
An Overview and Classi�cation of Mediated Query Systems

Ruxandra Domenig�, Klaus R. Dittrich

Department of Information Technology, University of Zurich

fdomenigjdittrichg@i�.unizh.ch

Abstract

Multimedia technology, global information infra-
structures and other developments allow users to ac-
cess more and more information sources of various
types. However, the \technical" availability alone (by
means of networks, WWW, mail systems, databases,
etc.) is not suÆcient for making meaningful and ad-
vanced use of all information available on-line. There-
fore, the problem of e�ectively and eÆciently access-
ing and querying heterogeneous and distributed data
sources is an important research direction. This pa-
per aims at classifying existing approaches which can
be used to query heterogeneous data sources. We
consider one of the approaches { the mediated query
approach { in more detail and provide a classi�cation
framework for it as well.

1 Introduction

Progress in both, persistent storage for all kinds of
data and computer network technology, is the main
reason for the explosive growth of data that are avail-
able on-line. New technologies, most notably the
World Wide Web (WWW), allow anybody to access
data very easily, independent of its physical loca-
tion. However, a uniform presentation interface to
distributed data is by far not enough; users need
means to make intelligible use of large amounts of
heterogeneous data:

� Users must be able to describe what informa-
tion they are looking for, i.e., what criteria it
should meet, irrespective of which source might
o�er it. When searching, information needs can
be very diverse. The search may range from an
\approximate" one, where no knowledge about
the structure and the characteristics of the un-
derlying data sources is available, to an exact
one, where the user knows the underlying data

�The work of R. Domenig is supported by Ubilab, the IT
Laboratory of UBS.

sources and their query capabilities as well as
the (kind of) information he can expect. We call
the �rst kind of search imprecise and the second
precise.

� Users must be able to correlate information of
di�erent types and from di�erent sources.

� Information meeting speci�ed search criteria
must be presented in a uniform way and may
eventually require further manipulation like or-
dering or grouping.

Summarizing, we consider heterogeneous data
sources which provide a query interface and we are
looking for systems which allow for retrieving these
data in a comprehensive and uni�ed way. There is a
multitude of such approaches. In this paper, we will
�rst give an overview of some of them. Our focus is
on querying, not on manipulation of the data. We as-
sume that information manipulation is in most cases
done on a system-by-system basis, working directly
with the participating component systems. Our sec-
ond aim is to present one approach in detail. Its real-
ization is based on mediators [Wie92], which were in-
troduced with the argumentation that they \simplify,
abstract, reduce, merge and explain data". In other
words, mediators add value to data and thus help to
exploit more of their information. As a consequence,
mediated query systems (MQS) were developed. An
MQS is a system

� build on top of heterogeneous data sources,

� implemented using mediators, and

� which allows for querying the content of these
data sources.

Users of MQS can express queries in a uni�ed way,
but data are still stored in the local systems. Inter-
nally, a query is decomposed into subqueries which
are sent to those data sources that may be able to
answer them, and �nally the results are combined
and presented in a uniform way.



The remainder of the paper is structured as fol-
lows: Section 2 classi�es the approaches for integrat-
ing heterogeneous data and Section 3 presents the
classi�cation features for mediated querying systems.
Section 4 concludes the paper.

2 A Taxonomy of Systems

for Querying Heterogeneous

Data

The huge amount of data available in electronic form
today has triggered the development of various ap-
proaches for heterogeneous data, retrieval and infor-
mation extraction which we classify as depicted in
Figure 1.
First, we distinguish between materialized and vir-

tual approaches. In a materialized approach, data
originating from local sources are integrated into one
single new database on which all queries can oper-
ate. In a virtual approach, data remains in the local
sources. Thus, queries operate directly on them and
data integration has to take place \on the 
y" during
query processing. On a lower level, the classi�ca-
tion further distinguishes approaches with respect to
the structural heterogeneity of the queried data1 and
their origin (i.e., whether the retrieved data is more
or less entirely stored in the underlying data sources
{ native { or whether it may also be derived from the
data stored in underlying sources). Other features
not directly visible from this �gure include the kind
of supported queries (precise and/or imprecise), and
the extensibility of the system, i.e. whether additional
data sources can be easily accommodated or not.
There are essentially two variants of materialized

systems:

� One possibility is to migrate the data from the
local systems to a \universal" DBMS, which is
able to handle all (or many) types of informa-
tion. Examples are object-relational DBMS or
object-oriented DBMS. Data from local systems
are extracted, integrated and stored in the cen-
tral database. Thereafter, the local systems are
not used any more, at least in principle.

The main drawback of this approach is that ex-
isting applications for the local systems have to
be rewritten for the new database. Moreover,
the process of data migration can be very ex-
pensive, since the old data has to be transformed

1Data may be structured, semistructured or unstructured;
Section 3 will give a de�nition of these notions. Until then, an
intuitive understanding is suÆcient.

and often semantically enriched for the new sys-
tem (the new database usually has a richer data
model). Another aspect is that the migrated
data can be accessed not only for reading, but
also for writing. For this reason, new access con-
trol policies have to be established. Nevertheless,
migration can be a good solution, for example,
if users or applications need the whole function-
ality of a DBMS (and not just the query func-
tionality) and the old systems' applications are
no longer needed, at least in their former form
[BGD97].

� In the second approach, data warehousing, data
from the local data sources are imported into
one DBMS, the data warehouse. The di�erence
to the previous case is that the underlying data
sources are still operational, so in fact the data
is replicated. The warehouse data is typically
not imported in the same form and volume as it
exists in the local data systems. It may be trans-
formed, cleaned and prepared for certain analysis
tasks, like data mining and OLAP (Online An-
alytical Processing). Data warehouses often do
not make the most recent data available, since a
data warehouse is usually not updated immedi-
ately after a local data source has changed. How-
ever, they store historical data, as required by
OLAP and data mining applications.

With respect to querying, both approaches have
the advantage that real DBMS functionality is avail-
able, so precise searching is supported. However, the
overhead for building such systems is signi�cant and
imprecise search is not supported.
In the virtual approach, data remain in their local

systems. A layer is built on top of them which takes
the query from the user, processes it, sends (parts of)
it to the appropriate sources and presents the results.
Three major approaches can be distinguished:

� Regarding querying of unstructured sources,
(meta)search engines have gained importance,
mainly due to the popularity of the Web.

Search engines on the Web allow to search data
which are physically stored at distributed sites
and thus provide a single access point for them.
Data is homogeneous, since it usually consists of
textual parts of HTML �les.

In order to increase retrieval e�ectivity,
metasearch engines have been introduced. Ex-
amples are SavvySearch [DH97], MetaCrawler
[SE97] and the current version of Informia
[BBMS98]. In a metasearch engine, queries are



where it is

Systems
Materialized

SystemsData Warehouse

Virtual
Integrated Systems

Mediated Query
Universal DBMS (Meta)search Engines Federated Databases

heterogeneous data (sources)

Systems for querying

let the data 

materialized

native data
unstructured

the data

native

structured data
native and derived

virtual

structured data
mostly structured

native data

move

structured native data
semistructured or
unstructured,

Figure 1: Classi�cation of Systems for Querying Heterogeneous Data

sent to di�erent search engines whose results
are collected and then presented to the user in
a uni�ed way. The main focus of metasearch
engines lies with the combination of results.

Summarizing, (meta)search engines are suitable
for unstructured data and support imprecise
search.

� The aim of federated databases is to give the user
the impression of working with one DBMS, but
in fact the data is managed by several individ-
ual DBMS. Since a federated database still pro-
vides typical DBMS functionality, queries sup-
port only precise search.

Federated database systems may also be re-
garded to follow the materialized approach (as
indicated in Figure 1 through the dotted line),
because they may store parts of the underly-
ing data in an internal repository (for exam-
ple, FRIEND [MJD97]). However, this mate-
rialization is only partial and/or temporary (to
enhance performance, for example). The data
is still managed in and for most cases retrieved
from the local systems, in contrast to the previ-
ously de�ned materialized approach.

Summarizing, federated databases are suitable
for structured data and support precise search.
Federated databases have been investigated in
the research community for a long time. In
the last years, commercial products have been
made available, for example DataJoiner from
IBM [Co.97], Cohera Data Federation System
from Cohera [COH], MIRACLE from ORACLE
[Hug96], EDI/S from Information Builders Inc.
[Inc97]. They implement many issues of a fed-
erated database, but do not o�er complete solu-
tions yet.

� The last approach presented in Figure 1 is the
mediated query approach, roughly characterized
in Section 1. Query processing in this case is very
similar to the metasearch case, with the di�er-
ence that data in the underlying sources may be
heterogeneous, i.e. structured, semistructured or
unstructured.

Since the approaches presented in Figure 1 often
have common aspects, their classi�cation does not
always render a sharp distinction for each and ev-
ery aspect. For example, there are data warehous-
ing systems which use the concept of mediation
for the task of data integration (SIRIUS [VGD99],
H2O [ZHKF95]). However, the classi�cation de�nes
at least some boundaries between the existing ap-
proaches and highlights their advantages and dis-
advantages. Table 1 summarizes the strengths and
shortcomings of the approaches classi�ed in Figure 1.

The explosive growth of data in the WWW also
led to the development of systems which apply the
database-style of querying and management to Web
data, for example WebSQL [MMM97], WebOQL
[AM98], Strudel [FFK+97], etc. These systems
use some techniques and mechanisms from the ap-
proaches presented above, but only for the Web.
[FLM98] presents a survey of existing systems for
managing data in the Web using database technol-
ogy.

Since we are interested in systems for both precise
and imprecise search, we focus on mediated query
systems in the remainder of the paper.



Universal DBMS + full DBMS functionality
+ suitable for precise search
� not suitable for imprecise search
� static
� migration of existing applications
� expensive migration

Data Warehouses + architected/optimized for special purposes
� not all data available
� mostly static

Federated DBMS + full DBMS functionality
+ suitable for precise search
� not suitable for imprecise search
� mostly static

(Meta)Search Engines + suitable for unstructured data
+ high e�ectivity of imprecise search
� not useful for precise search

Mediated Query Systems + support all sorts of possible data
+ support precise and imprecise search
+ support dynamic set of data sources
� only queries (no updates)

Table 1: Evaluation of Heterogeneous Data Systems with Regard to Querying.

3 Classi�cation Features for

MQS

This section provides a rough classi�cation of fea-
tures which characterize mediated query systems. A
considerable number of mediated query systems has
been proposed, including Garlic [Cea95] from IBM
Almaden Research Center, TSIMMIS [PGMW95]
from Stanford University, InfoSleuth [Bea97] from
Microelectronics and Computer Technology Corpo-
ration (MCC), DIOM [LP97] from the University of
Alberta and the Oregon Graduate Institute, Infor-
mation Manifold (IM) from AT&T Labs Research
[LRO96], MAGIC [KRR97] from the University of
Karlsruhe, SIMS [AKH96] from the University of
Southern California, DISCO [TRV96] from INRIA
and SINGAPORE [DD99] from the University of
Z�urich.
In our classi�cation we distinguish between func-

tional and implementation features. Functional fea-
tures characterize the way the MQS presents itself to
the outside, i.e., to the users or applications. The
internal, technical realization of systems is character-
ized by implementation features. Obviously, there is
a strong interconnection between both: the function-
ality exported to the outside depends on the techni-
cal realization of the system, and vice versa. Table 2
summarizes the implementation and functional fea-

tures we consider.

3.1 Functional Features

Functional features can be classi�ed according to var-
ious criteria, which are presented below.

3.1.1 Query Characteristics

The way users can access the system, i.e., the inter-
face through which they can express their informa-
tion needs and the means through which they can
understand the \information space" to be queried, is
obviously of utmost importance for the usability of
an MQS. Users must be able to do both, precise and
imprecise search. Therefore, database and informa-
tion retrieval techniques should be combined. The
following list includes aspects which can be used to
characterize queries:

� Query language. A query language is used to ex-
press the information needed by users. It can be
a database-like query language, where users can
retrieve information based on attribute names,
types and their operations. At the other end of
the spectrum are search engines, where a query
is expressed using combinations of keywords
(like boolean operators \and", \or", \not") or
sometimes even natural language (i.e. sentences).



Functional Features Implementation Features

Query Characteristics Architecture
Query Language Centralized/Decentralized Architecture
Query Type (Exact/Vague) Functionality Source Layer
Schema Dependence Functionality Mediation Layer

Result Presentation Internal Data Representation
Ranked List Simple/Complex Model
Relevance Feedback

Structural Properties Query Processing
Unstructured Data Source Selection
Structured Data Query Splitting
Semistructured Data Query Optimization

Query Semantics
Extensibility Metadata

Global Model Extensibility Metadata Content
Wrapper Extensibility Metadata Acquisition
Mediator Extensibility
Metadata Extensibility

Table 2: Functional and Implementation Features for Mediated Query Systems

Since MQS should support the querying of all
kinds of information, a good solution would be
to combine both styles of querying.

� Query Type. Since the information needs of users
are very diverse, they can express this by dif-
ferent types of queries. They can send an ex-
act query to structured systems, provided they
know the sources and their query capabilities,
i.e., they execute a precise search. When sources
(their structure and query capabilities) are un-
known to users, they can send a vague query, i.e.,
they execute an imprecise search.

� Schema Dependence of Queries. The way users
query MQS is related to the existence or not of
a (global) schema and its use. Two main cases
can be distinguished.

In the �rst case, the MQS has a global schema
and the user has to use it for querying the sys-
tem.

In the second case, a schema is not necessar-
ily needed, but the schemas of the underlying
sources (if they have one) are still expressed in-
ternally in terms of the global model and the
user can refer to them or not in order to query
the system. Expressed di�erently, there is no
need for a global schema, but if there is one, the
user can (but need not) use it. For example, an
MQS may o�er the possibility to search for an
attribute value in a relational database, without

having to specify which attribute has this value.

The �rst case can be further split into two sub-
cases, depending on how the global schema was
de�ned for the MQS. First applications may have
been analyzed and then, based on the result, a
schema for the system was created (i.e. database
design as usual). This means the MQS has an
a priori de�ned schema and all integration and
translation steps { and also the queries { are per-
formed against this well-de�ned schema.

Alternatively, every source exposes its local
schema in terms of the global model. These ho-
mogenized local schemas are then integrated to
yield the global schema for the MQS. All queries
are performed against this global schema.

3.1.2 Result presentation

The way results are presented to the user or applica-
tion is strongly related to the way an MQS is queried.
DBMS support only precise search. In the case of a
search engine, on the other hand, the results are only
\related" to the user's query, they represent possi-
ble answers to the query. Thereby, two problems can
occur. First, too many results may be produced so
that the user is not able to go through all of them in
a meaningful way. Second, other information items
may exist in the system which were not returned, but
which would answer the query anyway. Two tech-
niques from information retrieval can be applied in
the case of MQS:



� Ranked List. The �rst technique to present the
results is to calculate a list of the retrieved infor-
mation items and present them in decreasing rel-
evance order. The relevance is calculated using
di�erent heuristics and intuitively represents the
probability that an information item answers the
given query. The main challenge is to combine
the concept of relevance (for imprecise search)
with the concept of structured information (for
precise search).

� Relevance Feedback. The main idea behind this
technique is to give users the possibility to im-
prove the computation of results by specifying
more facts about the information they are look-
ing for than just the query. Usually, relevance
feedback means that the MQS presents a list of
information items which can answer a query, and
the user marks them as relevant or not. The
system then calculates a new list, based on the
initial query and the relevant information items.

3.1.3 Structural Data Properties

As already mentioned, we assume that data are het-
erogeneous. One important kind of heterogeneity is
structural heterogeneity, i.e., data from the underly-
ing data sources may be structured, semistructured
or unstructured. In order to de�ne this \structured-
ness", we consider how data are stored physically and
also what kind of operations are available for them.
We assume that all data is composed of data ele-
ments. Then, we distinguish between:

� Structured Data Element. A data element is
called structured if it

{ adheres to a well-de�ned schema that de-
�nes its (recursive) composition out of other
data elements, or

{ is an instance of a simple atomic data type
like integer, real, or character.

A schema has the following properties:

{ It is de�ned using a type system.

{ It is de�ned a priori, i.e., before the data
element is stored.

{ It is explicit, i.e., it is stored separately from
the data.

{ It is rigid, i.e., the data element always
must \obey" the structure.

{ It is exposed, i.e., it can be queried and can
be used when querying the data element.

Examples of structured data elements are data
stored in DBMS. A query against a structured
data element is a structured query and is used for
precise search. A structured query is based on
the structure of the data elements and the type
system.

� Unstructured Data Element. A data element is
unstructured if:

{ it is not of a simple atomic data type like
integer, real, character, or

{ does not adhere to any underlying schema,
or

{ its schema does not de�ne any composition
beyond simple bytes or character strings.

Examples of unstructured data elements are
text, video and audio, since they can only be
decomposed into characters or bytes. A query
against unstructured data consists of sequences
of characters or bytes and operations on them
(for example, for boolean text retrieval, one has
the operations \and", \or", \near", etc.). We
call this an unstructured query.

Querying unstructured data is comfortable for
the user, since he does not need to care about any
structure of the data or data types. However,
his information need may only be approximately
ful�lled, which is often undesired.

� Semistructured Data Element. A data element
is semistructured if

{ it has structure, but the structure is not
rigid, and/or

{ the structure de�nition or parts of it is
not necessarily separated from the data el-
ement, i.e. it may be implicit.

For the �rst aspect, consider as an example an
address which is usually composed of a street, a
number, a zip code, and a location. However, an
address can also comprise a name of a house, a
zip code, and a location. This means an address
has structure, but the structure is not rigid. In
this case, a possible schema for an address might
look like this (we use ODMG's ODL notation):



struct(string street, short number,
short zip-code, string location)

or

struct(string street, short number,
struct(string name,
short zip-code) location)

or

struct (string house name, short
zip-code, string location),

similar to variant types in programming lan-
guages [Coo80]. A concrete address value may
in this case match any one of the given type def-
initions.

The second issue is related to the way the schema
is de�ned. For DBMS, the schema is de�ned sep-
arately and a priori and the data is stored ac-
cordingly. For semistructured data, the schema
or parts of it might not (and cannot be) de�ned
in this way, but may be \hidden" in the data
themselves. In this case the possible schema of
an address could be just

(string address),

and one such string might be

(house name:"Casa della Neve",
zip-code:"6098", location:"Magadino").

Thus, the address is self-describing, and for this
reason its structure is implicit.

3.1.4 Extensibility

MQS should be extensible in the sense that new
sources can be registered and existing ones can be
disconnected. This may a�ect various components of
the system and the goal is to allow such extensions
with as little manual e�ort as possible, despite the
heterogeneity of sources.

3.2 Implementation Features

The realization of the functional features depends on
the design of the system, i.e., its implementation fea-
tures. We classify those as follows (Table 2):

3.2.1 Architecture

Mediated query systems have a three-tier architec-
ture ([Wie92]): the lowest layer includes the data
sources layer, the middle layer is the integration layer
and the upper layer is the user or application layer.
The data source layer contains the sources and com-
ponents coupling them to MQS. These are so-called
wrappers which export the functionality and the data
in a way that makes all sources \look alike" to the in-
tegration layer. The wrappers are implemented based
on the query capabilities of the sources. If a source
does not have any query capabilities, the wrapper
may even be able to retro�t those. The mediation
layer is concerned with the processing of queries, in-
tegration issues and result combination. The user
layer is the interface which provides the functional
features of an MQS. There are two issues related to
architecture:

� Centralized/Decentralized Architecture. The me-
diation layer can be designed with either a de-
centralized or a centralized architecture in mind.
In the decentralized approach, mediation is per-
formed by a network of components where each
one achieves some identi�able task (e.g. a query
planning component which de�nes plans for the
processing of a query). Obviously, components
can be added and replaced with rather small
e�ort. Components export their functionality
and communicate with other components using
a communication language (for example KQML
in InfoSleuth [Bea97]). In a centralized architec-
ture, the system cannot be easily extended, as
for the decentralized case. However, the over-
head for communication and management of the
components is not required in this case.

� Source/Mediation Layer Functionality. This is-
sue is concerned with the functionality of the
user and the mediation layer and how it should
be split between them. One possibility is to build
fat wrappers. A fat wrapper receives a query ex-
pressed in the global query language as its input
and outputs an information item expressed in the
global data model. Fat wrappers thus implement
the whole source-speci�c functionality and (se-
mantic) adaptations to the global system. The
advantage of a fat wrapper is the fast processing
of queries in the mediation layer. Query pro-
cessing here means just to �nd out those sources
which could answer the query, split the query
and produce subqueries expressed in the global
query language. Obviously, using a fat wrap-
per a�ects the extensibility of an MQS, because



whenever a new source is added, a lot of func-
tionality has to be implemented in the new wrap-
per. Better extensibility is provided if thin wrap-
pers are used. In this case, a fat mediator layer is
required. It must provide as much functionality
as possible and includes even parts of the syntac-
tic translations for the underlying sources. This
implies that a fat mediator layer has to cover a
large variety of models and languages and it may
also hamper query processing eÆciency.

3.2.2 Internal Data Representation

Data and queries need to be represented in the inte-
gration layer of the global data model. If the MQS is
designed to just select simple records of data and sim-
ple relationships between them, a simple data model
is suÆcient. If the system has to represent more
complex relationships and also behavioral elements,
then a more complex model has to be chosen (like
e.g. an object-oriented model). Obviously, complex
functionality of the components leads to a complex
data model.

3.2.3 Query processing

The steps between receiving a query at the user in-
terface and sending (parts of) it to the underlying
sources are implemented in the query processing com-
ponent of an MQS. The concrete query processing al-
gorithm to be used depends on many factors: what
is the global query language of MQS, what kinds of
queries are supported, which sources should be in-
volved in query processing, etc. The following fea-
tures are used to characterize query processing:

� Source Selection. The �rst step of query process-
ing is to �nd the sources that could contribute
to answer the query. Many heuristics are avail-
able for this task. Besides the sources speci�ed
in the query, the MQS can select other sources
based on their content description, provided it
is stored in the system. Next, the availability of
the sources and their performance can be con-
sidered .Sources can also be selected based on
structural information in the query. If, for exam-
ple, a query speci�es an attribute \Title", struc-
tured or semistructured sources containing this
attribute can be selected.

� Query Splitting/Optimization/Semantics. The
next step is to split the query. This process
takes source selection into account, but also the

semantics of the query, i.e., the meaning of at-
tributes and operations used in the query. Of-
ten, for an MQS the semantics must support
precise and imprecise search (for example by ex-
tending DBMS query languages with additional
features). Another important issue is query op-
timization during the process of query splitting.
One has to consider optimization at the under-
lying sources, but also global operations which
could a�ect the eÆciency of the global query.

3.2.4 Metadata

All query processing components rely on extensive
knowledge about available data sources and their
abilities. Most of this metainformation has to be col-
lected and stored in the so-called metadata reposi-
tory, where the following features are of interest:

� Metadata Content/Ontologies. The �rst issue is
the content of the metadata. It depends on the
requirements for the system (for example, if the
MQS is used for a certain application, data about
it has to be stored), but also on its internal real-
ization (if the MQS is, e.g., designed to have fat
wrappers, part of the metadata will be hidden
in the wrappers). The metadata repository may
also include ontological knowledge2.

� Metadata Acquisition. There are two ways to
store metadata in the repository. In one ap-
proach, wrappers are responsible for this job and
thus have to be programmed accordingly.3 An-
other possibility is to build a separate component
for metadata registration which provides an ap-
propriate speci�cation language. In this case,
the system administrator has to �nd out the rel-
evant information and specify it to the registra-
tion component. While this approach is not au-
tomated, it also allows for more 
exibility and
probably leads to a more complete description of
metadata. Metadata acquisition is also related
to the evolution of sources: e.g., when informa-
tion about a source changes (for example, the
schema), this information has to be forwarded
to the metadata repository.

2An ontology is \a speci�cation of a conceptualization"
([Gru93]). In particular it is related to the problem that simi-
lar information is represented using di�erent vocabularies (for
example a \lecture" or a \seminar" are similar concepts).

3When a new source is added to the system, a new wrapper
has to be implemented (speci�ed) as well.



4 Discussion

The aim of this paper was to present various aspects
of a new technology (MQS) which has emerged to
solve the problem of eÆcient and e�ective retrieval
of information from heterogeneous data sources. We
have �rst shown that some approaches exist in related
areas, which o�er partial solutions and are adequate
for special cases. We claim that for developing an
MQS, it is possible to build on these, by taking one
of them as a starting point and combining it with
features from others. For example, database con-
cepts (more speci�cally those of federated database
systems) can be extended with information retrieval
concepts (like those of metasearch engine). How this
combination is actually done, depends on the require-
ments to MQS which we presented and classi�ed in
the second part of the paper. Our classi�cation can
serve as a starting point for developing an MQS and
is a framework for comparing di�erent implementa-
tions.
Commercial products for accessing heterogeneous

data are available today (DataJoiner, Cohera, MIR-
ACLE, EDI/S). In our classi�cation in section 2, they
�t best the federated database approach, but none of
them o�ers full database functionality. They give an
integrated view over data (mostly stored in relational
databases) but do not allow the 
exible way to query
data as we are aiming at for MQS. [RH98] presents
and compares most of these approaches.
Lastly, we want to mention that in order to imple-

ment an MQS, one can make use of various existing
technologies, including e.g. APIs like ODBC, JDBC
[JDB], OLE DB [Bla96] which can be used for imple-
menting wrappers and which o�er generalized access
to a large class of data sources. For the mediation
layer, we mention the query service speci�cation of
CORBA [COR98] which provides mechanisms needed
for query processing in such an integrated environ-
ment.

Acknowledgments

We thank Dimitrios Tombros, Martin Sch�onho� and
Anca Vaduva for their help during the preparation of
this paper. We also thank Ubilab for supporting the
work of Ruxandra Domenig.

References

[AKH96] Y. Arens, C. A. Knoblock, and C. Hsu.
Query processing in the SIMS informa-

tion mediator. In Advanced Planning
Technology, AAAI Press Menlo Park
CA, 1996.

[AM98] G. Arocena and A. Mendelzon.
WebOQL: Restructuring Documents,
Databases and Webs. Proc. of 14th.
Intl. Conf. on Data Engineering (ICDE
98), Florida, 1998.

[BBMS98] M. L. Barja, T. Bratvold, J. Myl-
lymaki, and G. Sonnenberger. In-
formia: a mediator for integrated access
to heterogeneous information sources,
http://www.informia.com. Proceed-
ings of the Conference on Information
and Knowledge Management CIKM'98,
1998.

[Bea97] R. J. Bayardo and W. Bohrer et al. In-
foSleuth: Agent-based semantic integra-
tion of information in open and dynamic
environments. SIGMOD Record, 1997.

[BGD97] A. Behm, A. Geppert, and K. R. Dit-
trich. On the migration of relational
schemas and data to object-oriented
database. In Proc. 5th International
Conference on Re-Technologies for In-
formation Systems, Klagenfurt, Austria,
1997.

[Bla96] J. Blakeley. Data Access for the Masses
through OLE DB. Proc. of SIGMOD,
Montreal, 1996.

[Cea95] M. J. Carey and L. M. Haas et al. To-
wards heterogeneous multimedia infor-
mation systems: The Garlic approach.
In Research Issues in Data Engineering.
IEEE Computer Society Press, March
1995.

[Co.97] IBM Co. DB2 DataJoiner: Administra-
tion guide and application programming.
IBM Co., San Jose, 1997.

[COH] Cohera. http://www.cohera.com/.

[Coo80] S. Cook. Some more on variant records.
Technical report, Queen Mary College,
Department of Computer Science, 1980.

[COR98] CORBA Services Book.
http://www.omg.org/corba/sectran1.html,
1998.



[DD99] K. R. Dittrich and R. Domenig. To-
wards exploitation of the data universe:
Database technology for comprehensive
query services. Third international con-
ference on Business Information Sys-
tems, April 1999.

[DH97] D. Dreilinger and A. E. Howe. Experi-
ences with selecting search engines using
metasearch. ACM Transactions on In-
formation Systems, 15(3):195{222, July
1997.

[FFK+97] M. Fernandez, D. Florescu, J. Kang,
A. Levy, and D. Suciu. STRUDEL: A
Web site management system. SIGMOD
Record (ACM Special Interest Group on
Management of Data), 26(2), 1997.

[FLM98] D. Florescu, A. Levy, and A. Mendel-
son. Database techniques for the World
Wide Web: A Survey. SIGMOD Record,
September 1998.

[Gru93] T. R. Gruber. A translation approach to
portable ontologies. Knowledge Acquisi-
tion, 5(2), 1993.

[Hug96] K. Hughes. ORACLE Transport Gate-
way - Installation and User's Guide for
IBM DRDA fro RS/6000. ORACLE Co.,
1996.

[Inc97] Information Builders Inc. EDA/SQL
Manuals. Information Builders Inc.,
1997.

[JDB] The JDBC Database Access API.
http://java.sun.com/products/jdbc.

[KRR97] B. K�onig-Ries and C. Reck. An architec-
ture for transparent access to semanti-
cally heterogeneous information sources.
In Proceedings ot the First International
Workshop on Cooperative Information
Agents, Berlin, February 1997.

[LP97] L. Liu and C. Pu. An adaptive
object-oriented approach to integration
and access of heterogeneous informa-
tion sources. Distributed and Parallel
Databases, April 1997.

[LRO96] A. Levy, A. Rajaraman, and J. Or-
dille. Querying heterogeneous informa-
tion sources using source descriptions. In

Proceedings of the twenty-second inter-
national Conference on Very Large Data
Bases, India, 1996.

[MJD97] T. Meyer, D. Jonscher, and K. R. Dit-
trich. Middleware zur Integration ge-
ographischer Daten. INFORMATIK 4:5,
October 1997.

[MMM97] A. Mendelzon, G. Mihaila, and T. Milo.
Querying the World Wide Web. Journal
of Digital Libraries, 1(1), 1997.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina,
and J. Widom. Object exchange across
heterogeneous information sources. In
P. S. Yu and A. L. P. Chen, editors,
Proceedings of the 11th International
Conference on Data Engineering, March
1995.

[RH98] F. Rezende and K. Hergula. The Hetero-
geneity Problem and Middleware Tech-
nology: Experiences with and Perfor-
mance of Database Gateways. Proc. of
the 24th anual international conference
on Very Large Databases, 1998.

[SE97] E. Selberg and O. Etzioni. The
MetaCrawler architecture for resource
aggregation on the Web. IEEE Expert,
pages 11{14, January{February 1997.

[TRV96] A. Tomasic, L. Raschid, and P. Val-
duriez. Scaling heterogeneous databases
and the design of Disco. In ICDCS
'96; Proceedings of the 16th Interna-
tional Conference on Distributed Com-
puting Systems; May 27-30, 1996, Hong
Kong, May 1996.

[VGD99] A. Vavouras, S. Gatziu, and K.R. Dit-
trich. The SIRIUS Approach for Re-
freshing Data Warehouses Incremen-
tally. In Proceedings of BTW'99, March
1999.

[Wie92] G. Wiederhold. Mediators in the ar-
chitecture of future information systems.
Computer, 25(3), March 1992.

[ZHKF95] G. Zhou, R. Hull, R. King, and Jean-
Claude Franchitti. Supporting data in-
tegration and warehousing using H2O.
IEEE Data Engineering Bulletin, Special
Issue on Data Warehousing, 1995.


