MCP/AS

DMALGOL
Programming Reference Manual

MCP 12.0

April 2008

UNISYS

imagine it. done.

MCP/AS

DMALGOL
Programming Reference Manual

MCP 12.0

April 2008 8600 0874-203

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to U.S. Government End Users: This is commercial computer software or hardware documentation developed at
private expense. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract data
rights clauses.

Unisys is a registered trademark of Unisys Corporation in the United States and other countries.
All other brands and products referenced in this document are acknowledged to be the trademarks or registered
trademarks of their respective holders.

MCP/AS
DMALGOL

Programming Reference
Manual

MCP 12.0

8600 0874-203

MCP/AS
DMALGOL

Programming
Reference
Manual

MCP 12.0

8600 0874-203

Bend here, peel upwards and apply to spine.

Contents

Section 1.

Section 2.

8600 0874-203

DMALGOL Concepts

Using DMALGOL Safely .vvoiiiiiiiiiiiiiiccccee e 1-1

Unsafe EXtENSIONS......cooii e 1-2

Unsafe Functions and Statementsccccooeviine, 1-2
Using the Compile-Time Facilityccoovviiiiiiiiiiiiccc e 1-4
ENVIrONMENTS .o 1-5
Reference Variables ... 1-7
ONCE-ONLY Compilation of Procedures.........cccceeeveiiiieiiiiiiieiiiieee, 1-7

DMALGOL Extensions to ALGOL Declarations and
Statements

Array DecClarationoooiiiiiiiii e 2-1
Concurrency Control FaCilitycc.vviiiiiiiiiiiiiiceeeee e, 2-2
ABORTTRANSACTION Statement......ccccccoovvveeeiiiiieeieiiien, 2-2
CANCELTRPOINT Statement...........ccceoeeeiiiieeieeeeee 2-3
FREE Statement ... 2-4
LOCK Statementoeee e 2-5
SAVETRPOINT Statement.......cccevveiiiiiiiiiieee e 2-6
SECURE Statement ... 2-7
Compile-TimMe FaCIlitY ...oooiiiiiiiiii e, 2-8
'DEFINE Statement ..o, 2-8
'FOR Statement.... ..o, 2-9
'INCLUDE Statementooeiiiiiiiieeeeeeeceeeee e, 2-10
'INVOKE Statement.......ccc.ovveeiiiiiiieee e, 2-10
NODE Declarationccccviiviiiiiiiiiiiieiiieeeeeiee e, 2-11
'PRINT, 'ERROR, 'DISPLAY Statements............cccveveennee. 2-12
PROPERTY Declarationccuveeeieieeiiicieeeeeeeeeeeeeee 2-13
DMIQO File AttHDULEoeiiiiiiiccci e 2-14
DYNAMIC DATABASE Declaration.........cccceeviiiiiiiiiiieiiiiieeeeiieee, 2-14
EXCEPTION PROCEDURE Declarationccccccceevviennne. 2-15
Nonlocal Message References ..o 2-16
ONCE-ONLY Compilationcccuviiiiiiiieiiiiiieeeeeeee e, 2-17
OPEN Statement . ..o 2-19
Procedure Declaration..........occuuiiiiiiiiii e 2-20
Reference Variables Declaration and Assignment...........ococciieeeennn, 2-21
Array REfEreNCeScoiiiiiiiiiiiiiii e 2-21
Procedure Reference Arraysccccoooviiiiiiiiiiiiie, 2-22
Procedure References.........ccccciiiiiiiiii 2-23
File RefErENCES .. .uuiiei e 2-24
Up-Level Event Referencescccoooviiiiiiii e 2-25

Contents

Section 3.

DMALGOL-Specific Functions and Statements

ALLOWV STateMENT ..ot eeeneseneeenenees 3-1
DISALLOW Statementcooooiiiiiiiee e 3-1
DMINQ FUNCHIONS ... 3-2
DMINQ Interface FUNCTIONuuii i 3-2
Procedure: Pathfinder (A[0] =1).....cooieiiiiiieieee e, 3-4
Procedure: Set to Beginning (A[0] = 10) c..ooovviiiiiiiieiine, 3-5
Procedure: Data Finder (A[0] = T1).coeeiiiiiiiiiiiieeee 3-b
Procedure: GETDATA (AIO] = 12) i 3-5
Procedure: DMSREAD (A[O] = 13) oo 3-6
Procedure: Get Link (A[0] = 14) ..o 3-6
Procedure: Store Current (A[0] = 16)vvvvvveeiiiiiiiiiiinns 3-6
Procedure: Free Current (A[O] = 17) . 3-6
Procedure: Set or Check Date-Timestamp for TPS
(ALIO] = T8) oo 3-7
Procedure: Clear TPS Flag and Date-Timestamp
(AIO] = TO) oo 3-7
Procedure: Return Last Transaction Address (A[Q] =
20 3-7
Procedure: Get Status of Abort (A[0] = 21) ..o, 3-8
Procedure: Rerun Finished - Reset TPS Abort
Pending (A[O] = 22) ..oooviiieecee e 3-8
Procedure: Create (A[0] = 23) ...oovveeiiiiieeeeeeeec e 3-8
Procedure: Delete Current (A[0] = 24) ..., 3-8
Procedure: Get Statistics Information (A[0] = 25) 3-9
Procedure: Visible DBS Message (A[0] = 26)..................... 3-18
Procedure: Return Displayed Messages (A[0] = 27).......... 3-18
Procedure: Return Software Version (A[0] = 28) 3-19
Procedure: Clear TPS Address (A[0] = 29) ..o 3-19
Procedure: Return Standard Data Set DATAEOFs
(ALO] = B0) oo 3-19
Procedure: DATAEOF Values (AIN+T]) oo 3-20
Procedure: GETDATA with KEYCOMPARE (A[0] =
B e 3-20
Procedure: Off-line Dump (A[0] = 32) ...oooviviiiiiiiiiicee, 3-20
Procedure: Set Cursor (A[0] = 33) ... 3-21
Procedure: Set Current Path to Another Cursor's
Path (AI0] = 34) . 3-21
DIMINQ AITAYS .o 3-22
DMPROCOFF Statementoooooeiiiiiiie 3-23
DMPROCREF FUNCLION......ooiiiiiiii e 3-24
DMSCAUSE Statementooooiiiiiiii 3-25
DMSFREE Statementcoooiiiiiii 3-26
DMSFREEZE FUNCHION ... 3-27
DMSIBINDEX INTIHNSIC ..ot 3-28
DMSLOCALREF Statementoooooiiiiii 3-28
DMSUPDATEDISKHEADER Statementcooovveiiiiiiieeeeeeeeee 3-29
DMSWAIT FUNCHION ... 3-29
DMTRANSLOCK Statement ..o 3-31
DSED FUNCTION ... 3-31
DSWAIT and DSWAITANDRESET Functions ... 3-32

8600 0874-203

Contents

Section 4.

Appendix A.

Appendix B.

Index

8600 0874-203

ENVIRONMENT DecClarationcocoooeoeieieieee e 3-33
LOCK [DSABLE] Interlock FUNCLION ... 3-33
MEMORYDUMP Statementccooooieieieieee e 3-34
PURGEASM Statementccooieieieieee e 3-35
READLOCKNOPURGE FUNCHION ... 3-35
SIBOFFSET FUNCLION oo 3-36
TPS TRANSACTION RECORD CONTROL ITEM ASSIGNMENT
STATEMBNT o 3-37
TRY S atEMIENT ...ttt 3-37

Compiler Control Options

Understanding Railroad Diagrams

Railroad Diagram CONCEPTS....c.vvviiiiiiiiiiiiiieee e A-1
PatNS o A-1

Constants and Variablesccccccoviiiiiiiiiiiciiccccieee, A-2
CONSITAINTS . ..eiiiiiii et A-3

Vertical Bar.......ooo A-3

Percent Sign.......coovviiiiiiiiice e A-3

Right ArrOW ... A-4

Required [tem ... A-4

User-Selected IteMccceiiiiiiiiiiiiiicce e A-5

00D et A-5

Bridge e A-6

Following the Paths of a Railroad Diagramcccccciiiiiiiiiiis A-7
Railroad Diagram Examples with Sample Input...........cccoceviiiiiiiiinnnns. A-8

Reserved Words

Contents

Vi 8600 0874-203

Tables

Section 3—1 DMINQ Array Values and Procedures.............ooooeiiiiiiiiiiieeeeeecieeee, 3-3
Section 3-2 Word Values and Descriptions for the Get Statistics Information

Procedure ... 3-9
Section 3-3 Global Static Statistics [word 1 =0, word 2 = 0] ..o, 3-11
Section 3-4 Global Dynamic Statistics (word 1 =0, word 2 = 1) cccccooooiiiiiiii, 3-12
Section 3-5 Structure Static Statistics (word 1 = <structure number>, word 2

0) PP 3-15
Section 3-6 Structure Dynamic StatiStiCS.....cc..vviviiiiiiii e 3-16
Appendix A-1 Elements of a Railroad Diagramccccooiiiiiiiiiiiiiiieee e A-2
B-1. DMALGOL Reserved WOrdSccouviiieiiee e, B-1

8600 0874-203 vii

Tables

viii 8600 0874-203

About This Manual

Purpose

This reference manual describes the constructs that are unique to the DMALGOL programming
language. DMALGOL is an implementation language which is based on Unisys Extended
ALGOL, a high-level, structured programming language designed for enterprise server systems.
Unisys Extended ALGOL implements virtually all of ALGOL 60 and, in addition, includes
extensions that enhance the basic capabilities of the language.

The DMALGOL extensions have been implemented to support enterprise server systems software;
these extensions allow the user to write and update Data Management System Il (DMSII) software
and other specialized system programs. DMALGOL also includes all BDMSALGOL and
DCALGOL extensions.

Users should realize that DMALGOL is a powerful implementation language that allows them to
perform tasks directly affecting system software. They should also be aware that new features can
be added at any time and existing features can be changed or deleted without notice. For these
reasons, DMALGOL is not intended for general use, and users should not rely on it as an
application programming language.

Scope

This manual provides reference information for systems programmers who must use DMALGOL
to recompile products supplied by Unisys. It includes syntax, explanation, and examples for those
constructs unique to DMALGOL. It is designed to be used in conjunction withLiBOL

Programming Reference Manual, Volume 1: Basic Implementation and theALGOL Programming
Reference Manual, Volume 2: Product Interfaces, which describe the other constructs that can be
used in DMALGOL programs.

Audience

The manual is intended for systems programmers who must use DMALGOL to develop, update,
and maintain system software for DMSII and certain other Unisys products.

8600 0874-203 iX

About This Reference Manual

Prerequisites

This manual is written for systems programmers who are familiar with Unisys Extended ALGOL,
as described in theLGOL Programming Reference Manual, Vol. 1: Basic Implementation and

the ALGOL Programming Reference Manual, Volume 2: Product Interfaces. It assumes also that
readers are familiar with the product or products for which they are developing or recompiling
system software and with the implementation of Accessroutines and MCP-based systems stack
architecture.

How to Use This Reference Manual

The constructs in this manual can be referenced randomly. It is advisable to have a copy of the
ALGOL Programming Reference Manual, Vol. 1: Basic Implementation for reference while using
this manual because some explanations refer to that manual.

Organization

Section 1 of this manual explains some of the concepts of the DMALGOL programming language.
Sections 2 and 3 describe the functions and statements used in DMALGOL that are not common to
ALGOL. Section 4 provides compiler control options. The sections and appendixes are described
as follows:

Section 1. DMALGOL Concepts

This section provides an introduction to the DMALGOL programming language and discusses
some of the features that make it unique.

Section 2. DMALGOL Extensions to ALGOL Declarations and Statements

This section describes the extensions to certain ALGOL constructs that are available in
DMALGOL.

Section 3. DMALGOL-Specific Functions and Statements

This section describes the functions and statements that are unique to DMALGOL. These
constructs are ordered alphabetically by function or statement name.

Section 4. Compiler Control Options

This section describes the two compiler control options, WARNSAFE and WARNALLUNSAFE,
that DMALGOL recognizes in addition to the standard ALGOL compiler control options.

X 8600 0874-203

About This Reference Manual

Appendix A. Understanding Railroad Diagrams

This appendix explains how to read the railroad diagrams used in this manual to describe
DMALGOL syntax.

Appendix B. Reserved Words

This appendix lists the identifiers that need not be declared in a DMALGOL program before they
are used, if they appear in recognized contexts.

Related Product Information

Unless otherwise stated, all documents referred to in this publication are MCP/AS documents. The
tittes have been shortened for increased usability and ease of reading.

The following documents are included with the software release documentation and provide
general reference information:

» TheGlossary includes definitions of terms used in this document.

» TheDocumentation Road Map is a pictorial representation of the Product Information (P1)
library. You follow paths through the road map based on tasks you want to perform. The paths
lead to the documents you need for those tasks. The Road Map is available on the PI Library
CD-ROM. If you know what you want to do, but don't know where to find the information,
start with the Documentation Road Map.

» Thelnformation Availability List (IAL) lists all user documents, online help, and HTML files
in the library. The list is sorted by title and by part number.

The following documents provide information that is directly related to the primary subject of this
publication.

ALGOL Programming Reference Manual, Volume 1: Basic | mplementation

This manual describes the basic features of the Extended ALGOL programming language. This
manual is written for programmers who are familiar with programming concepts.

ALGOL Programming Reference Manual, Volume 2: Product | nterfaces

This manual describes the extensions to the Extended ALGOL language that allow application
programs to use the Advanced Data Dictionary System (ADDS), the Communication Management
System (COMS), the Data Management System Il (DMSII), the Screen Design Facility Plus (SDF
Plus), or the Semantic Information Manager (SIM). This manual is written for programmers who
are familiar with Extended ALGOL programming language concepts and terms.

8600 0874-203 Xi

About This Reference Manual

Xii 8600 0874-203

Section 1
DMALGOL Concepts

Documentation Updates

This document contains all the information that was available at the time of publication. Changes
identified after release of this document are included in problem list entry (BE&)351. To

obtain a copy of the PLE, contact your Unisys representative or access the current PLE from the
Unisys Product Support Web site:

http://www.support.unisys.com/all/ple/18567351

Note: If you are not logged into the Product Support site, you will be asked to do so.

The DMALGOL language is based on Unisys Extended ALGOL. Its purpose is to provide users
with a tool to develop, update, and maintain software for the Data Management System Il (DMSII)
and certain other enterprise server products. DMALGOL consists of ALGOL with extensions to
allow programs to retrieve information from Data and Structure Definition Language (DASDL)
description files and to build the special stack structures required by DMSII.

This section discusses some of the features that make DMALGOL a unique language. The specific
constructs that are used in DMALGOL are described in the later sections of this manual.

Using DMALGOL Safely

DMALGOL is a powerful programming language that gives users greater privileges than they
normally receive through ALGOL. For example, programs written in DMALGOL can perform
tasks involving system programs that should not be made available in application programs. For
this reason, it is advisable to use DMALGOL only when it is necessary to recompile DMSI|I
software. DMALGOL should not be used to write application programs.

Programs using DMALGOL constructs can have far-reaching effects, and users must ensure that
the constructs are used correctly to avoid problems. To assist users in identifying constructs that
require extra care in their use, the DMALGOL compiler designates some constructs as “unsafe.” A
construct is considered unsafe when its misuse might lead to violation of system integrity or
security policy, or when it has not been examined in enough detail to rule out the possibility of
such misuse.

Programs that use unsafe constructs are marked as “nonexecutable-unsafe.” Such programs cannot

be run on some system configurations without special privileged action. If unsafe programs or
program units are used for binding, the bound code file is also marked unsafe.

8600 0874-203 1-1

http://www.support.unisys.com/all/ple/18567351

DMALGOL Concepts

An unsafe code file can be executed as a by-function library if the file has been installed using the
SL (Support Library) system command. It can be made executable under more general conditions
by the MP (Mark Program) system command. For a discussion of unsafe code files, including the

conditions under which they can be executed, seSetheity Administration Guide. For

additional information on the SL and MP commands, se&yiem Commands Operations

Reference Manual.

At the end of a compilation in which an unsafe construct occurs, a warning message is generated to
ERROREFILE if ERRLIST is TRUE, and to LINE if a listing is being generated. The number of
occurrences of unsafe constructs is included in the trailer on the LINE file if LINE is used.

Specific usage of unsafe constructs can be flagged through the use of the WARNUNSAFE and
WARNALLUNSAFE compiler control options. For more information on these control options, see
Section 4.

Unsafe Extensions

The following DMALGOL extensions to ALGOL are considered unsafe. For more information on
these constructs, see Section 2.

* SAVE Array declaration option

 PROCEDURE declaration when used for ONCE-ONLY compilation

+ PROCEDURE REFERENCE declaration

» OPEN statement options MAPPER, INQUIRYSEMANTIC, and UPDATESEMANTIC
* DMIO attribute

 DYNAMIC DATABASE declaration

* Nonlocal message references

» Array references for transaction input or output records

* Up-level ARRAY reference assignments

» Up-level FILE reference assignments

» Up-level READ/WRITE event designations

+ “PROTECTED” clause

Unsafe Functions and Statements

1-2

The following DMALGOL functions and statements are considered unsafe. For more information
on these constructs, see Section 3.

* DISALLOW statement

» DMPROCOFF statement

» DMPROCREF function

» DMSCAUSE statement

» DMSFREE statement

8600 0874-203

DMALGOL Concepts

 DMSFREEZE function

» DMSLOCALREF statement

« DMSUPDATEDISKHEADER statement
* DMSWAIT function

8600 0874-203

1-3

DMALGOL Concepts

» DMTRANSLOCK statement

* ENVIRONMENT declaration

* MEMORYDUMP statement

* PURGEASM statement

» READLOCKNOPURGE statement

* TPS Transaction Record Control Item Assignment statement

Note: For safety precautions, the use of all DMALGOL constructs, including those not
designated as unsafe, should be restricted to authorized personnel who must use
DMALGOL to compile programs.

Using the Compile-Time Facility

The compile-time facility is used to conditionally compile DMALGOL source data. The
DMALGOL compile-time facility consists of elements of a general nature that have been
documented in ALGOL, and elements specific to DMSII.

The basic technique used to write DMSUPPORT libraries and other tailored software is
conditional compilation. Various pieces of code are omitted, included, and assigned parameters
based on information from the DASDL description file. This file is read by the DMALGOL
compiler and the DMALGOL language contains elements used to conveniently reference its
information.

NODE variables and PROPERTY definitions are used to refer to nodes within the description file.

A node is a data structure that consists of three parts: a list, a set of properties, and a block part.
Either the list or properties can be absent. The elements of lists are frequently other nodes, but they
can also be integers or other data items. The syntax in DMALGOL to reference list element | of
node N is N[I]. The properties of a hode are contained in a nonhomogeneous substructure whose
format is defined by PROPERTY declarations.

Examples

The following statement extracts the property RECORDSZ of the node N. The properties actually
used in the Accessroutines are included from the file called DATABASE/PROPERTIES.

NODE N;

INTEGER T;

PROPERTY RECORDSZ=[11].[11:12];
T:=N.RECORDSZ;

1-4 8600 0874-203

DMALGOL Concepts

The following example shows a special form of the 'FOR statement that is used to access the
members of a node's list. The compiler obtains the number of items in the list from DASDL, which
keeps a record of the number of list items at OFFSET=0.

NODE STRUCTURE, SPANSET;
"FOR EACH SPANSET OF STRUCTURE DO . . .

This statement goes through each member of the list belonging to the node STRUCTURE and
assigns its successive list elements to the node SPANSET.

The next example shows a special form of the 'INCLUDE statement that is used to access the text
section of the DASDL description file. This section consists of a set of source language

DMALGOL constructs and the text is always referred to by an appropriate property. For example,
data set nodes contain a property called VERIFYSTORETEXT that checks whether a record meets
all verification rules before it is stored. To access this text for node DS, the following statement is
written:

"INCLUDE DS.VERIFYSTORETEXT.
This statement causes DMALGOL to extract the appropriate text and compile it.

For more information on compile-time facility constructs, refer to “Compile-Time Facility” in
Section 2.

Environments

DMSII builds the Database Stack (DBS), which is a true running stack and resembles a shared-by-
all library. The stack is built up through the Master Control Program (MCP) procedure

DMSOPEN. One task of DMALGOL is to build the stack image. This is done by using the
ENVIRONMENT declaration, which delimits the boundaries of each environment in much the
same way as a PROCEDURE declaration does. Environments cannot be nested more than three
deep.

When the ENVIRONMENT declaration is used in a program, the code is generated in a special
way and is usable only for the Accessroutines of DMSII. As the program is executed, the
outermost environment begins execution, sets up its stack, executes its outer block, then calls the
last compiled environment at the next level. Each inner environment in turn builds its portion of
the stack, executes its outer block, then calls the next environment.

The Accessroutines code file is an executable program that builds the DBS then freezes in a
special way using the DMSFREEZE construct of DMALGOL. After the stack is built up, the code
executes its outer block and calls the three last compiled environments at the next level. The first is
a general D[3] environment (lexical level 3) used to attach pre-Mark 3.5 Structure Information
Block (SIB) environments for data sets. The second D[3] environment is used to attach pre-Mark
3.5 SIB environments for sets. The third environment is a DMSFREEZE environment. During
OPEN, a series of D[3] environments are added and tailored for each structure opened. After the
last structure for the first user is opened, the DMSFREEZE environment is called again. When
another user opens different structures, new D[3] environments are added on a demand basis as
structures are opened.

8600 0874-203 1-5

DMALGOL Concepts

DMSII uses environments at two levels. The outermost environment contains the outer block
declarations used to control and synchronize operations affecting the entire database. Also present
at D[2] (lexical level 2) are the DMSUPPORT library entry point and structures used to tailor the
database stack for a particular DASDL. There are three inner environments declared (mentioned in
the preceding paragraph). The environment of each invoked structure is built at run time by the
MCP interfacing with the DMSFREEZE environment.

The following construct allows the invocation of a procedure declared in a different environment:
<procedure identifier> <structure number>
The <structure number> construct specifies the number in the ENVIRONMENT declaration that

contains the desired procedure.

Example

ENVIRONMENT X OF 2;
BEGIN

PROCEDURE P;
END;

ENVIRONMENT X OF 3;

BEGIN
PROCEDURE P;
P;
P'2

END;

In this example, when P is invoked within environment X of 3, the procedure executed is the
procedure P declared within that local environment. When P'2 is invoked within environment X of
3, the procedure executed is the procedure P declared within the environment X of 2.

1-6 8600 0874-203

DMALGOL Concepts

Reference Variables

DMALGOL provides the ability to declare array reference variables, procedure reference
variables, file reference variables, and direct file reference variables. These reference variables
allow for dynamic selection of procedures, files, and direct files within the DMSII system.

In addition, DMALGOL allows up-level assignments to PROCEDURE reference array elements
and FILE references. It allows up-level ARRAY reference assignments only in the Accessroutines.
An assignment to a reference variable is considered up-level if the reference variable is declared in
a more global block than the array, procedure, or file to which it refers. (The reference variable
thus could remain dangling if the block containing the referent has been exited.)

Note: Although permitted in DMALGOL, up-level assignments are considered unsafe. Up-level
assignments are prohibited in ALGOL, BDMSALGOL, and DCALGOL.

ONCE-ONLY Compilation of Procedures

ONCE-ONLY compilation is used to save compilation time and code space. If one procedure does
not differ in any major respect in two environments, this procedure can be compiled only once.

It is not possible to make calls on the shared procedure using the <procedure identifier> <structure
number> syntax described under “Environments,” because that would change the environment as
well. Rather, a Program Control Word (PCW) is constructed for each environment; for a shared
procedure, the PCW in each environment points to the same segment descriptor. The PCW allows
the procedure to be shared by different environments, but behave as if it were local to each
environment.

The mechanism for constructing a PCW is described under “ONCE-ONLY Compilation” in
Section 2.

8600 0874-203 1-7

Section 2

DMALGOL Extensions to ALGOL
Declarations and Statements

This section describes the extensions to various ALGOL constructs that are available in
DMALGOL. For more information on the constructs, seeAh&0L Programming Reference
Manual, Vol. 1: Basic Implementation.

Array Declaration
DMALGOL supports all ALGOL array declarations. As an extension of the ALGOL construct,
DMALGOL provides the user with a SAVE option. This option, used only in the Accessroutines,
causes the array be placed in SAVE memory to ensure it a permanent location for the duration of
the Accessroutines execution.

<array declaration>

—ﬁ <array declaration> |
SAVE

Explanation

For a detailed description of the array declaration construct, sée @@L Programming
Reference Manual, Vol. 1: Basic |mplementation.

Note: The SAVE form of the array declaration is considered unsafe. Use of this construct in
new code is not recommended.

Example
SAVE ARRAY A[0:100];

In this example, the one-dimensional array A is placed in SAVE memory.

8600 0874-203 2-1

DMALGOL Extensions to ALGOL Declarations and Statements

Concurrency Control Facility

DMALGOL supports DMSII concurrency control by implementing six host language statements,
which are described as follows.

ABORTTRANSACTION Statement

The ABORTTRANSACTION statement backs out all updates that occurred during the transaction
and removes the program from transaction state.

<ABORTTRANSACTION statement>

— ABORTTRANSACTION <restart data set> ———

|— <COMS header id> J

|— <exception handling> J

Examples

ABORTTRANSACTION VENDOR RESTART;
ABORTTRANSACTION OUTPUT_HEADER MY RESTART;

2-2 8600 0874-203

DMALGOL Extensions to ALGOL Declarations and Statements

CANCELTRPOINT Statement

The CANCELTRPOINT statement is used to back out all updates in a transaction to an
intermediate save point or to the beginning of the transaction.

<CANCELTRPOINT statement>

— CANCELTRPOINT L <restart data set> ———

(<integer expression>) J

|— <exception handling> J

Explanation

If there is an associated arithmetic expression that is nonzero, the save point identified by the
arithmetic expression is used. Otherwise, all updates that occurred during the transaction are
backed out. In either case, the program is left in transaction state.

Example
CANCELTRPOINT (MAIN SAVE POINT) MY RESTART;

8600 0874-203 2-3

DMALGOL Extensions to ALGOL Declarations and Statements

FREE Statement

The FREE statement is used to release locked or secured records.

<FREE statement>

— FREE <selection expression>

<database identifier> —— |— <exception handling> J

STRUCTURE — <data set name> —

Explanation

The FREE STRUCTURE statement frees the records in a structure that was explicitly locked by a
LOCK STRUCTURE data set statement or explicitly secured bySaCURE STRUCTURE data set
statement.

An explicitly locked or secured structure is not freed at ENDTRANSACTION.

Example
FREE STRUCTURE VENDOR DATA;

2-4 8600 0874-203

DMALGOL Extensions to ALGOL Declarations and Statements

LOCK Statement

The LOCK statement is used to lock records for exclusive use by one program (exclusive lock).
No other program can access the locked records. A user can lock individual records or all the
records in a structure.

<LOCK statement>

— LOCK <selection expression>

<database identifier> —— |— <exception handling> J

STRUCTURE — <data set name> —
L] |
<input mapping>

Explanation

A structure lock can be explicit or implicit.

An explicit lock occurs when tHeOCK STRUCTURE data set Syntax is used, which locks all the

records in the structure. The records are freed by usirfgREE STRUCTURE data set statement
described earlier in this section.

An implicit lock occurs when a user locks more than 50 records in any structure. The records are
freed at ENDTRANSACTION.

If a user attempts to lock a structure in which other users have locked or secured records, the
structure will not be locked until the users free the records or reach ENDTRANSACTION. If the
users attempt to lock or secure additional records while the structure is being locked, a deadlock
occurs.

Example

LOCK STRUCTURE VENDOR DATA;

8600 0874-203 2-5

DMALGOL Extensions to ALGOL Declarations and Statements

SAVETRPOINT Statement

2-6

The SAVETRPOINT statement is used to mark or designate an intermediate save point. The
associated arithmetic expression is used to identify the save point.

<SAVETRPOINT statement>
— SAVETRPOINT — (<integer expression>) — <restart data set>

|— <exception handling> J

Explanation

This statement writes a save point record to the audit file that contains the integer expression. The
save point can later be referenced in the CANCELTRPOINT statement. A user can abort a
transaction to any save point previously established for that transaction.

Save points serve only as markers for aborting the current transaction while the database is up.
Save points do not affect halt/load recovery. Halt/load recovery will always finish on a completed
transaction, rather than on a save point.

Example
SAVETRPOINT (3) RSTRTDS;

8600 0874-203

DMALGOL Extensions to ALGOL Declarations and Statements

SECURE Statement

The SECURE statement enables multiple programs to share the same locked records for read only
access (shared lock). Individual records or all the records in a structure may be secured.

<SECURE statement>

— SECURE <selection expression>

<database identifier> —— |— <exception handling> J

STRUCTURE - <data set name> —

|
|— <input mapping> J

Explanation

A structure secure can be explicit or implicit.

An explicit secure occurs when tBECURE STRUCTURE data set Syntax is used, which secures
all the records in the structure. The records are freed by usifgREle STRUCTURE data set
statement described earlier in this section.

An implicit secure occurs when you secure more than 50 records in any structure. The records are
freed at ENDTRANSACTION.

If you attempt to secure a structure in which other users have locked or secured records, the
structure will not be secured until the other users free the records or reach ENDTRANSACTION.
If the users attempt to lock or secure additional records while the structure is being secured, a
deadlock occurs.

You can lock records that are secured by issuing a LOCK statement. However, if two users try to
lock the secured records, a deadlock occurs.

8600 0874-203 2—7

DMALGOL Extensions to ALGOL Declarations and Statements

Compile-Time Facility

DMALGOL provides the user with several extensions to the ALGOL compile-time facility. For
information on the ALGOL compile-time facility, see the section on the compile-time facility in
the ALGOL Programming Reference Manual, Vol. 1: Basic Implementation.

The compile-time facility is offered as a normal feature in DMALGOL. It is not necessary to set
the CTPROC compiler control option, as must be done to use the compile-time facility in ALGOL.

'DEFINE Statement

2-8

The 'DEFINE statement can be used in DMALGOL to declare an identifier to be a preprocessor
define identifier.

<compile-time 'DEFINE statement>

— 'DEFINE — <identifier> — = — <compile-time statement> |

Explanation

The compile-time 'DEFINE statement is processed when referenced by the identifier in a
subsequent 'INVOKE statement.

Example

BEGIN
INTEGER I;

'DEFINE A = 'BEGIN I:=5; 'END;

"IF . . . THEN
"INVOKE A;

8600 0874-203

DMALGOL Extensions to ALGOL Declarations and Statements

'FOR Statement
The 'FOR statement extension provides for iterative compilation of ALGOL source code.

<compile-time 'FOR statement>

- 'FOR L EACHJ L <nodeid 1> —4|7 OF <nodeid 2> ——
ALL <number identifier>

L J DO —|: <compile-time statement> ——|
WHERE <Boolean expression> <begin clause> ———

<begin clause>
— 'BEGIN — <text 1> — 'NEXT — <text 2> — 'PRIOR — <text3> — 'END 4|

Explanation

One iteration is made over the source code for each entry in the list belonging to the <nodeid 2>
construct. The <nodeid 2> construct must be the index of a node in the Data and Structure
Definition Language (DASDL) array.

For each iteration, the control variable is assigned the index of the list element if the <nodeid 1>
construct is specified or the contents of the list element if the number identifier construct is
specified.

If the WHERE clause is used, a constant Boolean expression must be specified. Before the
statement following DO is processed but after the control variable has assumed its next value, the
Boolean expression is evaluated. If the expression is TRUE, the statement following DO is
processed; otherwise, the statement is ignored.

The compile-time statement can include any of the DMALGOL extensions to the ALGOL
compile-time facility.

If the body of the 'FOR statement is the 'BEGIN-'NEXT-'PRIOR-'END form, a “telescoping” form
of iteration is performed. In that case, the 'NEXT behaves like an 'END, with the following results:
1. The <text 1> construct is processed for each iteration.

2. After the last iteration, the <text 2> construct is processed just once.

3. Finally, the iteration is repeated, backwards, for the <text 3> construct.

If a WHERE clause is used, the backwards iteration processes exactly the same cases as the first
iteration; that is, the Boolean expression is not reevaluated while backing out of the “telescope.”

8600 0874-203 2-9

DMALGOL Extensions to ALGOL Declarations and Statements

'INCLUDE Statement

The 'INCLUDE statement causes the compiler to process text directly from the DASDL array.

<compile-time 'INCLUDE statement>

— '"INCLUDE — <nodeid> — . — <property id> |

Explanation
The value of the specified property is assumed to be an index of text in the DASDL array. That
text must be terminated by a pound sign (#) and at least one null charao@).(4

The compiler does not expand defines in database declarations where the define identifier was the
result of a compile-time 'INCLUDE statement.

'INVOKE Statement

2-10

The 'INVOKE statement causes the compile-time statement previously associated with the
compile-time define identifier in a 'DEFINE statement to be processed.

<compile-time 'INVOKE statement>

— '"INVOKE — <preprocessor define identifier> |

Explanation

The original line numbers of the 'DEFINE declaration are preserved.

For an example of how the 'INVOKE statement is used, see the example provided for the 'DEFINE
statement.

8600 0874-203

DMALGOL Extensions to ALGOL Declarations and Statements

NODE Declaration

The NODE declaration is used to declare a node identifier. It is similar to the ALGOL compile-
time variable declaration NUMBER. An identifier declared to be a node is a compile-time variable
that must be used in conjunction with a compile-time array created by the Data and Structure
Definition Language (DASDL). The node variable represents an index into the DASDL array.

<compile-time variable declaration>

— NODE J— <identifier> |

|— := — <constant arithmetic expression 1> J

Explanation
The value of the node variable can be changed at any time during compilation by means of a
compile-time 'LET statement.

The <constant arithmetic expression 1> construct represents the initial index of the node variable.
By default, the initial value is zero, which is otherwise an illegal value; thus, a node must be
initialized or assigned a value before it is used.

Normally, the node variable represents the index of a node in the DASDL array. A list and a set of
properties are associated with a node. The list is usually a list of nodes, and the properties contain
values. The node variable can be used to reference members of the list and values of the properties.
For example, if N is a node variable and P is a property identifier, then

e N[<i>] is the <i>th member of the list of N

* N.Pis the value of the property P of N

where <i> is a constant or constant expression.

Example
NODE NODULE := 6;

This example declares a node identifier called “NODULE” with an initial index value of 6.

8600 0874-203 2-11

DMALGOL Extensions to ALGOL Declarations and Statements

'PRINT, 'ERROR, 'DISPLAY Statements

These statements cause one or more lines to be printed on the compilation listing.

'PRINT |
E 'ERROR ﬂ .
'DISPLAY <nodeid>

<string>

<arithmetic expression> —

Explanation

Each line can contain up to 87 characters, starting in position 18.

The lines are created from the information given in the statement, as follows:

» If the <nodeid> construct is specified, the property “name” (an alpha property) for the node is
inserted into the line.

» If the <string> construct is specified, it is inserted into the line.

» If the <arithmetic expression> construct is used, it must be a constant arithmetic expression. It
is assumed to be an integer, and the value of the integer, zero suppressed, is inserted into the
string.

No blanks are inserted into the line between specified items.
If a 'PRINT or 'ERROR statement is processed (not skipped) by the compile-time processor, the

lines are printed whether or not any listing dollar card options (LIST, LISTOMIT, and so on) are
initialized.

If the 'ERROR form is used, the compiler's error count is incremented by one, and the printed line
is enclosed in angle brackets (<>) as with a typical syntax error message.
Examples

"PRINT "BEGINNING OUTER BLOCK CODE"
"ERROR "NO HANDLING FOR THIS CASE HAS BEEN IMPLEMENTED"
'DISPLAY I;

2-12 8600 0874-203

DMALGOL Extensions to ALGOL Declarations and Statements

PROPERTY Declaration

The PROPERTY declaration declares a property identifier that defines the location and format of a
property value associated with a node in a DASDL array.

ﬁ PROPERTY J— <identifier> — = — <property specification> J—{
<type>

<property specification>

<compile-time PROPERTY identifier declaration>

— [- <arithmetic expression 1> —]

|— . — [— <arithmetic expression 2> : <arithmetic expression 3> —] J

<node property construct>

— <node variable> — . — <property identifier> {

Explanation

Each arithmetic expression must be a constant arithmetic expression. Arithmetic expression 1
specifies the word in the property set. Arithmetic expressions 2 and 3 specify a field within the
word; if they are not given, the entire word is used.

If a type is declared, it must be single-precision arithmetic or Boolean. When no type is specified,
REAL is assumed.

A property identifier is used only with a node variable. This node property construct represents the
value of the property for the given node. It can be used wherever constants of the specified type
can appeatr.

The node property construct is used only to retrieve a value from the DASDL array. It cannot be

used to change a property value. (In fact, no construct can change the DASDL array, as it is read-
only.)

8600 0874-203 2-13

DMALGOL Extensions to ALGOL Declarations and Statements

DMIO File Attribute

The DMIO direct file attribute is used by the Accessroutines to indicate that the Data Management
System Il (DMSII) system is using the file. When the DMIO attribute is specified, certain MCP
checks are turned off to avoid problems when multiple stacks are sharing a file.

Note: The DMIO attribute is considered unsafe.

DYNAMIC DATABASE Declaration

2-14

The DYNAMIC DATABASE declaration is a DMALGOL extension to the DATABASE
declaration. It enables you to declare databases that can be invoked at run time.

<DYNAMIC DATABASE declaration>

— DYNAMIC — DATABASE J— <internal name> |

Explanation

“Dynamic” specifies that the description of the database is to be provided by the application at run
time rather than at compile time.

Dynamic databases are a type of Data Management System Il (DMSII) database. They are not
bindable.

Dynamic databasesannot be declared within an ALGOL structure block.
Note: DYNAMIC DATABASE declarations are considered unsafe.

Examples

DYNAMIC DATABASE D81;
DYNAMIC DATABASE D81, D82;

8600 0874-203

DMALGOL Extensions to ALGOL Declarations and Statements

EXCEPTION PROCEDURE Declaration
DMALGOL supports the ALGOL EXCEPTION PROCEDURE declaration. As an extension of
the ALGOL construct, DMALGOL enables the EXCEPTION PROCEDURE to be declared as
PROTECTED.

<EXCEPTION PROCEDURE declaration>
L J EXCEPTION PROCEDURE — <exception procedure identifier> —
PROTECTED

»>— <unlabeled statement> {

<exception procedure identifier>

— <identifier> {

Explanation

An exception procedure is subject to interruptions such as those caused by software interrupts,
stack stretching, and the DS and STOP system commands. A protected exception procedure is not
subject to such interruptions; however, the protected status of the procedure does not apply when
the procedure is called directly.

If a protected exception procedure is declared, the code file is marked as unsafe and
nonexecutable. The code file can be opened only with the SL or MP system command. For
additional information on the SL and MP commands, se&yiem Commands Operations
Reference Manual.

8600 0874-203 2-15

DMALGOL Extensions to ALGOL Declarations and Statements

Nonlocal Message References

In DCALGOL, references to a MESSAGE variable must be local; that is, the message must be
declared in the block or procedure in which the reference occurs. DMALGOL extensions allow
references to be made to globally declared MESSAGEs; however, such references are considered
unsafe. For more information on message references, see the section on message and message
array declarations in tHeCALGOL Programming Reference Manual.

Example

BEGIN
MESSAGE M1;
PROCEDURE P;
BEGIN
MESSAGE M2;
IF ... THEN
DCWRITE(M1)
ELSE
DWRITE(M2);
END
END;

In this example, procedure P contains references to a locally declared message, M2, and to a
globally declared message, M1.

Note: Referencesto globally declared messages are considered unsafe.

2-16 8600 0874-203

DMALGOL Extensions to ALGOL Declarations and Statements

ONCE-ONLY Compilation

ONCE-ONLY compilation is used to save compilation time and code space. It is established using
the compile-time 'LET statement and a special form of the PROCEDURE declaration.

<compile-time 'LET statement>

— 'LET — <number variable> — := — <procedure identifier> {

<procedure declaration>
— <procedure type> — PROCEDURE — <procedure heading> — ; — EXTERNAL ——

»>— <number variable> {

Explanation

ONCE-ONLY compilation is restricted to use by programs having an ENVIRONMENT

declaration (that is, Accessroutines). It is used when a procedure declared in one environment is
common to one or more other environments. Normally, ALGOL scope rules require that each
instance of the procedure be compiled; thus, each instance receives its own code segment. With the
DMALGOL extensions, a procedure need only be compiled once, in the first environment.
Subsequent environments refer back to that declaration.

When the ONCE-ONLY compilation feature is used, the same code segment (or procedure) is
executed in different addressing environments. Therefore, the procedure declaration must be
identical except for the lack of a procedure body in the external procedure. DMALGOL does not
check the procedure declarations for consistency; it simply copies the program control word
(PCW) for the original procedure into the environment containing the EXTERNAL PROCEDURE
declaration.

The procedures must be declared at the same lexical level in equivalent environments. If the
procedure body refers to global variables, those variables must be declared in each environment so
that they are allocated at the same stack addresses. The variables must also be of the same type.

Note: Thisform of PROCEDURE declaration is considered to be extremely unsafe.

8600 0874-203 2-17

DMALGOL Extensions to ALGOL Declarations and Statements

Example

NUMBER GETADDRESSPCW;

BOOLEAN PROCEDURE GETADDRESS (A);
VALUE A;
REAL A;
BEGIN

END;
"LET GETADDRESSPCW := GETADDRESS;

BOOLEAN PROCEDURE GETADDR (A);
VALUE A;
REAL A;
EXTERNAL GETADDRESSPCW;

2-18

8600 0874-203

DMALGOL Extensions to ALGOL Declarations and Statements

OPEN Statement

DMALGOL contains six options for the OPEN statement that are related to opening a database.
These options are used to indicate special circumstances to the Accessroutines.

<OPEN statement>
— OPEN —|— RECOVER ———— <database name> {

RECONSTRUCT —— |— <exception handling> J

— UTILITY
— MAPPER

INQUIRYSEMANTIC —
UPDATESEMANTIC —

— REORG

— PREVERIFY

Explanation
The exception handling construct is used to denote those statements where a program variable can
be designated to receive the value of the database status word. For more information on exception
handling, see the section on exception processing ilLIBEOL Programming Reference Manual,
Vol. 1: Basic Implementation.
Example

OPEN RECOVER DB1:B;

Note: The MAPPER, INQUIRYSEMANTIC, and UPDATESEMANTIC options are considered
unsafe.

8600 0874-203 2-19

DMALGOL Extensions to ALGOL Declarations and Statements

Procedure Declaration

2-20

DMALGOL supports all ALGOL procedure declarations. As an extension of the ALGOL
construct, DMALGOL provides the user with an EVENT procedure type.
<procedure type>

type |
STRING —

—<string type>J

— EVENT

Explanation

An EVENT-valued procedure returns a reference to an event as its procedure value. This reference
takes the form of an SIRW to a single EVENT or an indexed descriptor to an element of an

EVENT ARRAY. The event reference that is returned can be used anywhere a regular event
designator is used.

For further information regarding procedure declarations, refer tAltB®©L Programming
Reference Manual, Vol.1: Basic Implementation manual.

8600 0874-203

DMALGOL Extensions to ALGOL Declarations and Statements

Reference Variables Declaration and Assignment

DMALGOL provides the ability to declare array reference variables, procedure reference
variables, file reference variables, and direct file reference variables. These reference variables
allow for dynamic selection of arrays, procedures, files, and direct files within the Data
Management System Il (DMSII) system. In some cases, DMALGOL permits reference
assignments to be up-level; that is, the reference variable can refer to another entity at a higher
lexical level.

Array References
An array reference assignment associates a variable, called an array reference, with an <array
designator>, which in ALGOL can designate only an array or subarray. DMALGOL allows several
additional types of array designations to be assigned to the array reference identifier. In addition,

DMALGOL allows for up-level array reference assignments in some cases.

<array reference assignment>

— <array reference variable> — := —— <array designator> |

— <database id>.DMSIB1

— <database id>.DMSIB?2

— <database id>.DMSIBDESC

— DMKEYAREA

— DMWORKAREA[<structure environment index>]

— DMSIBDESC

- <transaction variable id>

Explanation

The <array designator> construct indicates the array or array portion to be associated with the
array reference variable. In DMALGOL, the array designator can be any valid ALGOL array
designator. Following an array reference assignment, the array reference variable becomes a
referred array, describing the same data as the array designator, which can itself be an original
array or another referred array.

DMALGOL allows an array reference assignment to an array designator to be up-level only in the
Accessroutines. These up-level references are considered unsafe.

DMALGOL accepts the three <database id> arrays as valid array designators. These three arrays
are constituents of the database declaration. Unless the database identifier was declared dynamic,
the array reference being assigned is marked read-only; data can be retrieved but not stored
through that array reference.

When there is exactly one database declared in a program, and that database is not dynamic,

DMALGOL accepts the three designators DMKEYAREA, DMWORKAREA, and DMSIBDESC.
For more information about these designators, see “DMINQ Arrays” in Section 3.

8600 0874-203 2-21

DMALGOL Extensions to ALGOL Declarations and Statements

DMALGOL allows an array reference to be assigned to a transaction input record or transaction
output record by using the transaction variable id construct as the array designator. The transaction
variable id is an identifier that is the name of the transaction record variable. Subsequent use of the
array reference variable references the Transaction Processing System (TPS) transaction variable.
Such an assignment is considered unsafe.

Transaction record variables are described in the section describing the user language interface to
TPS in theDMSlI Transaction Processing System (TPS) Programming Guide.

Example

A := DB.DMSIB1
In this example, the array reference A is associated with the array designator DB.DMSIB1.

Note: If the array reference is up-level or isassigned to a transaction variable identifier, this
construct is considered unsafe.

Procedure Reference Arrays

2-22

A procedure reference array declaration declares an array that allows a group of like procedures to
be treated as a single entity. The DMALGOL extension to this construct permits up-level reference
assignments.

For more information about the PROCEDURE REFERENCE ARRAY declaration, refer to the
ALGOL Programming Reference Manual, Vol. 1: Basic Implementation.

Note: Up-level procedure reference array assignments are considered unsafe.

8600 0874-203

DMALGOL Extensions to ALGOL Declarations and Statements

Procedure References
A procedure reference declaration declares a procedure reference identifier. This enables dynamic

selection of procedures within DMSII. The DMALGOL extension to this construct permits up-
level reference assignments.

In addition to the ALGOL syntax for declaring PROCEDURE REFERENCES, DMALGOL
enables another form of syntax.

<PROCEDURE REFERENCE Declaration>

L J PROCEDURE REFERENCE
<proc. type>

—<identifier L

; —<procedure body>4|

<formal parameter pa\r‘t>J

Explanation

This form of procedure reference declaration specifies a body of code to be executed if the
procedure reference id construct is used before an assignment is made to it.

Note: Thisform of the PROCEDURE REFERENCE Declaration is considered unsafe.

For more information regarding the PROCEDURE REFERENCE Declaration, referAb®@l
Programming Reference Manual, Vol. 1: Basic Implementation.

8600 0874-203 2-23

DMALGOL Extensions to ALGOL Declarations and Statements

File References

DMALGOL provides the ability to declare reference variables for files and direct files. This ability
allows for dynamic selection of files and direct files within DMSII.

Declaration Syntax

<FILE REFERENCE declaration>

ﬁ FILE REFERENCE J—
DIRECT

Assignment Syntax

<file reference id> J— : |

<FILE REFERENCE assignment>
—<file reference id 1>— := —|:<f1'1e identifier J ; }

<file reference id 2>

Explanation

Prior to being assigned a value, a file reference variable does not point to a file.

In the file reference assignment statement, the left and right file identifiers must both be DIRECT
or both be non-DIRECT.

Example
FILE REFERENCE FR1;
FR1 := RMT;

This example first declares a file reference FR1, then assighs an RMT to FR1.

Note: If the assignment is up-level, the construct is considered unsafe.

2-24 8600 0874-203

DMALGOL Extensions to ALGOL Declarations and Statements

Up-Level Event References

When an event designator is provided in a READ or WRITE statement for a direct file, ALGOL
requires the event to be no less global than the direct array referenced in the statement.
DMALGOL relaxes this restriction, but up-level READ/WRITE event designations are considered
unsafe. The DMALGOL compiler checks to verify that the event (if supplied) is no less global than
the direct array. There are three possible outcomes of the verification checking:

* The static relationship is correct and, thus, no run-time checking is required.

* The static relationship is incorrect. DMALGOL marks the construct as unsafe. (ALGOL
would generate a syntax error in this case.)

» The relationship cannot be verified statically because the array designator is an array reference
or a formal parameter, or because the event designator is a formal parameter. In this case, the
MCP is directed to perform the verification check at run time and faults the up-level event
references even for DMALGOL. (However, if the direct file has the DMIO attribute set, no
check is made. For this reason, the DMIO attribute is considered unsafe.)

There are two points to notice about verification checking. First, there is no way to turn it off
completely for non-DMIO files. If the test cannot be performed at compile time, it is performed at

run time. Second, the MCP run-time checks are conservative and can at times reject a legitimate
situation. For Example, if either the event or the direct array is in a library or database stack, the
only acceptable case is when both are in the same stack and the event is lower in the stack than the
direct array. If the event and the direct array are in the same block, the event must be declared first.

8600 0874-203 2-25

DMALGOL Extensions to ALGOL Declarations and Statements

2-26 8600 0874-203

Section 3

DMALGOL-Specific Functions and
Statements

This section describes the functions and statements that are unique to DMALGOL.

ALLOW Statement

The ALLOW statement is used with the DISALLOW statement to mark critical sections of code in
the Accessroutines where a series of operations must be performed without interruption. The
ALLOW statement permits interrupt code to be executed.

<ALLOW statement>
— ALLOW |

Explanation

The ALLOW statement appears at the end of a section of critical code to reenable external
interrupts that were previously disabled by a DISALLOW statement.

DISALLOW Statement

The DISALLOW statement is used with the ALLOW statement to mark critical sections of code in
the Accessroutines where a series of operations must be performed without interruption. The
DISALLOW statement prevents interrupt code from being executed.

<DISALLOW statement>
— DISALLOW |

Explanation

The DISALLOW statement appears at the beginning of the section of critical code to disable
external interrupts. The external interrupts can be reenabled at the end of the section using the
ALLOW statement.

Note: The DISALLOW statement is considered unsafe.

8600 0874-203 3-1

DMALGOL-Specific Functions and Statements

DMINQ Functions

The DMINQ functions consist of the DMINQ interface function and the DMINQ arrays.

DMINQ Interface Function

3-2

The DM INQUIRY (DMINQ) interface permits direct communication with the Data Management
System Il (DMSII) Accessroutines.

In a program that uses a DMINQ function, one database (no more, no less) must be invoked in the
normal manner, or a syntax error is returned.

<DMINQ function>

— DMINQ — [- <arithmetic expression> —] — (— <array row> —) 4|

Explanation

The arithmetic expression specifies the index (ENVINX) within the Structure Information Block
(SIB) for the desired structure. The array row specifies a one-dimensional array used to
communicate with the Accessroutines. The contents of the array control the function performed by
the system.

8600 0874-203

DMALGOL-Specific Functions and Statements

The value of the array element, A[0], identifies the specific procedure as described in Table 3-1:

Table Section 3—-1. DMINQ Array Values and Procedures

Array [0] Value Procedure
1 Pathfinder (find key only)
10 Set to beginning
11 Data finder (find/lock next/current)
12 GETDATA
13 DMSREAD (access data portion only)
14 Get link
16 Store current
17 Free current
18 Set or check date-timestamp for Transaction Processing System
(TPS)
19 Clear TPS flag and date-timestamp
20 Return last transaction address
21 Get status of abort
22 Rerun finished -- reset TPS, abort pending
23 Create
24 Delete current
25 Get statistics information
26 Visible Database Stack (DBS) message
27 Return displayed messages
28 Return software version
29 Clear TPS address
30 Return standard data set DATAEOFs
31 GETDATA with KEYCOMPARE
32 Off-line dump
33 Set cursor
34 Set current path to a different cursor path

8600 0874-203 3-3

DMALGOL-Specific Functions and Statements

The procedures outlined in the previous table are described in detail under the following headings.

Procedure: Pathfinder (A[0] =1)

This procedure finds a record in a set.

Parameters
A[1] = FIND:

-1 = current record

0 = next in set

1 = next in set = User Key Area (UKA)

2 = next in set > UKA

3 = nextin set >= UKA

4 = link in set

5 = prior in set

6 = prior in set = UKA

7 = prior in set < UKA

8 = prior in set <= UKA
A[2] = Size (SZ) parameter to pathfinder
This parameter specifies the size of the key passed to pathfinder in the user key area. If SZ is less

than zero (0), then ABS(SZ) is the number of hex characters in the user key; otherwise, SZ is the
number of bytes in the user key.

A[3] = Size (SZ2) parameter to pathfinder

This parameter specifies the size of the major portion of the user key which must exactly match the
retrieved key. If SZ is less than zero (0), then ABS(SZ2) is the number of hex characters in the
user key; otherwise, SZ2 is the number of bytes in the user key.

As an example, if an index set had a concatenated key (A,B,C) with each portion two bytes long, to
retrieve the next key where A=UKA and B=UKA requires SZ=4 and SZ2=4. To retrieve the next
key where A=UKA and B>UKA requires SZ=4 and SZ2=2.

If a record is found as specified, the AA word is returned in A[1]. A GETDATA call must be used
to move the record to the user's work area.

34 8600 0874-203

DMALGOL-Specific Functions and Statements

Procedure: Set to Beginning (A[0] = 10)

This procedure sets the current record parameter to the beginning or the ending of the record.

Parameters
A[1] = FINDTYPE:
0 = set to beginning

1 = set to ending

A[i], i>1, not used

Procedure: Data Finder (A[0] = 11)

This procedure finds a record in a dataset. If a record is found, its AA word is returned in A[1],
and the record is moved to the user's work area.
Parameters
A[1] = FIND:
0 = find current data set
1 = lock current data set
2 = find next data set
3 = lock next data set

4 = find prior data set

5 = lock prior data set

Procedure: GETDATA (A[0] = 12)

This procedure moves the desired record to the user's work area.

Parameters

A[1] = AA word of desired record

8600 0874-203 3-5

DMALGOL-Specific Functions and Statements

Procedure: DMSREAD (A[0] = 13)

This procedure is similar to the GETDATA procedure, except that only the data portion of the
desired record is moved to the user's work area. Structures embedded in the accessed record are
unaffected.

Parameters

A[1] = AA word of desired record

Procedure: Get Link (A[O] = 14)

This procedure gets the link address and performs a fetchkey call on the control manager. The link
entry is returned in the array A[*].

Parameters

A[1] = Unused
A[2] = LLOC parameter
A[3] = LLEN parameter

Procedure: Store Current (A[0] = 16)

This procedure stores the current record.

Parameters

A[i], i=0, not used

Procedure: Free Current (A[O] = 17)

This procedure frees the current record.

Parameters

A[i], i>0, not used

3-6 8600 0874-203

DMALGOL-Specific Functions and Statements

Procedure: Set or Check Date-Timestamp for TPS (A[0] = 18)
This procedure is used to set or check the value of the timestamp (TIME(6)) given to the
Accessroutines when the Transaction Processing System (TPS) journal library is initiated. A[1]
contains the timestamp to be given to the Accessroutines.
If the existing timestamp in the Accessroutines is not zero and a call on this DMINQ function is

made (passing a new timestamp), this DMINQ function returns a value of TRUE and the new
timestamp is not captured by the Accessroutines.

Parameters

None

Procedure: Clear TPS Flag and Date-Timestamp (A[0] = 19)

This procedure signals the Accessroutines to set the TPSCLOSEDFLAG true and reset the
timestamp, which was given to the Accessroutines upon initiation of a TPS Journal library, to zero.

Parameters

None

Procedure: Return Last Transaction Address (A[0] = 20)

This procedure returns the last transaction address in the database control file.

Parameters

The transaction address in the Database Control File is returned in words A[0], A[1] and A[2], as
follows:

A[0Q] is the file number of the address.
A[1] is the block number of the address.

A[2] is the offset number of the address.

8600 0874-203 3—7

DMALGOL-Specific Functions and Statements

Procedure: Get Status of Abort (A[0] = 21)

This procedure returns a value to TPS (in A[0]) that indicates the status of an abort. The possible
values returned are as follows:

1 Accessroutines are waiting for updaters to leave transaction state.

2 All updaters are gone. Accessroutines are waiting for an ABORT.

3 The abort is finished. Accessroutines are waiting for TPS to reprocess transactions.
4

No abort or reprocessing of transactions is necessary.

Parameters

None

Procedure: Rerun Finished -- Reset TPS Abort Pending (A[0] = 22)

This procedure tells the Accessroutines that TPS has finished reprocessing transactions. The
Accessroutines resets the TPSABORTPENDING flag to FALSE.

Parameters

None

Procedure: Create (A[0] = 23)

This procedure creates a record.

Parameters

A[1] = CREATETYPE:

0 = create
1 =recreate

A[2] = Record type, if format is variable; else unused

Procedure: Delete Current (A[O] = 24)

This procedure deletes a record.

Parameters

A[i], i>0, not used

3-8 8600 0874-203

DMALGOL-Specific Functions and Statements

Procedure: Get Statistics Information (A[0] = 25)

This procedure gets the database statistics. The parameters are described in Table 3-2.

Parameters

Table Section 3—2. Word Values and Descriptions for the Get Statistics
Information Procedure

Word

Contents

Description

Word 0

Word 1

Word 2

Word 3
(See note at
end of
table.)

Word 4

Word 5

25

Structure number

Type of statistics

Statistics result
word

Total number of
words returned

Index to header
word for
subgroup 1

Specifies a statistics request to the DMINQ
interface

Indicates the structure number of the desired
statistics (or equals O if global statistics are
desired).

Specifies whether static statistics (value of 0)
or dynamic statistics (value of 1) are desired.

Indicates the result of the statistics request. If
the request was correctly formatted and
honored, this word is 0 (zero). Otherwise,
[0:1] is equal to 1 and [35:8] contains an
error category. The currently defined error
categories are as follows:

Error
Number

1. The structure number provided in word 1
did not correspond to an existing data
set or set in the database.

2. The statistics request type provided in
word 2 was invalid (not 0 or 1).

3. A fault was encountered while the
program was attempting to retrieve
statistics.

4. A dynamic statistics request was made
for an inactive structure.

5. A function is not available for this
structure.

Contains the total number of words returned
in the array, including all of the fixed words at
the front of the array. Note that if the array
provided is too small to receive all of the
statistics, it is resized.

Contains the index of the first group of
statistics information returned.

8600 0874-203

continued

DMALGOL-Specific Functions and Statements

Table 3—2. Word Values and Descriptions for the Get Statistics Information
Procedure (cont.)

Word Contents Description
Word[Word 5] Header word for Precedes each group and indicates the
subgroup 1 Group type and the number of words of
information in the group.
The layout of this header word is as follows:
Field Contents
[47:24] Not used
[23:8] Group type
[15:16] Number of words in
group (including
header)
Word[Word 5 +] First data word
for subgroup 1
Word[Word 5 + Header word for
n] subgroup 2
Word[Word 4 - 1] End-of-statistics Follows the last group of statistics and has a
flag Group type of zero (0).

Note: The Accessroutines process the request and return the result in the array
starting at Word 3. Words 0 through 2 are unaffected by the Accessroutines.
The format of the result is stated in the description column.

The various group types and their layouts are shown in the following tables. Ticks refer to time on

the processor clock. For example, one tick equals 2.4 microseconds. The group types can appear
in any order.

3-10 8600 0874-203

DMALGOL-Specific Functions and Statements

Table Section 3—-3. Global Static Statistics [word 1 =0, word 2 = 0]

Word

Contents

Group type 6
1
2
3

Time database opened (TIME(7) value)

Maximum valid structure number in database
Database options:

[0:1] = 1 if STATISTICS is initialized in database

[1:1] = 1 if database is audited

[2:1] = 1 if LOCKSTATISTICS is initialized in database
Compile-time $options:

[10:01] = 1 if database is partitioned

[13:01] = 1 if B7700 optimize is initialized

[17:01] = 1 if database STATISTICS is initialized
[22:01] = 1 if database is audited

Database DASDL options:

[4:1] = 1 if POPULATIONWARN is enabled for any structure
[5:1] = 1 if POPULATIONINCR is enabled for any structure
[8:1] = 1 if INDEPENDENTTRANS is initialized

[9:1] = 1 if REAPPLYCOMPLETED is initialized
[10:01] = 1 if database is partitioned

[12:01] = 1 if TPSDUALUPDATE is initialized

[13:01] = 1 if B7700 optimization is initialized

[15:01] = 1 if CHECKSUM is initialized

[16:01] = 1 if REBLOCK is initialized

[17:01] = 1 if database STATISTICS is initialized
[18:01] = 1 if KEYCOMPARE is initialized

[19:01] = 1 if RDSSTORE is initialized

[20:01] = 1 if ALLFAULTRESTART is initialized
[21:01] = 1 if BACKOUTTOSPT is initialized

[22:01] = 1 if database is audited
[23:01] = 1 if ADDRESSCHECK is initialized
[23:24] = 1 if all DASDL options are initialized

8600 0874-203

continued

3-11

DMALGOL-Specific Functions and Statements

Table 3-3. Global Static Statistics [word 1 =0, word 2 = 0] (cont.)

Word

Contents

Group type 5
1-n

Database name including usercode prefix, if any. Database name
is followed by 4"00" .

Table Section 3—4. Global Dynamic Statistics (word 1 =0, word 2 = 1)

Word

Contents

Group type 1
1
2
3

o N o o b

10

Group type 2
1

Current database open count
Current number of users that have database open for update

Current database open state:

0
1
2
3
4

Unused

Maximum total buffer space in words (entire database)

Current total buffer space in words (entire database)

Current ALLOWEDCORE value (entire database)

Current OVERLAYGOAL value multiplied by 1000 (entire database)

Current overlay rate (entire database)

Maximum number of buffers allocated (entire database)

Time statistics collections started or were last changed (TIME(7)
value)

Number of forced database overlays (system-wide)
Number of normal database overlays (system-wide)

Unused

-- database is not open

- database is opened temporary

- database is opened and initialized
- database is open

- database is undergoing recovery

3-12

continued

8600 0874-203

DMALGOL-Specific Functions and Statements

Table Section 3—4. Global Dynamic Statistics (word 1 =0, word 2 = 1) (cont.)

Word Contents

Group type 3 (present only if STATISTICS is initialized and database is
audited)

1 First audit file number

2 Current audit file number

3 Starting audit block serial number

4 Current audit block serial number

5 Average number of words used in audit blocks

6 Actual audit block size

7 Number of audit input/outputs initiated

8 Total wait time accumulated on primary audit, in ticks (“Ticks” refers
to ticks of the processor clock at 2.4 microseconds/tick.)

9 Total wait time accumulated on secondary audit, in ticks

10 Total transaction count

11 Total number of times processes were held up at
BEGINTRANSACTION

12 Total time spent waiting at BEGINTRANSACTION, in ticks

13 Total number of syncpoints taken

14 Total number of controlpoints taken

15 Total time spent taking controlpoints, in ticks

16 Sum of the number of buffers present at each controlpoint

17 Sum of the number of buffers flushed at each controlpoint

18 Number of forced audit write operations at syncpoint time, in ticks

19 Total waiting time for forced audit write operations at syncpoint
time, in ticks

20 Average waiting time for forced audit write operations at syncpoint
time, in ticks

21 Number of forced audit write operations to unconstrain buffers

22 Total waiting time for forced audit write operations to unconstrain
buffers, in ticks

23 Average waiting time for forced audit write operations to
unconstrain buffers, in ticks

24 Number of other forced audit write operations

25 Total waiting time for other forced audit write operations, in ticks

26 Average wait time for other forced audit write operations, in ticks

27 Number of normal audit write operations

8600 0874-203 3-13

DMALGOL-Specific Functions and Statements

Table 3—4. Global Dynamic Statistics (word 1 =0, word 2 = 1)

continued
(cont.)

Word Contents

28
29

Group type 3

audited)

Total waiting time for normal audit write operations

Average waiting time for normal audit write operations

(present only if STATISTICS is initialized and database is

Table Section 3-5. Structure Static Statistics (word 1 = <structure number>,

word 2 = 0)
Word Contents
Group type 7
1 Structure number
2-4 Structure name (first byte is length in binary)
5 Structure type:
2 = data set
5 = index set
6 Structure subtype (refer to the DATABASE/PROPERTIES symbolic
file for more information)
7 Structure nesting level (1 = disjoint)
8 Structure block factor (in records for data sets, in key entries for
index sets)
9 Structure physical block size in words (including integrity-checking
words)
10 Structure area size in sectors
11 = 1 if structure is checksummed
12 = 1 if structure is addresschecked

3-14

8600 0874-203

DMALGOL-Specific Functions and Statements

Table Section 3—6. Structure Dynamic Statistics

Word Contents

Group type 8

1 Current number of random-access users

2 Current number of serial-access users

3 Current number of buffers allocated for structure

4 Current number of big buffers (for serial users) allocated for
structure

5 Current number of all users (inquiry and update)

6 Current number of update-access users

Group type 9 (present only if STATISTICS is SET and structure is a data set)

1 Number of FIND commands issued against data set

2 Number of CREATE/STORE commands issued against data set

3 Number of MODIFY/STORE commands issued against data set

4 Number of DELETE commands issued against data set

5 Number of times control information changed

Group type 10 (present only if STATISTICS is SET and structure is an index
set)

1 Number of FIND commands issued against index set

2 Number of INSERT commands used in index set

3 Number of key data changes in index set

4 Number of key deletions from index

Group type 11 (present only if STATISTICS is SET)

1 Number of physical read operations against structure

2 Number of physical write operations against structure

3 Number of ticks spent waiting for read operations to complete

4 Number of ticks spent waiting for write operations to complete

5 Total amount of I/0 time accumulated on file

6 Number of readahead operations issued against structure

7 Number of writeahead operations issued against structure

8600 0874-203

continued

3-15

DMALGOL-Specific Functions and Statements

Table 3-6. Structure Dynamic Statistics (cont.)

Word Contents
Group type 14 (present only if POPULATIONINCR is enabled and structure is
a
data set)
1 POPULATIONINCR value
2 POPULATIONINCR timestamp [TIME (6)]
3 POPULATIONINCR current target for maximum AREAS
Group type 15 (present only if POPULATIONWARN is enabled and structure is
a
data set)
1 POPULATIONWARN value
2 POPULATIONWARN timestamp [TIME (6)]

Procedure: Visible DBS Message (A[0] = 26)

Starting at A[1] is the Visible DBS message to be processed. The message must be terminated by
4"00".

The message is passed to the Visible DBS message processing routine and any response message

is returned starting at A[1]. If the response contains multiple liri@8)"4is used to separate the
multiple lines. The last line is terminated BY@'.

Parameters

None

Procedure: Return Displayed Messages (A[0] = 27)
This procedure returns the most recent displayable messages (does not include messages generated
by the Visible DBS) in the array A, starting at the first character of word 0. If no messages exist,
then seven nulls (480") are returned, starting at the first character of word 0. The most recent 23
messages are returned in the order most recent to least recent. Each message is terminated by
48'0D", and the final message of the group is terminated by a ntii({38

Parameters

None

3-16 8600 0874-203

DMALGOL-Specific Functions and Statements

Procedure: Return Software Version (A[0] = 28)

This procedure returns the software version. Mark is in A[0].[47:16], cycle is in A[0].[31:16], and
level is in A[0].[15:16].

Parameters

None

Procedure: Clear TPS Address (A[0] = 29)

This procedure resets the transaction address in the database control file to 0.

Parameters

None

Procedure: Return Standard Data Set DATAEOFs (A[0] = 30)

This procedure returns the DATAEOFs of the standard dataset.

Parameters
A[1] = Number of words in array
Starting at A[2] are pairs of words -- one pair per structure.
A[N] = As follows:
Field Contents
[47:12] Structure number

[35:16] Partition number
(Equals 0 if not partitioned)

8600 0874-203 3-17

DMALGOL-Specific Functions and Statements

Procedure: DATAEOF Values (A[N+1])

UTILITY uses this DMINQ procedure to determine the DATAEOF values for standard data sets
when performing an on-line dump. An entry is made in the array for each structure being dumped.
The Accessroutines returns the DATAEOF value for the structure as it was two control points ago.
UTILITY then checks only the checksums for those blocks of data that have an address less than
or equal to DATAEOF.

Parameters

None

Procedure: GETDATA with KEYCOMPARE (A[0] = 31)

When the KEYCOMPARE option is set for the database, the key is extracted from the desired
record for the specified set and compared with the key value in A[3]. If equal, the record is moved
to the user work area. If not equal or the set number provided is not a valid spanning set, an
integrity error subcategory 1 is returned.Parameters

A[1] = AA of the desired record

A[2] = Structure number of the set used on the previous pathfinder call

A[3] = For key size equal to user key area after previous pathfinder call

Procedure: Off-line Dump (A[0] = 32)

SYSTEM/DMUTILITY uses this DMINQ function to make sure there are no other updaters using
the database when the off-line dump starts. If other updaters are using the database, then
SYSTEM/DMUTILITY waits until they finish. SYSTEM/DMUTILITY then locks the database

for the off-line dump.

SYSTEM/DMUTILITY also uses the DMINQ function to notify the database that the off-line
dump is complete.

Parameters

3-18

A[1] = 0 indicates offline dump is beginning
A[1] = 1 indicates offline dump is complete

8600 0874-203

DMALGOL-Specific Functions and Statements

Procedure: Set Cursor (A[0] = 33)

The Set Cursor function dynamically opens and/or switches to a different invocation of the
structure. This offers multiple paths into the same structure without multiple invocations at compile
time.

Set Cursor is always at the disjoint data set level and implicitly sets the cursor of all embedded and
spanning structures. The DMINQ function can be called for any structure; however, it always
locates the disjoint data set for the structure and calls Set Cursor on that disjoint data set. A Set
Cursor performed on a DMSII set (as opposed to a data set) changes the cursor for that set only.
No data set cursors are affected.

Example
ENVINX := DMSIBINDEX (EMP);
A[0] := 33;
A[1] := CURSOR;
DMINQ [ENVINX] (A);
Parameters

A[1] = Cursor

Procedure: Set Current Path to Another Cursor's Path (A[0] = 34)

The Set Current Cursor Path function equates the path of the current cursor to the path of another
cursor. Thus, after a Set Cursor function, which opens or switches cursors, the current records and
set paths can be equated to another cursor.

For data sets, the lock status of records is also equated. As with multiple compile-time invocations,

lock and secure procedures performed by the same user in different invocations do not cause a
deadlock.

Parameters

A[1] = Other cursor

8600 0874-203 3-19

DMALGOL-Specific Functions and Statements

DMINQ Arrays

3-20

Three arrays are defined for use with the DMINQ interface function: DMKEYAREA,
DMWORKAREA, and DMSIBDESC. Note that these arrays can be used only in array reference
assignment statements. They cannot be used as ordinary arrays. These arrays are described as
follows:

» DMKEYAREA
A hexadecimal array that contains the user's key area for the one SIB invoked.

» DMWORKAREA [<structure environment index>]
A hexadecimal array that contains the user’s work area for a particular structure.

The structure index is an arithmetic expression whose value equals the SIB index for that
structure (see below).

- DMSIBDESC

A real array that contains the SIB description built by the database interface at compile time
for the database invoked. The first N words of this array (0 to N-1) contain environment words
describing the structure invoked. The index in the SIB description of this word is the value of
DMSIBINDEX for that structure.

The array reference to which DMSIBDESC is assigned is marked read-only; data can be
retrieved but not stored through that reference.

In a program that declares exactly one database, which is not DYNAMIC, DMSIBDESC is
equivalent to<database id>.DMSIBDESC (where the <database id> is the identifier in the
database declaration).

For more information on array references, see “Reference Variables Declaration and Assignment”
in the section “DMALGOL Extensions to ALGOL Declarations and Statements.”

8600 0874-203

DMALGOL-Specific Functions and Statements

DMPROCOFF Statement

The DMPROCOFF statement establishes a Stuffed Indirect Reference Word (SIRW) to a
procedure offset array in the database stack. This statement is used to enter user or
interenvironment procedures into the Accessroutines.

<DMPROCOFF statement>
— DMPROCOFF — (— <array name 1> — [— <subscript> -] — , — <array name 2>-)4|

Explanation

The SIRW to array name 2 is stored at array name 1 [<subscript>]. The array <array name 2>
should be set up using the SIBOFFSET function to contain offsets of procedures to be called using

the DMPROCREF function.

The DMPROCOFF statement is used in conjunction with the DMPROCREF function for
procedure reference assignment or procedure entry.

Example

DMPROCOFF (PROCOFFS[STR], PROCOFFSETS);
In this example, an SIRW to PROCOFFSETS is stored at PROCOFFS[STR].

Note: The DMPROCOFF statement is considered unsafe. Use of this construct in new codeis
not recommended.

8600 0874-203 3-21

DMALGOL-Specific Functions and Statements

DMPROCREF Function

3-22

The DMPROCREF function constructs a procedure Stuffed Indirect Reference Word (SIRW) from
an array of procedure offset array SIRWs and a procedure offset index. It then returns the
procedure SIRW.

<DMPROCREEF function>

— DMPROCREF — [— <array name> — [— <subscript> —] — , — <arithmetic
expression] {
Explanation

The array name identifies an array of SIRWSs built using the DMPROCOFF statement. The
arithmetic expression identifies the procedure desired. The SIRW returned can be used for either
procedure reference assignment or VIA procedure entry, as shown in the following example.

Example

PROCEDURE REFERENCE STRSTATS(A);
ARRAY A[0];

BEGIN END;

ARRAY A[0:99];

STRSTATS := DMPROCREF[PROCOFFS[STR],STRSTATSOFFSET];
STRSTATS(A) 5

STRSTATS VIA DMPROCREF[PROCOFFS[STR],STRSTATSOFFSET] (A);

When the VIA procedure entry is used, the parameters are checked only against the procedure
named in the statement, not against the procedure referenced by the SIRW constructed.

Note: The DMPROCREF function is considered unsafe. Use of this construct in new codeis
not recommended; it is suggested that procedure reference arrays be used instead.

8600 0874-203

DMALGOL-Specific Functions and Statements

DMSCAUSE Statement

The DMSCAUSE statement is used for deadlock detection of Data Management System I
(DMSII) functions.

<DMCAUSE statement>
— DMCAUSE — (— <arithmetic expression> —) {

Explanation

The DMSCAUSE statement calls the MCP procedure DMSCAUSE and passes a single real
parameter indicated by the <arithmetic expression> construct. The effect of the DMSCAUSE
statement call is dependent on this arithmetic expression as follows:

e Arithmetic expression <0

Indicates that the calling program has left the transaction state. The program is delinked from
the transaction state linkage chain.

e Arithmetic expression =0

* Indicates that a syncpoint has been completed. All programs waiting for a syncpoint for this
database are resumed.

e Arithmetic expression > 0

Indicates that a record for which other users are waiting has been freed. The parameter is the stack
number of the previous owner. All programs waiting on that stack number are resumed.

At run time, the operating system restricts the DMSCAUSE statement to use only by the
Accessroutines.

The DMSCAUSE statement is used with the DMSWAIT function.

Note: The DMSCAUSE statement is considered unsafe.

8600 0874-203 3-23

DMALGOL-Specific Functions and Statements

DMSFREE Statement

The DMSFREE statement calls the MCP procedure DMSFREE.

<DMSFREE statement>
— DMSFREE |

Explanation

The call to the MCP procedure DMSFREE causes all records locked by this process to be freed in
every database visible to the process.

Note: The DMSFREE statement is considered unsafe.

3-24 8600 0874-203

DMALGOL-Specific Functions and Statements

DMSFREEZE Function

The DMSFREEZE function calls the MCP procedure DMSFREEZE. The DMSFREEZE function
is invoked to indicate to the operating system when a database stack has been built and users can
be attached.

<DMSFREEZE function>
— DMSFREEZE |

Explanation

The DMSFREEZE function is a Boolean function that returns FALSE if the freeze is successful. It

returns a value of TRUE in the low order bit and an exception type in [19:16] if the freeze fails.

The exception types returned if the freeze fails are as follows:

e The environment calling DMSFREEZE does not have an Software Control Word (SCW)
within it.

e There are no stacks waiting to attach to the database.

e The caller is already an active frozen database.

e The caller is not a database stack initiated by DMSOPEN.

The DMSFREEZE function can be executed only by a code file initiated by the operating system

as the result of the MCP procedure DMSOPEN (that is, by an Accessroutine).

Note: The DMSFREEZE function is considered unsafe.

8600 0874-203 3-25

DMALGOL-Specific Functions and Statements

DMSIBINDEX Intrinsic

The DMSIBINDEX intrinsic returns the Stuffed Indirect Reference Word (SIRW) offset of the
structure indicated by the data set name or the set name.

<DMSIBINDEX intrinsic>

— DMSIBINDEX — (—|: <data set name> T) |
<set name>

Explanation

The data set name is the external name of the data set to be invoked. The set name is the external
name of the set to be invoked.

DMSLOCALREF Statement

3-26

The DMSLOCALREF statement calls the MCP procedure DMSLOCALREF. This procedure is
used to establish a reference to local Data Management System Il (DMSII) buffers.

<DMSLOCALREF statement>
— DMSLOCALREF — (— <direct array reference identifier> — ,

s>— <direct array identifier> —) '
The <direct array identifier> is an array reference identifier that is declared to be DIRECT.

Explanation

The two arrays must be declared with the same number of dimensions.

Note: The DMSLOCALREF statement is considered unsafe.

8600 0874-203

DMALGOL-Specific Functions and Statements

DMSUPDATEDISKHEADER Statement

This statement causes the disk header for the designated file to be updated in the directory.

<DMSUPDATEDISKHEADER statement>
— DMSUPDATEDISKHEADER — (— <file designator> -) |

Explanation

For information on the file designator construct, seeAtt8OL Programming Reference Manual,
Volume 1.

Note: The DMSUPDATEDISKHEADER statement is considered unsafe.

DMSWAIT Function

The DMSWAIT function calls the DMSWAIT procedure in the operating system.

<DMSWAIT function>

— DMSWAIT — (— <arithmetic expression 1> — , — <arithmetic expression 2> —
»>— <arithmetic expression 3> — , — <array identifier> -) }
Explanation

The DMSWAIT function is a Boolean function with four parameters. The first three parameters
are real arithmetic expressions, and the fourth is an array. The effect of the DMSWAIT function is
dependent on the values of the second and third parameters as follows:

» Arithmetic expression 2 = 0, arithmetic expression 3 = 0.

Indicates that the calling program needs to wait for a syncpoint to complete on this database.
The program is linked into a list of waiting programs for the database and is suspended. When
a syncpoint is complete on this database (indicated by some other program doing a
DMSCAUSE(0)), this program is resumed and returns a result of FALSE. If a deadlock is
detected, this program is resumed and returns a result of BOOLEAN(1). If the program has
specified a wait limit and the limit expires before the syncpoint occurs, the program is
resumed and returns a value of BOOLEAN(3).

Parameter 1 is a control word obtained from the location specified by parameter 3 in the array
given as parameter 4. If the value of the control word from the array changes before
suspending the program, a value of FALSE is immediately returned.

8600 0874-203 3-27

DMALGOL-Specific Functions and Statements

3-28

Arithmetic expression 2 = 0, arithmetic expression 3 = -1.

Indicates that the calling program has entered the transaction state. The program is linked into
the transaction state linkage for the appropriate database. If the program is already in
transaction state at the time of this call, a result of TRUE is returned; otherwise, a result of
FALSE is returned.

Arithmetic expression 2 = -1, arithmetic expression 3 = -1.

If the number of processes waiting for locked records in this database is less than the first
parameter, a result of TRUE is returned; otherwise, a result of FALSE is returned.

Arithmetic expression 2 > 0, arithmetic expression 3 > 0.

Indicates that the calling program needs to wait for a locked record. Parameter 2 is the stack
number of the current owner. The calling program is linked into the list of programs that are
waiting for the current owner of the record to release the record. The sleep count for this
database is incremented by 1, and the program is suspended. When the current owner of the
record frees it -- indicated by doing a DMSCAUSE (<owner's stack number>), this program is
resumed and a result of FALSE returned. If a deadlock is detected, a result of BOOLEAN(1)
is returned. If the program has specified a wait limit and the limit expires before the record is
freed, the program is resumed and returns a value of BOOLEAN(3).

Parameter 1 is a control word obtained from the location specified by parameter 3 in the array
given as parameter 4. If the value of the control word from the array changes before the
program is suspended, a value of FALSE is immediately returned.

Note: The DMSWAIT function is considered unsafe.

8600 0874-203

DMALGOL-Specific Functions and Statements

DMTRANSLOCK Statement

The DMTRANSLOCK statement performs transaction locking for Data Management System ||

(DMSII) jobs.

<DMTRANSLOCK statement>

— DMTRANSLOCK — (— <formal array 1> — , — <formal array 2 —) 4|
Explanation

The formal array 1 construct refers to a transaction lock, and the formal array 2 construct is its new
value.

Note: The DMTRANSLOCK statement is considered unsafe. Use of this construct in new code
is not recommended.

DSED FUNCTION

The DSED function is used to indicate whether or not a program has been terminated.

<DSED function>
— DSED I

Explanation

The DSED function returns a Boolean result of TRUE if the program is terminated. If the program
is not terminated, it returns a result of FALSE. This function can be used only in Accessroutines
and other programs to which the operating system grants immunity from being terminated by the
operator or by other external actions.

8600 0874-203 3-29

DMALGOL-Specific Functions and Statements

DSWAIT and DSWAITANDRESET Functions

3-30

Accessroutines code cannot be discontinued using the DS system command. Therefore, if the
normal ALGOL WAIT and WAITANDRESET statements are used in Accessroutines code, a user
program is not reactivated when the DS command is used. The DSWAIT and

DSWAITANDRESET functions provide a means of reactivating a program waiting in
Accessroutines code and indicating that the program was discontinued while waiting. The
Accessroutines can then take the appropriate action, and the user program will be terminated when
it leaves the Accessroutines code.DSWAIT and DSWAITANDRESET constructs are similar to
WAIT and WAITANDRESET, except that a result of O indicates the program was discontinued
while waiting.

For a description of the WAIT and WAITANDRESET statements, see the section on statements in
the ALGOL Programming Reference Manual, Volume 1.

8600 0874-203

DMALGOL-Specific Functions and Statements

ENVIRONMENT Declaration

The ENVIRONMENT declaration is used to declare the contents of the Database Stack (DBS).
The ENVIRONMENT declaration delimits the boundaries of each environment almost the same
way as a PROCEDURE declaration.

<ENVIRONMENT declaration>

— ENVIRONMENT — <identifier> — (— <arithmetic expression 1> -)

L OF — <arithmetic expression 2> J \— <block head> —[<compound ta1'1>J

END

Explanation

The entire program for a database is an environment containing all database global declarations.

Following the database global declarations, three DBS environments are declared. One is a general
D[3] environment used to attach pre-Mark 3. Structure Information Block (SIB) environments for
data sets. The second is a general D[3] environment used to attach pre-Mark 3.5 SIB environments
for sets. The third one is a DMSFREEZE environment that builds up the environment for each
invoked structure.

The identifier specified in the ENVIRONMENT declaration is primarily for documentation; it is

not used again. Arithmetic expression 1 is a constant used to aid structure allocation within the
Accessroutines. Arithmetic expression 2 (a constant, normally a node variable) is the environment
identification. Every DBS environment must have a distinct environment identification. The outer-
level environment is not declared with an environment identifier.

In a DBS environment, only global items and DBS items declared in that DBS are accessible. In
the inner environment, all global items, all items in the corresponding DBS environment, and all
SIB items are accessible. In addition, all procedures declared in each inner environment are
accessible. Those procedures are referenced via dynamic identifiers, using the environment
identifier after the apostrophe.

A program in which the outer block is an ENVIRONMENT declaration is marked as being an
Accessroutines code file. Currently, such a code file is required by the MCP procedure that
supports the database OPEN statement; Accessroutines cannot be executed in any other way.

ENVIRONMENTS cannotbe declared within an ALGOL structure block.

Note: The ENVIRONMENT declaration is considered unsafe.

LOCK [DSABLE] Interlock Function

Accessroutines code cannot be discontinued by using the DS system command. Therefore, if the
normal ALGOL LOCK interlock statement is used in Accessroutines code, a user process is not
reactivated when the DS command is used. The DSABLE option of the LOCK interlock function
provides a means of reactivating a process waiting in Accessroutines code and indicating that the

8600 0874-203 3-31

DMALGOL-Specific Functions and Statements

process was discontinued while waiting. The Accessroutines can then take the appropriate action,
and the user process is terminated when it leaves the Accessroutines code.

Although DSABLE cannot be specified if the INTERRUPTIBLE option is used, the
INTERRUPTIBLE option includes the DSABLE features.

The result of the LOCK interlock function is zero (0) if the process is discontinued.

For a description of the LOCK interlock statement, se@l&OL Programming Reference
Manual, Volume 1.

MEMORYDUMP Statement

The MEMORYDUMP statement causes a nonfatal system memory dump.

<MEMORYDUMP statement>
— MEMORYDUMP — (— <string Titeral> —) |

Explanation

The string literal construct can contain up to 16 characters. Any text over 16 characters is
truncated. For more information on this construct, refer to the section on language components in
the ALGOL Programming Reference Manual, Volume 1.

Example
MEMORYDUMP (" DUMP BY FAULT LOCKED")

This statement results in a system dump with the cause displayed and logged as
DUMP BY FAULT LOCKED

Note: The MEMORYDUMP statement is considered unsafe.

3-32 8600 0874-203

DMALGOL-Specific Functions and Statements

PURGEASM Statement

The PURGEASM statement purges various process registers and cache memory used by software
running on a B 7900 system.

<PURGEASM statement>
— PURGEASM '

Explanation

This construct has no parameters. It is valid only when TARGET is set to a B 7900 system.

Note: The PURGEASM statement is considered unsafe.

READLOCKNOPURGE Function

The READLOCKNOPURGE function operates like the ALGOL READLOCK function with the
following exception. When the target compiler control option is set for the B 7900 system, the
READLOCK is performed without purging cache memory.

<READLOCKNOPURGE function>
— READLOCKNOPURGE — (— <arithmetic expression> — , — <arithmetic variable> —)4|

Explanation

For an explanation of the parameters for this construct, see the READLOCK function in the
ALGOL Programming Reference Manual, Volume 1.

Note: The READLOCKNOPURGE function is considered unsafe.

8600 0874-203 3-33

DMALGOL-Specific Functions and Statements

SIBOFFSET Function

3-34

The SIBOFFSET function returns as its result the offset of a procedure in its environment.

<SIBOFFSET function>
— SIBOFFSET — (— <procedure identifier> —) {

Explanation

The SIBOFFSET function accepts a procedure identifier as its only parameter and returns a value
at compile time.

Example
I := SIBOFFSET(PROC1);

The offset of the PROCL1 is returned into the integer variable I.

8600 0874-203

DMALGOL-Specific Functions and Statements

TPS TRANSACTION RECORD CONTROL ITEM
ASSIGNMENT Statement

This statement assigns a Boolean or arithmetic expression to a transaction record control item.

<TPS TRANSACTION RECORD CONTROL ITEM ASSIGNMENT statement>

— <transaction record id> . — <control item> — := — <express1‘on>—|

|— <subscript> J

Explanation

The <transaction record id> construct identifies the transaction record variable that contains the
data item to be referenced. The subscript is an arithmetic expression that identifies a particular
element within a table.

For a complete list of control items, see BMdS| Transaction Processing System (TPS)
Programming Guide.

Note: The TPSTRANSACTION RECORD CONTROL ITEM ASS GNMENT statement is
considered unsafe.

TRY Statement

The TRY statement provides a general error/fault protection mechanism that allows a program to
maintain normal flow of control.

<try limited form>

— [—<error procedure
L : PROTECTED il
—>—|:<procedure invocation statementJ I
<procedure reference statement>

Explanation

The limited form of the TRY statement can be used when protection is needed for procedure calls.
This form of TRY has a more limited syntax and provides more limited protection. Unlike the
normal form, the protection afforded by the limited form does not begin until the procedure begins
executing. For more information about the differences between the normal and limited forms of
the TRY statement or expression, seeAh&O0L Programming Reference Manual, Volume 1.

The “: PROTECTED” option provides additional protection against every type of fault, including
“Operator DSed (Just DSed),” “Parent Process Terminated,” and “P-DS by another stack.”

The “: PROTECTED?” clause offers protection against all forms and causes of process termination,

with no limitations. All exceptions and limitations described for the TRY statement do not apply
when “: PROTECTED?” is specified.

8600 0874-203 3-35

DMALGOL-Specific Functions and Statements

Caution
It is considered unsafe to use the “: PROTECTED” option.

Because “: PROTECTED?” offers complete and unconditional protection
against all forms of process termination, it is vital that code invoked to handle
errors be as fast and efficient as possible and that the stack be expanded as
little as possible. Otherwise, severe consequences can result, including
processes hung in a state that cannot be discontinued using the DS
command, or even total system failure.

3-36 8600 0874-203

Section 4
Compiler Control Options

Compiler control options provide a means to control many aspects of the compilation of a
DMALGOL program. DMALGOL recognizes all the compiler control options available in

ALGOL. The ALGOL compiler control options and the syntax for using them are described in the
section on compiling programs in tAeGOL Programming Reference Manual, Volume 1.

DMALGOL recognizes two compiler control options in addition to those of ALGOL. These
options are

<warnunsafe option>
— WARNUNSAFE |

(Type: Boolean, Default: FALSE)
When TRUE, the WARNUNSAFE option causes a warning message to be generated for the first
occurrence of each type of unsafe construct.

<warnallunsafe option>
— WARNALLUNSAFE |

(Type: Boolean, Default: FALSE)

When TRUE, the WARNALLUNSAFE option causes a warning message to be generated for
every occurrence of an unsafe construct.

If any unsafe constructs were used in your program, the following warning message is generated at
the end of the compilation, regardless of the value of the WARNUNSAFE or
WARNALLUNSAFE option:

**WARNING: 'UNSAFE' CONSTRUCTS GFOR SOME LEVELS OF INFOGUARD THIS FILE
IS NOT EXECUTABLE UNLESS SL'ED OR XP'ED.

If a listing was generated to the LINE file and any unsafe constructs were used, the total number of
unsafe constructs is shown in the trailer information. If either the WARNUNSAFE or the
WARNALLUNSAFE option was TRUE at the end of the compilation, the number of occurrences

of each type of unsafe construct is shown in the trailer information.

8600 0874-203 4-1

Compiler Control Options

8600 0874-203

Appendix A
Understanding Railroad Diagrams

This appendix explains railroad diagrams, including the following concepts:

» Paths of a railroad diagram
* Constants and variables
e Constraints

The text describes the elements of the diagrams and provides examples.

Railroad Diagram Concepts

Paths

Railroad diagrams are diagrams that show you the standards for combining words and symbols into
commands and statements. These diagrams consist of a series of paths that show the allowable
structures of the command or statement.

Paths show the order in which the command or statement is constructed and are represented by
horizontal and vertical lines. Many commands and statements have a number of options so the
railroad diagram has a number of different paths you can take.

The following example has three paths:

SOURCE

OBJECT

The three paths in the previous example show the following three possible commands:

* REMOVE
* REMOVE SOURCE
+ REMOVE OBJECT

A railroad diagram is as complex as a command or statement requires. Regardless of the level of
complexity, all railroad diagrams are visual representations of commands and statements.

8600 0874-203 A-1

Understanding Railroad Diagrams

Railroad diagrams are intended to show

* Mandatory items

* User-selected items

» Order in which the items must appear

* Number of times an item can be repeated

* Necessary punctuation

Follow the railroad diagrams to understand the correct syntax for commands and statements. The

diagrams serve as quick references to the commands and statements.

The following table introduces the elements of a railroad diagram:

Table Appendix A-1. Elements of a Railroad Diagram

The diagram element... Indicates an item that...

Constant Must be entered in full or as a specific abbreviation
Variable Represents data

Constraint Controls progression through the diagram path

Constants and Variables

A constant is an item that must be entered as it appears in the diagram, either in full or as an
allowable abbreviation. If a constant is partially boldfaced, you can abbreviate the constant by

» Entering only the boldfaced letters

» Entering the boldfaced letters plus any of the remaining letters

If no part of the constant is boldfaced, the constant cannot be abbreviated.

Constants are never enclosed in angle brackets (< >) and are in uppercase letters.

A variable is an item that represents data. You can replace the variable with data that meets the
requirements of the particular command or statement. When replacing a variable with data, you

must follow the rules defined for the particular command or statement.

In railroad diagrams, variables are enclosed in angle brackets.

A-2 8600 0874-203

Understanding Railroad Diagrams

In the following example, BEGIN and END are constants, whereas <statement list> is a variable.
The constant BEGIN can be abbreviated since it is partially boldfaced.

Valid abbreviations for BEGIN are

BE
BEG
BEGI

Constraints

Constraints are used in a railroad diagram to control progression through the diagram. Constraints
consist of symbols and unique railroad diagram line paths. They include

Vertical bars
Percent signs

Right arrows
Required items
User-selected items
Loops

Bridges

A description of each item follows.

Vertical Bar

The vertical bar symbol (|) represents the end of a railroad diagram and indicates the command or
statement can be followed by another command or statement.

— SECONDWORD — (—<arithmetic expression>—) {

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates the command or
statement must be on a line by itself.

— STOP %

8600 0874-203 A-3

Understanding Railroad Diagrams

Right Arrow

The right arrow symbol (>)

» Is used when the railroad diagram is too long to fit on one line and must continue on the next

e Appears at the end of the first line, and again at the beginning of the next line

— SCALERIGHT — (—<arithmetic expression>— ,

>—<arithmetic expression>—) {

Required Item

A-4

A required item can be

* A constant

* Avariable

* Punctuation

If the path you are following contains a required item, you must enter the item in the command or
statement; the required item cannot be omitted.

A required item appears on a horizontal line as a single entry or with other items. Required items
can also exist on haorizontal lines within alternate paths, or nested (lower-level) diagrams.

In the following example, the word EVENT is a required constant and <identifier> is a required
variable:

— EVENT —<identifier |

8600 0874-203

Understanding Railroad Diagrams

User-Selected Iltem

Loop

A user-selected item can be

e A constant
e Avariable
e Punctuation

User-selected items appear one below the other in a vertical list. You can choose any one of the
items from the list. If the list also contains an empty path (solid line) above the other items, none of
the choices are required.

In the following railroad diagram, either the plus sign (+) or the minus sign (=) can be entered

before the required variable <arithmetic expression>, or the symbols can be disregarded because
the diagram also contains an empty path.

—HQN' thmetic expression |
+

A loop represents an item or a group of items that you can repeat. A loop can span all or part of a
railroad diagram. It always consists of at least two horizontal lines, one below the other, connected
on both sides by vertical lines. The top line is a right-to-left path that contains information about
repeating the loop.

Some loops include a return character. A return character is a character—often a comma (,) or
semicolon (;)—that is required before each repetition of a loop. If no return character is included,
the items must be separated by one or more spaces.

—|—<f1'e1d \’/a1ue | |

8600 0874-203 A-5

Understanding Railroad Diagrams

Bridge

A loop can also include a bridge. A bridge is an integer enclosed in sloping lines (/\) that

e Shows the maximum number of times the loop can be repeated

* Indicates the number of times you can cross that point in the diagram

The bridge can precede both the contents of the loop and the return character (if any) on the upper
line of the loop.

Not all loops have bridges. Those that do not can be repeated any number of times until all valid
entries have been used.

In the first bridge example, you can enter LINKAGE or RUNTIME no more than two times. In the
second bridge example, you can enter LINKAGE or RUNTIME no more than three times.

—/2\
—LI: LINKAGE = I
RUNTIME

In some bridges an asterisk (*) follows the number. The asterisk means that you must cross that
point in the diagram at least once. The maximum number of times that you can cross that point is
indicated by the number in the bridge.

J—[/z*\— LINKAGE ——| |
RUNTIME — !

In the previous bridge example, you must enter LINKAGE at least once but no more than twice,
and you can enter RUNTIME any number of times.

8600 0874-203

Understanding Railroad Diagrams

Following the Paths of a Railroad Diagram

The paths of a railroad diagram lead you through the command or statement from beginning to
end. Some railroad diagrams have only one path; others have several alternate paths that provide
choices in the commands or statements.

The following railroad diagram indicates only one path that requires the constant LINKAGE and
the variable <linkage mnemonic>:

— LINKAGE —<Tinkage mnemonic I
Alternate paths are provided by

* Loops

* User-selected items

» A combination of loops and user-selected items

More complex railroad diagrams can consist of many alternate paths, or nested (lower-level)

diagrams, that show a further level of detail.

For example, the following railroad diagram consists of a top path and two alternate paths. The top
path includes

* Anampersand (&)

» Constants that are user-selected items

These constants are within a loop that can be repeated any number of times until all options
have been selected.

The first alternative path requires the ampersand and the required constant ADDRESS. The second
alternative path requires the ampersand followed by the required constant ALTER and the required
variable <new value>.

— % ——— TvPE | '
ASCII —
BCL ——
DECIMAL —
EBCDIC —
HEX —
OCTAL —-
— ADDRESS

— ALTER —<new value>—

8600 0874-203 A-7

Understanding Railroad Diagrams

Railroad Diagram Examples with Sample Input

The following examples show five railroad diagrams and possible command and statement
constructions based on the paths of these diagrams.

Example 1

<lock statement>

— LOCK — (— <file identifier> —) }

Sample Input Explanation

LOCK (FILE4) LOCK is a constant and cannot be altered. Because no part of
the word is boldfaced, the entire word must be entered.

The parentheses are required punctuation, and FILE4 is a
sample file identifier.

Example 2

<open statement>

— OPEN database name |
i: INQUIRY
UPDATE

Sample Input Explanation

OPEN DATABASE1 The constant OPEN is followed by the variable DATABASEL,
which is a database name.
The railroad diagram shows two user-selected items, INQUIRY
and UPDATE. However, because an empty path (solid line) is
included, these entries are not required.

OPEN INQUIRY The constant OPEN is followed by the user-selected constant

DATABASEL1 INQUIRY and the variable DATABASEL.

OPEN UPDATE The constant OPEN is followed by the user-selected constant

DATABASEL1 UPDATE and the variable DATABASEL.

A-8 8600 0874-203

Understanding Railroad Diagrams

Example 3

<generate statement>

— GENERATE —<subset>— =
L

Sample Input

GENERATE Z = NULL

GENERATE Z = X

GENERATE Z =X AND B

GENERATEZ=X+B

8600 0874-203

NULL }
<subset
AND <subset>—
+
Explanation

The GENERATE constant is followed by the variable Z,
an equal sign (=), and the user-selected constant NULL.

The GENERATE constant is followed by the variable Z,
an equal sign, and the user-selected variable X.

The GENERATE constant is followed by the variable Z,
an equal sign, the user-selected variable X, the AND
command (from the list of user-selected items in the
nested path), and a third variable, B.

The GENERATE constant is followed by the variable Z,
an equal sign, the user-selected variable X, the plus sign
(from the list of user-selected items in the nested path),
and a third variable, B.

Understanding Railroad Diagrams

Example 4

<entity reference declaration>

— ENTITY REFERENCE J—<ent1’ty ref ID>— (’—<c1ass ID>—) J—‘

Sample Input Explanation
ENTITY REFERENCE ADVISOR1 The required item ENTITY REFERENCE is
(INSTRUCTOR) followed by the variable ADVISOR1 and

the variable INSTRUCTOR. The
parentheses are required.

ENTITY REFERENCE ADVISOR1 Because the diagram contains a loop, the
(INSTRUCTOR), ADVISOR2 pair of variables can be repeated any
(ASST_INSTRUCTOR) number of times.

A-10 8600 0874-203

Understanding Railroad Diagrams

Example 5

— PS — MODIFY

»—J—[«equest number a |
<request number>— — —<request number>
— ALL

L Exceprions

| B file att;‘ibute ph1r‘ase>:|—L

—_|—<pr1'nt modifier phrase>

Sample Input Explanation

PS MODIFY 11159 The constants PS and MODIFY are followed by the
variable 11159, which is a request number.

PS MODIFY Because the diagram contains a loop, the variable
11159,11160,11163 11159 can be followed by a comma, the variable 11160,
another comma, and the final variable 11163.

PS MOD 11159-11161 The constants PS and MODIFY are followed by the user-

DESTINATION = "LP7" selected variables 11159-11161, which are request
numbers, and the user-selected variable DESTINATION
=“LP7”, which is a file attribute phrase. Note that the
constant MODIFY has been abbreviated to its minimum
allowable form.

PS MOD ALL EXCEPTIONS The constants PS and MODIFY are followed by the user-
selected constants ALL and EXCEPTIONS.

8600 0874-203 A-11

Understanding Railroad Diagrams

A-12 8600 0874-203

Appendix B
Reserved Words

The table in this appendix lists reserved words that are unique to DMALGOL. ALGOL reserved
words are also valid in DMALGOL programs. For a complete list of ALGOL reserved words, see
the ALGOL Reference Manual, Vol. 1. See theALGOL Reference Manual, Vol. 2 for a complete

list of the reserved words in Unisys Extended ALGOL.

The DMALGOL reserved words listed in this appendix are divided into three types. A reserved
word of type 1 can never be declared as an identifier; that is, it has a predefined meaning that
cannot be changed. A reserved word of type 2 can be redeclared as an identifier; it then loses its
predefined meaning in the scope of that declaration. A reserved word of type 3 is context-sensitive.
It can be redeclared as an identifier and, if it is used where the syntax calls for that reserved word,
it carries the predefined meaning; otherwise it carries the user-declared meaning.

Table B-1. DMALGOL Reserved Words

8600 0874-203

Type 1 Reserved Words
EXCEPTION
PROPERTY
PROTECTED
Type 2 Reserved Words
ALLOW DMSLOCALREF MEMORYDUMP
DISALLOW DMSUPDATEDISKHEAD NODE
ER
DMINQ DMSWAIT PURGEASM
DMIO DMTRANSLOCK READLOCKNOPURGE
DMPROCOFF DSED SAVE
DMSCAUSE DSWAIT SIBOFFSET
DMSFREE DSWAITANDRESET DMSIBINDEX
DMSFREEZE DYNAMIC
DMSIBINDEX ENVIRONMENT
continue
d

Reserved Words

Table B-1. DMALGOL Reserved Words (cont.)

Type 3 Reserved Words

DMKEYAREA

DMPROCREF

DMSIBDESC

DMWORKAREA

VIA

8600 0874-203

Index

: PROTECTED clause, TRY statement, 3-37

A

Accessroutines

direct communication with, 3-2
DMINQ functions for, 3-2
ENVIRONMENT declaration marked

as, 3-33

up-level array reference assignments

in, 1-7
Accessroutines

code file

description, 1-5
ALLOW statement, 3-1
<array designator>, 2-21
<array reference variable>, 2-21

array values

DM INQUIRY interface
Al0]=1, 3-4, 3-8
A[0]=10,
Al0]=11,
Al0]=12,
A[0]=13,
Al0]=14,
A[0]=16,
Al0]=17,
A[0]=18,
A[0]=20,
Al0]=22,
A[0]=23,
Al0]=24,
A[0]=25,
A[0]=26,
Al0]=27,
A[0]=28,
A[0]=29,
Al0]=30,
Al0]=31,
Al0]=32,

3-5
3-5
3-5
3-6
3-6
3-6
3-6
3-7
3-7
3-8
3-8
3-8
3-9
3-18
3-18
3-19
3-19
3-19
3-20
3-20

8600 0874-203

Al0]=33, 3-21

Al0]=34, 3-21

AIN+1], 3-20
arrays

DASDL, processing text directly from, 2-10

DM INQUIRY, 3-22
DMKEYAREA, 3-22
DMSIBDESC, 3-22
DMWORKAREA, 3-22

in database declarations, 2-21

INCLUDE statement for, 2-10

node variable as index into, 2-11

references to, 2-21

arrays
construct for declaring, 2-1

C

clear TPS address (DM INQUIRY interface

procedure), 3-19
code files

Accessroutines, description, 1-5

unsafe

executing as a by-function library, 1-1

flagging the use of, 1-2
compilation

ONCE-ONLY for shared procedures, 1-7

compilation
listing, 2-12
compiler control options
WARNALLUNSAFE, 4-1
WARNUNSAFE, 4-1
compiler control options
CTPROC, 2-8
compile-time facility

<compile-time variable declaration>, 2-11

DEFINE statement, 2-8
DISPLAY statement, 2-12
ERROR statement, 2-12
INCLUDE statement, 2-10
INVOKE statement, 2-10
LET statement, 2-17
NODE declaration, 2-11

Index—1

Index

PRINT statement, 2-12
PROCEDURE declaration, 2-17
PROPERTY declaration, 2-13
protected exception procedure

declaration, 2-15
using, 1-4

compile-time facility

CTPROC option in, 2-8

concurrency control facility, 2-2

FREE statement in, 2-4

constructs

DM INQUIRY function, 3-2
DMCAUSE statement, 3-25
DMPROCOFF statement, 3-23
DMPROCREF function, 3-24
DMSFREE statement, 3-26
DMSFREEZE function, 3-27
DMSIBINDEX intrinsic, 3-28
DMSUPDATEDISKHEADER
statement, 3-29
DMTRANSLOCK statement, 3-31
DSED function, 3-31
DSWAIT function, 3-32
DSWAITANDRESET function, 3-32
environment declaration, 3-33
for invoking a procedure declared in a
different environment, 1-6
MEMORYDUMP statement, 3-34
SIBOFFSET function, 3-36
TPS transaction record control item
assignment, 3-37
unsafe
array declaration, 2-1
definition, 1-1
DISALLOW statement, 3-1
DMCAUSE statement, 3-25
DMPROCOFF statement, 3-23
DMPROCREF function, 3-24
DMSFREE statement, 3-26
DMSFREEZE function, 3-27
DMSUPDATEDISKHEADER
statement, 3-29
DMTRANSLOCK statement, 3-31
environment declaration, 3-33
MEMORYDUMP statement, 3-34
programs containing, 1-1
TPS transaction record control item
assignment, 3-37

create (DM INQUIRY interface

procedure), 3-8

CTPROC compiler control option, 2-8

Index-2

D

DASDL array
processing text directly from the, 2-10
data finder (DM INQUIRY interface
procedure), 3-5
Data Management System |l
communicating with the
Accessroutines, 3-2
concurrency control facility, 2-2
concurrency control facility
FREE statement, 2-4
detecting deadlock of functions, 3-25
indicating the use of a file by, 2-14
locking transactions for, 3-31
<database id>, 2-21
database stack (DBS)
declaring the contents of, 3-33
description, 1-5
databases
array designators for database
declaration, 2-21
declaring run-time invocable
databases, 2-14
DYNAMIC DATABASE declaration, 2-14
environments and, 1-5
DATAEOF values (DM INQUIRY interface
procedure), 3-20
date-timestamp for TPS (DM INQUIRY
interface procedure), 3-7
deadlock, detecting for DMSII functions, 3-25
declaring
a node identifier, 2-11
a preprocessor define identifier, 2-8
a property identifier, 2-13
a protected exception procedure, 2-15
contents of the database stack (DBS), 3-33
messages, 2-16
run-time invocable databases, 2-14
DEFINE statement, 2-8
delete current (DM INQUIRY interface
procedure), 3-8
detecting deadlock of DMSII functions, 3-25
<direct array reference identifier>, 3-28
disabling external interrupts, 3-1
DISALLOW statement, 3-1
DISPLAY statement, 2-12
DM INQUIRY
array values
Al0]=11, 3-5

8600 0874-203

Index

DM INQUIRY (DMINQ)
array values
Al0]=1, 3-8
A[0]1=10, 3-5
A[0]=12, 3-5
Al0]=13, 3-6
A[0]=14, 3-6
A[0]=17, 3-6
Al0]=18, 3-7
Al0]=20, 3-7
A[0]=22, 3-8
A[0]=23, 3-8
A[0]=24, 3-8
A[0]=25, 3-9
A[0]=26, 3-18
A[0]=27, 3-18
A[0]=28, 3-19
A[0]=29, 3-19
A[0]=30, 3-19
A[0]=31, 3-20
A[0]=32, 3-20
A[0]=33, 3-21
A[0]=34, 3-21
AIN+1], 3-20
corresponding array values and procedures
(table), 3-3
functions
create, 3-8
group type layouts
for global static statistics, 3-11
procedures
clear TPS address, 3-19
create, 3-8
data finder, 3-5
DATAEOQF values, 3-20
date-timestamp for TPS, 3-7
delete current, 3-8
DMSREAD, 3-6
free current, 3-6
get link, 3-6
get statistics information, 3-9
get status of abort, 3-8
GETDATA, 3-5
GETDATA with KEYCOMPARE, 3-20
off-line dump, 3-20
reset TPS abort, 3-8
return displayed messages, 3-18
return last transaction address, 3-7
return software version, 3-19
return standard data set
DATAEOFs, 3-19
set current cursor path, 3-21
set cursor, 3-21

8600 0874-203

set to beginning, 3-5

store current, 3-6

visible DBS message, 3-18

DM INQUIRY (DMINQ)
interface, 3-2
DM INQUIRY (DMINQ)
procedures
pathfinder, 3-4
DM INQUIRY (DMINQ)
array values
Al0l=1, 3-4
DM INQUIRY (DMINQ)
functions
pathfinder, 3-4
DM INQUIRY (DMINQ)
functions
data finder, 3-5
DM INQUIRY (DMINQ)
functions
GETDATA, 3-5
DM INQUIRY (DMINQ)
functions
DMSREAD, 3-6
DM INQUIRY (DMINQ)
functions
get link, 3-6
DM INQUIRY (DMINQ)
array values
Al0]=16, 3-6
DM INQUIRY (DMINQ)
functions
store current, 3-6
DM INQUIRY (DMINQ)
functions
free current, 3-6
DM INQUIRY (DMINQ)
functions

clear TPS flag and date-timestamp, 3-7

DM INQUIRY (DMINQ)
functions

return last transaction address, 3-7

DM INQUIRY (DMINQ)
functions

delete current, 3-8

DM INQUIRY (DMINQ)
functions

get statistics information, 3-9

DM INQUIRY (DMINQ)
group type layouts

for group type 6, 3-11

DM INQUIRY (DMINQ)
group type layouts

for group type 1, 3-12

Index-3

Index

DM INQUIRY (DMINQ)
group type layouts
for global dynamic statistics, 3-12
DM INQUIRY (DMINQ)
group type layouts
for group type 1, 3-14
DM INQUIRY (DMINQ)
group type layouts
for global dynamic statistics, 3-14
DM INQUIRY (DMINQ)
group type layouts
for group type 7, 3-15
DM INQUIRY (DMINQ)
group type layouts
for structure static statistics, 3-15
DM INQUIRY (DMINQ)
group type layouts
for group type 8, 3-16
DM INQUIRY (DMINQ)
group type layouts

for structure dynamic statistics, 3-16

DM INQUIRY (DMINQ)
group type layouts
for group type 10, 3-16
DM INQUIRY (DMINQ)
group type layouts
for group type 10, 3-18
DM INQUIRY (DMINQ)
group type layouts
for group type 10, 3-18
DM INQUIRY (DMINQ)
functions
set cursor, 3-21
DM INQUIRY (DMINQ)
arrays
DMKEYAREA, 3-22
DM INQUIRY (DMINQ)
arrays
DMWORKAREA, 3-22
DM INQUIRY (DMINQ)
arrays
DMSIBDESC, 3-22
DMALGOL
extensions, 2-1
purpose, 1-1
using safely, 1-1
DMALGOL
statements (See statements)
DMCAUSE statement, 3-25
DMINQ (See DM INQUIRY)
DMIO file attribute, 2-14
DMKEYAREA array, 3-22
DMPROCOFF statement, 3-23

Index—4

DMPROCREF function, 3-24

DMSFREE statement, 3-26

DMSFREEZE function, 3-27

DMSIB1, 2-21

DMSIB2, 2-21

DMSIBDESC array, 2-21, 3-22

DMSIBINDEX intrinsic, 3-28

DMSII (See Data Management System)

DMSREAD (DM INQUIRY interface
procedure), 3-6

DMSUPDATEDISKHEADER statement, 3-29

DMTRANSLOCK statement, 3-31

DMWORKAREA array, 3-22

DSED function, 3-31

DSWAIT function, 3-32

DSWAITANDRESET function, 3-32

DYNAMIC DATABASE declaration, 2-14

enabling external interrupts, 3-1
ENVIRONMENT declaration
purpose of, 1-5
syntax, 3-33
use in a program, 1-5
environments
and databases, 1-b
nesting restriction for, 1-5
ERROR statement, 2-12
event references, 2-25
examples
accessing the members of a node's
list, 1-b
accessing the text section of the DASDL
description file, 1-5
extracting a property from a node, 1-4
invoking a procedure declared in a different
environment, 1-6
EXCEPTION PROCEDURE declaration
description of, 2-15
executing
interrupt code, 3-1
explicit structure lock, 2-5
extensions
to ALGOL constructs, 2-1
unsafe, 1-2
external interrupts
executing, 3-1
preventing execution of, 3-1

8600 0874-203

Index

F

files
indicating the use of by DMSII, 2-14
free current (DM INQUIRY interface
procedure), 3-6
FREE statement, in DMSII concurrency
control facility, 2-4
functions
DMINQ interface, 3-2
DMPROCREF, 3-24
DMSFREEZE function, 3-27
DSED function, 3-31
DSWAIT function, 3-32
DSWAITANDRESET function, 3-32
SIBOFFSET, 3-36
unsafe, 1-2

G

get link (DM INQUIRY interface
procedure), 3-6
get statistics information (DM INQUIRY
interface procedure), 3-9
get status of abort (DM INQUIRY interface
procedure), 3-8
GETDATA (DM INQUIRY interface
procedure), 3-5
GETDATA with KEYCOMPARE (DM INQUIRY
interface procedure), 3-20
global dynamic statistics
group type layouts for, 3-12, 3-14
global static statistics
group type layouts for, 3-11
group type layouts for DM INQUIRY function
for global dynamic statistics, 3-12, 3-14
for global static statistics, 3-11
for group type 1, 3-12, 3-14
for group type 10, 3-16, 3-18
for group type 6, 3-11
for group type 7, 3-15
for group type 8, 3-16
for structure dynamic statistics, 3-16
for structure static statistics, 3-15

identifier
declaring as a preprocessor define, 2-8
node, 2-11

8600 0874-203

implicit structure lock, 2-5
INCLUDE statement, 2-10
INQUIRYSEMANTIC option, 2-19
interrupt code

executing, 3-1

preventing execution of, 3-1
intrinsics

DMSIBINDEX, 3-28
INVOKE statement, 2-10
invoking, a procedure declared in a different

environment, 1-6

L

layouts
for, 3-11
for DM INQUIRY functions
global dynamic statistics, 3-12, 3-14
group type 1, 3-12, 3-14
group type 10, 3-16, 3-18
group type 6, 3-11
group type 7, 3-15
group type 8, 3-16
structure dynamic statistics, 3-16
structure static statistics, 3-15
LET statement, 2-17
library, by-function, executing an unsafe code

file as a, 1-1
lock
explicit, 2-5
implicit, 2-5
locked records, releasing, 2-4
locking

transactions for DMSI!I jobs, 3-31

MAPPER option, 2-19

MEMORYDUMP statement, 3-34

message references, 2-16

MP (Mark Program) system commands, 1-1

nesting restriction for environments, 1-5
node

description, 1-4
node

identifier, 2-11

Index-5

Index

NODE declaration, 2-11

<node property construct>, 2-13
NODE variables, 1-4

nonlocal message references, 2-16

o

off-line dump (DM INQUIRY interface
procedure), 3-20
ONCE-ONLY compilation
definition, 1-7
LET statement, 2-17
PROCEDURE declaration, 2-17
syntax, 2-17
OPEN statement extensions
INQUIRYSEMANTIC option, 2-19
MAPPER option, 2-19
PREVERIFY option, 2-19
RECONSTRUCT option, 2-19
RECOVER option, 2-19
REORG option, 2-19
UPDATESEMANTIC option, 2-19
UTILITY option, 2-19
opening a database, 2-19
options
compiler control
WARNALLUNSAFE, 4-1
WARNUNSAFE, 4-1
for the OPEN statement (See OPEN
statement extensions)
options
compiler control
CTRPROC, 2-8

P

parameters
DM INQUIRY interface

clear TPS address procedure, 3-19
create procedure, 3-8
data finder procedure, 3-5
DATAEOQOF values procedure, 3-20
date-timestamp for TPS procedure, 3-7
delete current procedure, 3-8
DMSREAD procedure, 3-6
free current procedure, 3-6
get link procedure, 3-6
get statistics information procedure, 3-9
get status of abort procedure, 3-8
GETDATA procedure, 3-5

Index—6

GETDATA with KEYCOMPARE
procedure, 3-20
off-line dump procedure, 3-20
pathfinder procedure, 3-4
reset TPS abort procedure, 3-8
return displayed messages
procedure, 3-18
return last transaction address
procedure, 3-7
return software version procedure, 3-19
return standard data set DATAEOFs
procedure, 3-19
set current cursor path procedure, 3-21
set cursor procedure, 3-21
set to beginning procedure, 3-5
store current procedure, 3-6
visible DBS message procedure, 3-18
pathfinder (DM INQUIRY interface
procedure), 3-4
preprocessor define identifier
declaring, 2-8
using with the 'INVOKE statement, 2-10
PRINT statement, 2-12
procedure declaration
procedure type, 2-20
procedure reference
arrays, 2-22
procedure references
description of, 2-23
procedures
DM INQUIRY interface
clear TPS address, 3-19
create, 3-8
data finder, 3-5
DATAEOF values, 3-20
date-timestamp for TPS, 3-7
delete current, 3-8
DMSREAD, 3-6
free current, 3-6
get link, 3-6
get statistics information, 3-9
get status of abort, 3-8
GETDATA, 3-5
GETDATA with KEYCOMPARE, 3-20
off-line dump, 3-20
pathfinder, 3-4
reset TPS abort, 3-8
return displayed messages, 3-18
return last transaction address, 3-7
return software version, 3-19
return standard data set
DATAEOFs, 3-19
set current cursor path, 3-21

8600 0874-203

Index

set cursor, 3-21
set to beginning, 3-5
store current, 3-6
visible DBS message, 3-18
shared, ONCE-ONLY compilation of, 1-7
PROPERTY
declaration, 2-13
<property specification>, 2-13
definition, 1-4
<property specification>, 2-13
PROTECTED clause, TRYstatement, 3-37
protected exception procedure
declaration, 2-15
purpose of DMALGOL, 1-1

railroad diagrams, explanation of, A-1
RECONSTRUCT option, 2-19
records
releasing locked or secured, 2-4
RECOVER option, 2-19
reference assignments, up-level, 1-7
reference variables
array references, 2-21
file references, 2-24
procedure reference arrays, 2-22
purpose, 1-7
up-level, 2-21
releasing locked or secured records, 2-4
reserved words, B-1
reset TPS abort (DM INQUIRY interface
procedure), 3-8
return
displayed messages (DM INQUIRY
interface procedure), 3-18
last transaction address (DM INQUIRY
interface procedure), 3-7
software version (DM INQUIRY interface
procedure), 3-19
standard data set DATAEOFs (DM
INQUIRY interface
procedure), 3-19

S

safe use of DMALGOL, 1-1

SAVE option, use in DMALGOL
Accessroutines, 2-1

secured records, releasing, 2-4

8600 0874-203

set
current cursor path (DM INQUIRY interface
procedure), 3-21
cursor (DM INQUIRY interface
procedure), 3-21
to beginning (DM INQUIRY interface
procedure), 3-5
shared procedure
ONCE-ONLY compilation of, 1-7
SIBOFFSET function, 3-36
SIRW (See stuffed indirect reference word)
SL (Support Library) system command, 1-1
stack image, building of by DMALGOL, 1-5
statements
DMCAUSE, 3-25
DMPROCOFF, 3-23
DMSFREE, 3-26
DMSUPDATEDISKHEADER, 3-29
DMTRANSLOCK, 3-31
MEMORYDUMP, 3-34
TPS transaction record control item
assignment, 3-37
TRY, 3-37
unsafe
DMCAUSE, 3-25
DMPROCOFF, 3-23
DMSFREE, 3-26
DMSUPDATEDISKHEADER, 3-29
DMTRANSLOCK, 3-31
MEMORYDUMP, 3-34
TPS transaction record control item
assignment, 3-37
statements (See also constructs), 3-32
store current (DM INQUIRY interface
procedure), 3-6
structure dynamic statistics, group type
layouts for, 3-16
structure lock
explicit, 2-5
implicit, 2-5
<structure number>, 1-6
structure static statistics, group type layouts
for, 3-15
stuffed indirect reference word (SIRW)
function for constructing a procedure
SIRW, 3-24
returning the SIRW offset, 3-28
statement for establishing, 3-23
system commands
MP (Mark Program), 1-1
SL (Support Library), 1-1
SYSTEM/DMUTILITY, use of off-line dump
procedure, 3-20

Index—7

Index

T

text section
of DASDL description file
accessing, 1-5
text section, of DASDL description file
description of, 1-b
text, processing directly from DASDL
arrays, 2-10
TPS transaction record control item
assignment statement, 3-37
transaction locking, 3-31
<transaction record id>, 3-37
<transaction variable id>, 2-21
TRY statement,
PROTECTED clause, 3-37

U

unsafe
code files
executing as a by-function library, 1-1
flagging the use of, 1-2
constructs
array declaration, 2-1
definition, 1-1
DISALLOW statement, 3-1
DMCAUSE statement, 3-25
DMIO file attribute, 2-14
DMPROCOFF statement, 3-23
DMPROCREF function, 3-24
DMSFREE statement, 3-26
DMSFREEZE function, 3-27
DMSUPDATEDISKHEADER
statement, 3-29
DMTRANSLOCK statement, 3-31
DYNAMIC DATABASE declaration, 2-14
INQUIRYSEMANTIC option, 2-19
MAPPER option, 2-19

Index—8

MEMORYDUMP statement, 3-34
nonlocal message references, 2-16
ONCE-ONLY compilation, 2-17
OPEN statement, 2-19
PROCEDURE declaration, 2-17
PROCEDURE REFERENCE ARRAY
declaration, 2-22
programs containing, 1-1
TPS transaction record control item
assignment, 3-37
UPDATESEMANTIC option, 2-19
up-level event references, 2-25
up-level file reference
assignments, 2-24
extensions, 1-2
functions, 1-2
statements, 1-2
UPDATESEMANTIC option, 2-19
up-level reference assignments, 1-7
up-level reference variables, 2-21
using DMALGOL safely, 1-1
utilities, SYSTEM/DMUTILITY, use of off-line
dump procedure, 3-20
UTILITY option, 2-19

\"/

variables
reference, purpose of, 1-7
up-level, 2-21
verification checking for event
references, 2-25
VIA procedure entry, 3-24
visible DBS message (DM INQUIRY interface
procedure), 3-18

W

WARNALLUNSAFE, 4-1
WARNUNSAFE, 4-1
words, reserved, B-1

8600 0874-203

© 2008 Unisys Corporation.
All rights reserved.

8600 0874-203

	Contents
	Tables
	Section 1. DMALGOL Concepts
	Using DMALGOL Safely
	Unsafe Extensions
	Unsafe Functions and Statements

	Using the Compile-Time Facility
	Environments
	Reference Variables
	ONCE-ONLY Compilation of Procedures

	Section 2. DMALGOL Extensions to ALGOL Declarations and Statements
	Array Declaration
	Concurrency Control Facility
	ABORTTRANSACTION Statement
	CANCELTRPOINT Statement
	FREE Statement
	LOCK Statement
	SAVETRPOINT Statement
	SECURE Statement

	Compile-Time Facility
	'DEFINE Statement
	'FOR Statement
	'INCLUDE Statement
	'INVOKE Statement
	NODE Declaration
	'PRINT, 'ERROR, 'DISPLAY Statements
	PROPERTY Declaration

	DMIO File Attribute
	DYNAMIC DATABASE Declaration
	EXCEPTION PROCEDURE Declaration

	Nonlocal Message References
	ONCE-ONLY Compilation
	OPEN Statement
	Procedure Declaration
	Reference Variables Declaration and Assignment
	Array References
	Procedure Reference Arrays
	Procedure References
	File References

	Up-Level Event References

	Section 3. DMALGOL-Specific Functions and Statements
	ALLOW Statement
	DISALLOW Statement
	DMINQ Functions
	DMINQ Interface Function
	Procedure: Pathfinder (A[0] =1)
	Procedure: Set to Beginning (A[0] = 10)
	Procedure: Data Finder (A[0] = 11)
	Procedure: GETDATA (A[0] = 12)
	Procedure: DMSREAD (A[0] = 13)
	Procedure: Get Link (A[0] = 14)
	Procedure: Store Current (A[0] = 16)
	Procedure: Free Current (A[0] = 17)
	Procedure: Set or Check Date-Timestamp for TPS (A[0] = 18)
	Procedure: Clear TPS Flag and Date-Timestamp (A[0] = 19)
	Procedure: Return Last Transaction Address (A[0] = 20)
	Procedure: Get Status of Abort (A[0] = 21)
	Procedure: Rerun Finished -- Reset TPS Abort Pending (A[0] = 22)
	Procedure: Create (A[0] = 23)
	Procedure: Delete Current (A[0] = 24)
	Procedure: Get Statistics Information (A[0] = 25)
	Procedure: Visible DBS Message (A[0] = 26)
	Procedure: Return Displayed Messages (A[0] = 27)
	Procedure: Return Software Version (A[0] = 28)
	Procedure: Clear TPS Address (A[0] = 29)
	Procedure: Return Standard Data Set DATAEOFs (A[0] = 30)
	Procedure: DATAEOF Values (A[N+1])
	Procedure: GETDATA with KEYCOMPARE (A[0] = 31)
	Procedure: Off-line Dump (A[0] = 32)
	Procedure: Set Cursor (A[0] = 33)
	Procedure: Set Current Path to Another Cursor's Path (A[0] = 34)

	DMINQ Arrays
	DMPROCOFF Statement
	DMPROCREF Function
	DMSCAUSE Statement
	DMSFREE Statement
	DMSFREEZE Function
	DMSIBINDEX Intrinsic
	DMSLOCALREF Statement
	DMSUPDATEDISKHEADER Statement
	DMSWAIT Function
	DMTRANSLOCK Statement
	DSED FUNCTION
	DSWAIT and DSWAITANDRESET Functions
	ENVIRONMENT Declaration
	LOCK [DSABLE] Interlock Function
	MEMORYDUMP Statement
	PURGEASM Statement
	READLOCKNOPURGE Function
	SIBOFFSET Function
	TPS TRANSACTION RECORD CONTROL ITEM ASSIGNMENT Statement
	TRY Statement

	Section 4. Compiler Control Options
	Appendix A. Understanding Railroad Diagrams
	Railroad Diagram Concepts
	Paths
	Constants and Variables
	Constraints
	Vertical Bar
	Percent Sign
	Right Arrow
	Required Item
	User-Selected Item
	Loop
	Bridge

	Following the Paths of a Railroad Diagram
	Railroad Diagram Examples with Sample Input

	Appendix B. Reserved Words
	Index
	Master Glossary

