

even several terabytes, and will grow even more in
the future. At the same time, the demand for more
up-to-date data increases such that the DWH must
be updated more often. Under these circumstances,
performing a complete reload of operational data is
a very time-consuming task that becomes unac-
ceptable. Second, since a DWH typically stores (be-
sides basic operational data) a lot of derived and
aggregated data, detecting and propagating only
updates of basic data will also significantly reduce
the time for computing derived and aggregated da-
ta. Finally, detecting all updates of operational
data in order to refresh the warehouse incremen-
tally at the same time enables to maintain histo-
ries in the warehouse correctly. In contrast,
discarding updates between two refreshment
points of time and reloading warehouse data leads
to the loss of histories.

The topic of data warehouse refreshment so far
has been investigated in the research community
mainly in relation with techniques for maintain-
ing materialized views [1, 6, 8, 9, 15, 17, 18, 19, 20,
26, 28, 29, 30, 31]. In these approaches, the DWH
is considered as a set of materialized views defined
over operational data. Thus, the topic of warehouse
refreshment is defined as a problem of updating a
set of views (the DWH) as a result of modifications
of base relations (residing in operational systems).
To the best of our knowledge, SIRIUS is the first
approach which deals with the refreshment prob-
lem without restricting the DWH to a set of rela-
tional views over operational data. This allows us
to widely explore the refreshment problem consid-
ering also issues like building histories or perform-
ing cleaning of the operational data.

The paper is organized as follows. Section 2
discusses issues and problems relevant to the in-
cremental refreshment problem. Section 3 presents
a running example of a data warehouse application
for a mail-order business. In Section 4, we give an
overview of the SIRIUS architecture. Section 5 pre-
sents the basic constructs of the SIRIUS data mod-
el, and Section 6 discusses various monitoring
techniques for detecting operational updates. Sec-
tion 7 and 8 describe how operational updates are
transformed and further processed before loading
the DWH. The paper concludes with Section 9
which presents our current and future work.

2 Incremental Refreshment Issues

Operational data resides in a wide range of infor-
mation systems which run on diverse platforms
and have a variety of representations and formats,

due to differences in data models as well as in un-
derstanding and modeling data. Dealing with the
heterogeneity of the integrated sources in a data
warehousing environment implies transforming
operational updates into a common format and rec-
onciling structural and semantic differences. In
particular, before loading relevant updates of oper-
ational data into the warehouse, updated data
must be integrated and “homogenized” according
to a uniform, global data model. Besides aspects re-
lated to heterogeneity of integrated sources, re-
freshing a DWH incrementally implies the
following issues:

= A prerequisite for refreshing a DWH incre-
mentally is the detection and extraction of
updates in operational systems. Depending
on the kind of the integrated operational
systems, various monitoring techniques
can be applied for a concrete warehouse so-
lution. In this paper, we present and classi-
fy these techniques, and we demonstrate
how they can be applied in a data ware-
housing environment and integrated in our
approach.

= Given a set of operational systems and a
particular target warehouse schema, de-
tected and extracted operational updates
in a next step must be applied to the ware-
house schema, i.e., updates must be ap-
pended to the previous warehouse state. As
a result, refreshing the DWH necessitates
concepts for assigning update operations at
operational sources to the corresponding
warehouse data.

e Performing a full reload of the warehouse
implies that the individual tasks (like ex-
traction, transformation, cleaning, merg-
ing, sorting of operational data) of the
refreshment process are executed as soon
as the beginning of the refreshment pro-
cess is signalled. This results in a very long
execution time and usually in taking the
warehouse off-line. In our incremental ap-
proach, various optimizations are possible
because updates monitored between two
refreshment points of time can be used to
“prepare” some of the above-mentioned
tasks (for example, transforming opera-
tional data into a common format) before
the actual refreshment process starts.

= Finally, special mechanisms are needed in
order to consider particular properties of
warehouse data, e.g., maintenance of histo-
ries or building aggregations.

3 A Running Example

In our running example, a mail-order business
aims at building a data warehouse to support deci-
sion making for different user groups and depart-
ments (illustrated in Figure 1).

The central DWH stores products, sales and
customer data that is drawn from various informa-
tion systems. We assume that each company
branch locally stores its own sales data (e.g., sold
items, quantity, price, date, etc.) and customer data
(e.g., name, address, age, marital status etc.). All
branches access the same product catalog which
stores information like product number, descrip-
tion, price, marginal return etc. and is managed by
the central marketing division. Besides, data deliv-
ered from the company branches, external data
like demographic data (in order to classify all cus-
tomers according to several characteristics) and
several market analyses (e.g., about market shares
and market demand) will be integrated into the
DWH.

Reporting
Statistics Data Mining

Integration

external
sources

phic
market analyses
& statistics

Figure 1 The Data Warehouse System for the Mail-
Order business

demogra
database

4 The SIRIUS Architecture

A data warehouse system (DWS) includes the data
warehouse and all components responsible for
building, refreshing, accessing and maintaining
the DWH. In SIRIUS, we consider the Data Ware-
house Refresh Manager (DWRM) as the central
component of a DWS which has the knowledge

about the tasks that must be accomplished during
the DWH refreshment process. Figure 2 illus-
trates the DWRM and components of a DWS relat-
ed to the refreshment process.

Data
Warehouse

[Warehouse Wrapper |

Administration |

Storage Schema Mapper
Tools g PP

| Coordinator ||History Manager|

Metadata

. | Object Manager
Repository,

DWRN|I

¢ ¢

[Monitor | [Monitor |

operational
system

Figure 2 Data Warehouse Refresh Manager as
part of a DWS environment

operational
system

The object manager is responsible for populat-
ing the SIRIUS global schema (Section 5) during
the execution of the refreshment process. Based on
operation and structural mappings (Section 7), op-
erational updates are transformed into (transient)
objects according to the global schema. Further-
more, tasks related to key management like the as-
signment of operational keys to warehouse keys
are performed by the object manager. The storage
schema mapper performs the mapping of the global
schema to storage schemas like the star or the
snowflake schema, whereas the warehouse wrap-
per loads the data warehouse by using the appro-
priate update operations of the respective
warehouse DBMS. The metadata repository is used
for the persistent storage and management of all
metadata used in the refreshment process. It con-
tains information like the description of operation-
al systems and their contents, the particular
refreshment steps required to process data from
the sources into the DWH, and the documentation
of executed transformation steps. The coordinator
is responsible for initiating, controlling and moni-
toring the entire refreshment process. Finally, the
history manager implements the various tech-
niques for building histories supported by SIRIUS

(for a detailed description of the SIRIUS compo-
nents see [22].

The DWRM cooperates with operational sourc-
es through appropriate monitors and wrappers.
Monitors detect relevant data modifications in
each operational source using one of the tech-
niques described below in Section 6. Wrappers
translate modified data provided by the corre-
sponding monitor into the common warehouse for-
mat (Section 7), and send them to the DWRM.

5 The Global Data Model

As mentioned in Section 2, capturing the heteroge-
neity of operational sources necessitates concepts
for the definition of a uniform “global” view on inte-
grated operational data. In our approach, the
structure of the integrated operational data is de-
scribed by a global schema using the SIRIUS glo-
bal data model. The global schema is used for the
uniform representation of the operational updates
at an intermediate layer between operational
sources and the target data warehouse. It is the ba-
sis for executing further steps of the refreshment
process, e.g., integrating and cleaning data, build-
ing histories, processing derived data, and loading
the DWH. On the other side, we assume that a
storage schema is used for defining the structure of
the DWH data as it is stored in the DBMS used for
the persistence of the DWH and as it is visible to
the DWH users. For example, the warehouse
DBMS can be a relational or a multidimensional
DBMS, and the storage schema a star, snowflake
or a multidimensional schema. By using a global
schema and defining the appropriate mappings to
operational schemas as well as the warehouse
(storage) schema, the SIRIUS approach can be
used in various environments and independently
of how warehouse data is persistently stored.

operational operational operational
source source source 0perationa|
systems
source data source data source data "\ |qyel
representation, /\representation, /\representation,
SIRIUS
DWRM le+(global schema)
level
o warehouse
Warehouse

level

s Data
DBMS Warehouse

Figure 3 Schema architecture in SIRIUS

Figure 3 gives an overview of the schema archi-
tecture proposed in SIRIUS. For each operational

source a source data representation (the database
schema, in case of database systems) describes the
structure of the operational data. Parts of each
source data representation contribute to the global
schema. The various DWRM components which
are responsible for the execution of the refresh-
ment process operate on top of the SIRIUS global
schema.

The SIRIUS global data model is based on the
object-oriented data model of the Object Database
Management Group (ODMG) standard [3]. Simi-
lar to other projects focusing on data integration in
heterogeneous environments [13, 16, 2, 12], we ex-
ploit the rich semantic expressiveness of object-ori-
ented data models for representing the structure of
integrated operational data in the SIRIUS layer.
Moreover, choosing the ODMG model as the global
model of SIRIUS allows us to take advantage of
further features like object identity.

The SIRIUS global model provides the basic
constructs of the ODMG model like types, objects,
attributes and relationships, operations, etc. Dur-
ing the configuration phase, object types (at the
SIRIUS level) related to existing object types of the
operational sources are defined. During the execu-
tion of the refreshment process, built-in operations
are used from the DWRM components for creating
objects, retrieving and updating the attributes of
an object.

In the ODMG object model, attributes may
have simple or complex values (i.e., sets or refer-
ences to other objects). In our approach, we addi-
tionally distinguish between basic and derived
attributes [22]. Values of basic attributes are as-
signed directly from the values of the correspond-
ing attributes in the operational systems. On the
other hand, derived attributes represent informa-
tion that is not available (or is not explicitly stored
in order to avoid redundancy) in operational sys-
tems and is added to the DWH after integrating
data from the source systems. Derived attributes
can be defined based on values of basic attributes
either by performing arithmetical operations or us-
ing rules (implemented using methods).

A further feature of our global data model is
the notion of so-called history attributes. History
attributes can be used for modeling the temporal
character of the data stored in the warehouse, i.e.,
a warehouse maintains histories of data over an
extended period of time. Further details about the
way history attributes are treated are given in Sec-
tion 8. A part of the global schema of our running

example is shown in Figure 4.

interface SALES {
attribute integer quantity;
attribute date sales_dafe;
attribute integer saleprice_unit;
derived attribute integer cUstomer_age;
derived attribute integer branch_ID;

}

interface PRODUCT {
attribute integer prod_nr;
attribute string prod_descr:
attribute string prod_category;
attribute string dateintro;
attrlbute stnng date”) wnhdrawal
aftribute string margin_unit;
history attribute stnng price_unit;

interface CUSTOMER {

attribute string last_name;

attribute string first_name:

attribute date birth “date;

attrlbute strln marital stalus
history aftribuite stringaddress;

history attribute string postal_code;

history attribute string location;

derived attribute string loc_class;

derived attribute date customer_since;

derlved attribute date branch_ID;

1

Figure 4 Global schema example

As in the ODMG model, each SIRIUS object
has an object identifier (OID) which is unique and
immutable during its entire lifetime [2]. Object
identifiers are generated by the object manager
and are an important concept for both, supporting
the incremental warehouse refreshment and man-
aging histories. Using immutable object identifiers
in SIRIUS enables to assign object types from oper-
ational systems to the persistent representation in
the warehouse in a more natural and efficient way
than using value-based identifiers (used by rela-
tional view-based warehouse approaches). Since
value-based identifiers can be updated or deleted,
propagating updates to the corresponding ware-
house entities results in a much more complex
task. In contrast, unique object identifiers allow
the correct assignment of modified operational
data to the corresponding warehouse data. This is
a prerequisite for refreshing the warehouse incre-
mentally.

Assuming that most operational systems sup-
port a different notion of object identity, additional
information is needed in order to assign operation-
al entities to SIRIUS objects. For this purpose, an
object key is assigned to each object identifier. Each
object key consists of the local (operational) key
provided by the appropriate wrapper and a unique
source key that indicates the operation system
from which the modified operational data is ex-
tracted. The latter may be used in various ways
during the refreshment steps, e.g., to compute de-
rived attributes based on the origin of an attribute
(e.g., the derived attribute branch_ID) or to per-
form data cleaning. In contrast to the attribute val-
ues of the global schema, object keys and the

corresponding OID’s are stored persistently by the
object manager in the SIRIUS level.

6 Monitoring Updates at
Operational Sources

As mentioned in Section 2, building complete histo-
ries and refreshing the warehouse incrementally
presumes the detection of updates in the opera-
tional systems. For example, if warehouse users
are interested in analysing how product price
changes affect sales, the warehouse must provide
all information about updates of product prices and
sales. Since operational systems are not intended
to store histories, there is a difference regarding
how updates are treated for this kind of data. For
event-oriented data like product sales, each new
value is explicitly stored. Delivering data for the
warehouse means querying the source for all sales
records. In contrast, updates on state-oriented data
like product information or customer information
will normally overwrite previous values. Refresh-
ing the warehouse correctly means that all rele-
vant updates performed during two refreshment
points of time in operational sources must be moni-
tored and then - at refreshment time - propagated
into the warehouse. In this section, we illustrate
how monitors and wrappers cooperate for refresh-
ing the DWH.

Each monitor is responsible for the detection of
data (residing in the appropriate operational
source) that has changed since the last DWH re-
freshment. Depending on the kind of integrated op-
erational systems, there are several techniques
that can be used for this purpose:

< Log-based monitoring: Assuming that the
source system is a database system main-
taining and exposing a log, log entries with
information about committed transactions
that changed relevant operational data can
be used to refresh the DWH incrementally.
Once the beginning of the refreshment pro-
cess is signalled, the monitor inspects the
log file and extracts the relevant modifica-
tions that have occurred since the last exe-
cution of the refreshment process.

= Trigger-based monitoring: For sources that
support active mechanisms [25] like trig-
gers, appropriate events can be defined for
the update operations of relevant data
items. In this case, the action part of the
trigger (or of an ECA-rule) writes relevant
information (e.g., updated entities and at-
tribute values, the kind of the update oper-
ation, and update time) into an auxiliary
table. After refreshing the DWH, the con-
tents of the auxiliary table can be removed.

= Replication-based monitoring: Using repli-
cation services of commercial DBMS is a
further option to detect changes occurring
in source systems. Tools like IBM'’s Data
Propagator and Sybase’s Replication Serv-
er provide mechanisms for propagating up-
dates on base tables to outside the
operational environment.

= Application-assisted extraction: Particular-
ly for non-DBMS data management sys-
tems, changing existing applications or
implementing new ones to notify about
data changes is the only option to support
the incremental DWH refreshment pro-
cess. Creating snapshots of relevant data
and comparing it (on a per-record basis)
with the previous version that has been
used for the DWH refreshment could be a
solution for this problem. A further option
is to change application programs to time-
stamp changed data. The monitor can peri-
odically poll the source and select data
with a timestamp greater than the one of
the previous refreshment.

Figure 5 illustrates the usage of replication servic-
es provided by IBM’s Data Propagator Relational
for our example application. Data Propagator Rela-
tional provides replication services for the DB2
product family. Modification of source data are de-
tected and propagated to consistent change data
tables (CCD). Different kinds of CCD can be de-
fined depending on user requirements. For our pur-
pose, so-called complete noncondensed CCD tables
provide all required information for maintaining
complete histories of data changes including pri-
mary keys, old and new attribute values, and the
operation code (for inserts, deletes and updates).

consistent change
data table

_products
Data Propagator
Relational

_>

|Wrapper|—>| DWRM |

Figure 5 Using replication services in SIRIUS

7 Transforming Updates according
to the Global Schema

The discussion of the monitoring techniques in
Section 6 has shown that monitoring and extrac-
tion of updates at operational sources can be per-

formed in various ways. Updates detected by a
monitor can be delivered, for example, in the form
of tuples inserted into auxiliary tables or as simple
dump files. In the next step of the refreshment pro-
cess, wrappers are responsible for transforming
modified data from various operational representa-
tions into a common structure that conforms to the
defined global schema. Furthermore, update opera-
tions signalled by monitors must be mapped to the
corresponding operations in the SIRIUS level. Re-
sults delivered by each wrapper provide all neces-
sary information about modified data since the last
refreshment.

7.1 Structural and Operation Mappings

For each operational source, the appropriate wrap-
per provides two kinds of mapping functionality:

= for each basic attribute of the global sche-
ma, the wrapper performs a structural
mapping, i.e., attributes of the integrated
sources are mapped to global attributes,
and

= for each kind of update operation signalled
by a monitor, the wrapper performs an op-
eration mapping, i.e., local update opera-
tions are assigned to the corresponding
global update operations.

Structural and operation mappings are per-
formed using specifications which are defined dur-
ing the DWH configuration phase. SIRIUS verifies
the specification of the refreshment process such
that for each attribute of the global schema (ex-
cept for derived attributes), a structural mapping
exists. A structural mapping can be defined for one
attribute or a group of attributes extracted from
(exactly) one operational source. The syntax for
structural mapping specifications has the form

<local attribute name, global basic
attribute name, [mapping]>

The last (optional) part of a structural map-
ping specification can be used to define diverse
kinds of mapping, i.e., 1:1, 1:n, n:1 and mapping
methods. The default case is a 1:1 mapping be-
tween local and global attributes. In our example,
if we assume that the information about the mari-
tal status of customers is modeled in the same way
as in our global schema, the mapping to the global
attribute marital_status will be a 1:1 mapping.
Further (predefined) structural mappings provid-
ed by SIRIUS are 1:n (extract n global attributes
from 1 local) and n:1 (merge n local attributes into
1 global). For instance, some systems store ad-
dress information in a single, aggregated field.
Mapping this information to the individual global
attributes last name , first name , address ,

postal_code , and location requires splitting the
extracted local attribute and building the individu-
al global attributes (1:n mapping). In other cases,
more complex mappings are needed and can be de-
fined as a mapping method which is executed dur-
ing warehouse refreshment. For example, product
prices in different currencies (integrated from dif-
ferent branches) can be converted into a common
currency by defining a mapping method that per-
forms a simple arithmetic operation. Figure 6
shows an example of structural mappings for the
class PRODUCTof our example global schema.
Besides differences related to the structure of oper-
ational data, operational systems also differ in the
way update operations (insert, delete, update) are
executed. For example, changing the price of a
product could be performed in a certain operation-
al source by updating the value of an existing
record, whereas in another source a new record is
inserted. In our global schema example of Figure 4,
this update corresponds (in both cases) to an up-
date operation of the attribute price_unit . Simi-
larly, removing a product from the product line
corresponds to the deletion of the appropriate
product record (or tuple). In the SIRIUS level,
since the DWH maintains histories of data, the
same information is stored by introducing the at-
tribute date_withdrawal of our example. In this
case, the delete operation at the operational source
results in an update operation of the attribute
date_withdrawal in SIRIUS.

Thus, in order to execute the refreshment pro-
cess incrementally, SIRIUS must further perform
the mapping between operational and global up-
date operations. For a given source, an operation
mapping specification is a pair

<local operation name [local attribute
name {, local attribute name}],

global operation name [global attribute
name {, global attribute name}]>

where local and global operation names have one of
the values insert , update or delete . In case of an
update operation, affected warehouse attribute
names also have to be defined (see also Figure 6 for
an operation mapping example).

7.2 OIF Representation

After transforming modified data using structural
and operation mapping specifications, wrappers
convert the results into a common format that can
be further processed by the DWRM. For represent-
ing transformed objects in a uniform way, we use a
variant of the OIF (Object Interchange Format)
specification language for persistent objects and
their states [3]. OIF supports all object database
concepts compliant to the ODMG Object Model like

object identifiers, type bindings and attribute val-
ues. Each OIF object definition specifies the type,
attribute values, and relationships to other objects
for the defined object. For example, the object defi-
nition
Johnson Customer{last_name “Johnson”,
first_name “Ken”, birth_date “01/07/65"}

defines an instance of the class customer and ini-
tializes the attributes last_name , first name and
birth_date with the values “Johnson”, “Ken” and
“01/07/65”. Since SIRIUS wrappers must provide
information about modified objects, object defini-
tions are extended by a prefix that indicates the
kind of the global update operation (i.e., insert, up-
date, delete). Furthermore, each object definition
must also contain the corresponding local key
which is then assigned to a SIRIUS object identifi-
er. For updates of the local key, the previous value
of the local key is also needed in order to transform
the update correctly.

1. UPDATE product SET price = 75 WHERE nr=101
2. INSERT INTO product VALUES (300, ‘F’, 20)

3. UPDATE product SET price = 60 WHERE nr=101
4. DELETE FROM product WHERE nr=200

product(nr, name, price) consistent change table

0L 1A |10 75 60 | —
102 |B~ |30 101 A[75 U
200 [R [s0 —P 300] F] 20 I
300 [F__|20 101 A[60| U

200 R[50 D

structural mappings
class: PRODUCT
{<product.nr, prod_id>,
<product.name, prod_descr>,
<-, date_withdrawal, current_date()>, \
<product.price, price_unit>}
class: PRODUCT
{<insert, insert>,
<update(product.nr, product.name, product.price),

update(prod_id, prod_descr, price_unit)>,
<delete, update(date_withdrawal)>}

Wrapper

operation mappings

OIF object definitions
operational source:1, creation date: 07/04/98

U 101 PRODUCT{prod_id “101", prod_descr “A”, price_unit “75"}
| 300 PRODUCT{prod_id “300", prod_descr “F”, price_unit “20"}
U 101 PRODUCT{prod_id “101", prod_descr “A”, price_unit “60"}

U 200 PRODUCT{prod_id “200", prod_descr “R”,
date_withdrawal “07/04/98",price_unit “50"}

Figure 6 An example for transforming operational
updates

Figure 6 demonstrates the transformation
steps for a set of updates on table product . Accord-
ing to our example of Figure 5, updates are first
propagated to the consistent change table. Then,
the wrapper generates for each tuple of this table

an OIF object definition using the according struc-
tural and operation mappings.

7.3 Wrapper Operating Mode

Another important characteristic of the SIRIUS
approach is the “preparation” of operational data
before the next refreshment process execution is
initiated, i.e., wrappers transform operational data
into the warehouse format in an asynchronous
mode (compared to the actual refreshment point of
time). This results in a reduction of the time need-
ed for refreshing the warehouse. The tasks of ap-
plying structural and operation mappings and
converting modified data into OIF object defini-
tions can be performed by each source wrapper in
the time between two warehouse refreshments and
independently of processing steps at other sources.
As soon as the beginning of the refreshment pro-
cess is signalled, only the integration of the results
delivered by each wrapper must be further pro-
cessed. This is a much more efficient operating
mode compared to full reloads, where at the begin-
ning of the refreshment process operational data
must first be extracted and then transformed by
the wrapper.

The wrapper operating mode is as follows.
Wrappers access the various auxiliary monitoring
structures periodically or upon detection of a new
update and translate the entries into OIF object
definitions using the structural and operation
mapping specifications as described in Section 7.1.
Once the beginning of the refreshment process is
signalled, the OIF object definitions are delivered
to the Data Warehouse Refresh Manager. For the
implementation of this “active” behavior in a sim-
ple but powerful way, we plan to use active mecha-
nisms [25].

8 Representing Operational Updates
as SIRIUS Objects

Data that changed since the last refreshment are
collected from the various wrappers by the DWRM
(in form of OIF object definitions). The object man-
ager proceeds with the creation of new SIRIUS ob-
jects and the assignment values to basic global
attributes. First, depending on the information
about the kind of the global update operation (pro-
vided with the OIF object definition) the object
manager creates new OID'’s (in case of an insert) or
uses the appropriate local key to match an existing
OID (in case of updates or deletes). Recall from
Section 5 that unique object identifiers allow the
correct assignment of modified operational data to
the corresponding warehouse data.

For history attributes, SIRIUS supports vari-
ous options for assigning attribute values depend-

ing on how temporal information is maintained in
the DWH. Maintaining complete histories of ware-
house data means that each update in the corre-
sponding operational source is propagated and
stored in the warehouse. For partial histories, all
updates during two refreshment points are dis-
carded, and only the current values - at refresh-
ment time - are propagated into the warehouse. At
the same time, the values stored in the warehouse
before refreshing it are being retained. Finally, in
some cases no history is needed for parts of the
warehouse, i.e., only the current values of the oper-
ational sources must be propagated into the ware-
house to replace the old values.

Defining a history global attribute corresponds
to the above mentioned case of complete histories.
In this case, the attribute value consists of all mod-
ified data that have been assigned to the same SIR-
IUS object. For attributes that are not indicated as
history attributes, only the last value assigned to a
certain SIRIUS object is propagated into the ware-
house. Distinguishing between partial and no his-
tories is a task of the warehouse wrapper, i.e,
according to the concrete storage schema, current
values must be added to the previous values in the
first case, and overwritten in the second.

In a next step, since data extracted from opera-
tional systems contains errors, it must be cleaned
before loading it into the data warehouse. Data
values from operational systems can be incorrect,
inconsistent, incomplete or in an unreadable for-
mat. Particularly, for the integration of external
data, cleaning is an essential task in order to get
correct data into the data warehouse. Note that,
since only updates of operational data are propa-
gated into the warehouse, cleaning must be per-
formed on modified data. SIRIUS provides a set of
simple cleaning methods for identifying duplicates
from different sources using matching of key and
non-key attributes. Violation of simple, domain-
specific business rules (e.g., no negative product
prices or attribute value's range checking) can be
implemented by defining appropriate methods on
the global schema. Since data cleaning is not the
main focus of the project, we only provide an inter-
face for integrating specific cleaning tools like In-
foRefiner [14], Centric [5], and the Trillium
Software System (R) [21].

In the last step of the warehouse refresh pro-
cess, cleaned data must be complemented with fur-
ther information and then loaded into the DWH. In
most cases, additional preprocessing is required
before loading data into the DWH, including calcu-
lation of derived attributes, assignment of time-re-
lated information (usually by timestamping data
with the update date) and providing a common lev-
el of detail for data from different sources. Finally,
the storage schema mapper and the warehouse

mapper perform the semantical and syntactical
mapping from the global schema to the storage
schema, respectively [22]. The refreshment process
ends with the loading of the target warehouse.

9 Conclusion and Status

In this paper, we presented the main features of
the SIRIUS approach for refreshing a DWH incre-
mentally. Our object-oriented approach allows the
integration of data from various heterogeneous op-
erational sources and provides mechanisms for re-
freshing a DWH independently of how warehouse
data are persistently stored. We described how var-
ious monitoring techniques for detecting relevant
updates of operational data can be integrated in
our approach. Furthermore, we showed how opera-
tional updates are transformed into a uniform glo-
bal model using structural and operation mapping
specifications. Our object-oriented model and spe-
cially the notion of object identity allow the assign-
ment of operational updates to the corresponding
warehouse data in a powerful way. In contrast to
existing approaches which reduce the incremental
refresh problem to techniques for maintaining ma-
terialized views, SIRIUS provides mechanisms re-
garding the special properties of warehouse data
like maintenance of histories or building aggrega-
tions.

We currently implement a data warehouse for
the example of the mail-order business presented
above. Operational sources are various database
systems (e.g., Oracle and O,) as well as flat files.
Updates detected in these systems are loaded into
different target warehouses (DB2 and Oracle). We
have also implemented various monitors and
wrappers according to the classification of Section
6.

The main focus of our future work is the inves-
tigation of the impact of various decision support
applications for the global model design and the
specification of the warehouse wrapper. The devel-
opment of techniques for generating warehouse
wrappers based on declarative specifications will
reduce the effort for wrapper implementation. Fur-
thermore, we plan to extend the storage schema
mapper by mappings for various multidimensional
logical schemas.

References

1 D. Agrawal, A. El Abbadi, A. Singh, T. Yurek.
Efficient View Maintenance at Data Ware-
houses. Proc. of ACM SIGMOD Intl. Conf. of
Management of Data, Tucson, Arizona, May
1997.

2 E. Bertino. Integration of Heterogeneous Data
Repositories by Using Object-Oriented Views.
Proc. of the 1st Intl. Workshop on Interopera-

10

11

12

13

14

15

16

17

18

19

20

bility in Multidatabase Systems, Kyoto, Japan,
April 1991.

R. G.G. Cattell, D. Barry (ed). The Object Data-
base Standard: ODMG 2.0. Morgan Kaufmann
Publishers, San Francisco, California, 1997.

S. Chaudhuri, U. Dayal. An Overview of Data
Warehousing and OLAP Technology. ACM
SIGMOD Record, 26:1, March 1997.

FirstLogic. http://www.firstlogic.com.

A. Gupta, I.S. Mumick. Maintenance of mate-
rialized views: Problems, techniques, and ap-
plications. IEEE Data Engineering Bulletin,
18(2), June 1995.

J. Hammer, H. Garcia-Molina, J. Widom, W.
Labio, Y. Zhuge. The Stanford Data Warehous-
ing Project. In [23].

R. Hull, G. Zhou. A Framework for Supporting
Data Integration Using the Materialized and
Virtual Apporaches. Proc. of the ACM SIG-
MOD Intl. Conf. on Management of Data, Mon-
treal, Quebec, Canada, June 1996.

N. Huyn. Multiple-View Self-Maintenance in
Data Warehousing Environments. Proc. of the
23rd Intl. Conf. on Very Large Data Bases,
Athens, Greece, 1997.

W.H. Immon. Building the Data Warehouse.
John Wiley, 1996.

M. Jarke, Y. Vassiliou. Data Warehouse Quali-
ty: A Review of the DWQ Project. Invited pa-
per, Proc. 2nd Conf. on Information Quality,
Massachusetts Institute of Technology, Cam-
bridge, May, 1997.

M. Kaul, K. Dorsten, E.J. Neuhold. ViewSys-
tem: Integrating Heterogeneous Information
Bases by Object-Oriented Views. Proc. of the
6th Intl. Conference on Data Engineering, Los
Angeles, California, February 1990.

J. Mylopoulos, A. Gal, K. Kontogiannis, M.
Stanley. A Generic Integration Architecture
for Cooperative Information Systems. Proc. of
the 1st IFCIS Intl. Conference on Cooperative
Information Systems, Brussels, Belgium, June
1996.

Platinum Software
www.platinum.com.

D. Quass, A. Gupta, I.S. Mumick, J. Widom.
Making Views Self-Maintainable for Data
Warehousing. Proc. of the 4th Intl. Conf. on
Parallel and Distributed Information Systems,
(PDIS '96), December 1996.

M.T. Roth, P. Schwarz. Don't Scrap It, Wrap It!
A Wrapper Architecture for Legacy Data
Sources. Proc. of the 23rd Intl. Conf. on Very
Large Data Bases, Athens, Greece, 1997.

N. Roussopoulos. Materialized Views and Data
Warehouses. SIGMOD Record, 27(1), p21-26,
March 1998.

D. Srivastava, S. Dar, H.V. Jagadish, A.Y.
Levy. Answering Queries with Aggregation
Using Views. Proc. of the 22th Intl. Conf. on
Very Large Data Bases, Bombay, India, 1996.
M. Staudt, M. Jarke. Incremental Mainte-
nance of Externally Materialized Views. Proc.
of the 22th Intl. Conf. on Very Large Data
Bases, Bombay, India, September 1996.

D. Theodoratos, S. Ligoudistianos , T. Sellis.

Corporation. http://

21

22

23

24

25

26

27

28

29

30

31

Designing the Global Data Warehouse with
SPJ Views. Proc. of the 11th Intl. Conf. on Ad-
vanced Information Systems Engineering
(CAISE'99), Heidelberg, Germany, June 1999.

Trillium Software. http://www.trillium-
soft.com.

A. Vavouras, S. Gatziu, K.R. Dittrich. Model-
ing and Executing the Data Warehouse Re-
freshment Process. Technical Report,
Department of Information Technology, No-
vember 1999.

J. Widom (ed.). Special Issue on Materialized
Views and Data Warehousing, IEEE Data En-
gineering Bulletin, 18:2, June 1995.

J. Widom. Research Problems in Data Ware-
housing. Proc. of the 4th Intl. Conf. on Informa-
tion and Knowledge, Baltimore, 1995.

J. Widom, S. Ceri (ed). Active Database Sys-
tems: Triggers and Rules for Advanced Data-
base Processing. Morgan-Kaufmann, 1996.

J. Wiener, H. Gupta, W. Labio, Y. Zhuge, H.
Garcia-Molina, J. Widom. A System Prototype
for Warehouse View Maintenace. Proc. of the
ACM Workshop on Materialized Views: Tech-
niques and Applications, Montreal, June 1996.

M-C. Wu, A.P. Buchmann. Research Issues in
Data Warehousing. Datenbanksysteme in
Buro, Technik und Wissenschaft: Gl-Fachta-
gung, Springer-Verlag, Ulm, 1997.

J. Yang, K. Karlapalem, Q. Li. Algorithms for
Materialized View Design in Data Warehous-
ing Environment. Proc. of the 23rd Intl. Conf.
on Very Large Data Bases, Athens, Greece, Au-
gust 1997.

J. Yang and J. Widom. Maintaining Temporal
Views Over Non-Historical Information Sourc-
es For Data Warehousing. Proc. of the 14th In-
tl. Conf. on Data Engineering, Orlando,
Florida, Februar 1998.

X. Zhang , E.A. Rundensteiner. Data Ware-
house Maintenance Under Cuncurrent Sche-
ma and Data Updates. Proc. of the 15th Intl.
Conf. on Data Engineering, Sydney, Austrialia,
March 1999.

Y. Zhuge, H. Garcia-Molina, and J.L. Wiener
The Strobe Algorithms for Multi-Source Ware-
house Consistency. Proc. of the 4th Intl. Conf.
on Parallel and Distributed Information Sys-
tems, (PDIS ‘96), December 1996.

	Abstract
	1 Introduction
	2 Incremental Refreshment Issues
	3 A Running Example
	Figure 1 The Data Warehouse System for the Mail- Order business

	4 The SIRIUS Architecture
	Figure 2 Data Warehouse Refresh Manager as part of a DWS environment

	5 The Global Data Model
	Figure 3 Schema architecture in SIRIUS
	Figure 4 Global schema example

	6 Monitoring Updates at Operational Sources
	Figure 5 Using replication services in SIRIUS

	7 Transforming Updates according to the Global Schema
	7.1 Structural and Operation Mappings
	7.2 OIF Representation
	Figure 6 An example for transforming operational updates

	7.3 Wrapper Operating Mode

	8 Representing Operational Updates as SIRIUS Objects
	9 Conclusion and Status
	1 D. Agrawal, A. El Abbadi, A. Singh, T. Yurek. Efficient View Maintenance at Data Warehouses. Pr...
	2 E. Bertino. Integration of Heterogeneous Data Repositories by Using Object-Oriented Views. Proc...
	3 R. G.G. Cattell, D. Barry (ed). The Object Database Standard: ODMG 2.0. Morgan Kaufmann Publish...
	4 S. Chaudhuri, U. Dayal. An Overview of Data Warehousing and OLAP Technology. ACM SIGMOD Record,...
	5 FirstLogic. http://www.firstlogic.com.
	6 A. Gupta, I.S. Mumick. Maintenance of materialized views: Problems, techniques, and application...
	7 J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, Y. Zhuge. The Stanford Data Warehousing Projec...
	8 R. Hull, G. Zhou. A Framework for Supporting Data Integration Using the Materialized and Virtua...
	9 N. Huyn. Multiple-View Self-Maintenance in Data Warehousing Environments. Proc. of the 23rd Int...
	10 W.H. Immon. Building the Data Warehouse. John Wiley, 1996.
	11 M. Jarke, Y. Vassiliou. Data Warehouse Quality: A Review of the DWQ Project. Invited paper, Pr...
	12 M. Kaul, K. Dorsten, E.J. Neuhold. ViewSystem: Integrating Heterogeneous Information Bases by ...
	13 J. Mylopoulos, A. Gal, K. Kontogiannis, M. Stanley. A Generic Integration Architecture for Coo...
	14 Platinum Software Corporation. http:// www.platinum.com.
	15 D. Quass, A. Gupta, I.S. Mumick, J. Widom. Making Views Self-Maintainable for Data Warehousing...
	16 M.T. Roth, P. Schwarz. Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy Data Sources...
	17 N. Roussopoulos. Materialized Views and Data Warehouses. SIGMOD Record, 27(1), p21-26, March 1...
	18 D. Srivastava, S. Dar, H.V. Jagadish, A.Y. Levy. Answering Queries with Aggregation Using View...
	19 M. Staudt, M. Jarke. Incremental Maintenance of Externally Materialized Views. Proc. of the 22...
	20 D. Theodoratos, S. Ligoudistianos , T. Sellis. Designing the Global Data Warehouse with SPJ Vi...
	21 Trillium Software. http://www.trilliumsoft.com.
	22 A. Vavouras, S. Gatziu, K.R. Dittrich. Modeling and Executing the Data Warehouse Refreshment P...
	23 J. Widom (ed.). Special Issue on Materialized Views and Data Warehousing, IEEE Data Engineerin...
	24 J. Widom. Research Problems in Data Warehousing. Proc. of the 4th Intl. Conf. on Information a...
	25 J. Widom, S. Ceri (ed). Active Database Systems: Triggers and Rules for Advanced Database Proc...
	26 J. Wiener, H. Gupta, W. Labio, Y. Zhuge, H. Garcia-Molina, J. Widom. A System Prototype for Wa...
	27 M-C. Wu, A.P. Buchmann. Research Issues in Data Warehousing. Datenbanksysteme in Büro, Technik...
	28 J. Yang, K. Karlapalem, Q. Li. Algorithms for Materialized View Design in Data Warehousing Env...
	29 J. Yang and J. Widom. Maintaining Temporal Views Over Non-Historical Information Sources For D...
	30 X. Zhang , E.A. Rundensteiner. Data Warehouse Maintenance Under Cuncurrent Schema and Data Upd...
	31 Y. Zhuge, H. Garcia-Molina, and J.L. Wiener The Strobe Algorithms for Multi-Source Warehouse C...

