
Industrial Applications of Software Synthesis via Category Theory

Keith Williamson, Michael Healy
The Boeing Company, Seattle, Washington

Keith.Williamson@boeing.com

 Abstract

Over the last two years, we have demonstrated the
feasibility of applying category-theoretic methods in
specifying, synthesizing, and maintaining industrial
strength software systems. We have been using a first-of-
its-kind tool for this purpose, Kestrel's Specware™
software development system. In this paper, we describe
our experiences and give an industrial perspective on
what is needed to make this technology have broader
appeal to industry. Our overall impression is that the
technology does work for industrial strength applications,
but that it needs additional work to make it more usable.
We believe this work marks a turning point in the use of
mathematically rigorous approaches to industrial
strength software development and maintenance.

It is interesting to note that when this technology is
applied to software systems whose outputs are designs for
airplane parts, the design rationale that is captured is not
only software engineering design rationale, but also
design rationale from other engineering disciplines (e.g.,
mechanical, material, manufacturing, etc.). This suggests
the technology provides an approach to general systems
engineering that enables one to structure and reuse
engineering knowledge broadly.

1. Introduction

Industry demands that software development and
maintenance be made faster, cheaper, and better.
Conspiring against this are high labor turnover rates in the
software industry, and increasingly in American industry
more broadly. Institutional memory is being lost in this
turnover. Is there a way to capture, structure, use and then
reuse this knowledge for the purposes of software
development and maintenance?

Within the field of automated software engineering,
there is an approach to software development and
maintenance that appears to solve some of these problems.
In essence, this paradigm for software development and
maintenance is one that allows the capture and structuring

of formal requirement specifications, design
specifications, implementation software, and the
refinement processes that lead from requirements to
software. In this approach, the refinement process can
guarantee correctness of the synthesized software. By
recording, modifying, and then replaying the refinement
history, we are able to more easily maintain the software.
By capturing, abstracting, and structuring the knowledge
in a modular fashion, we are able to more easily reuse this
knowledge for other applications.

In this paper, we describe our experiences in applying
a category theory based approach to software
specification, synthesis, and maintenance. In addition, we
give an industrial perspective on what is needed to make
this technology have broader appeal to industry. We
begin with some formal preliminaries and a brief
discussion of Specware™.

2. Formal Preliminaries

The field of category theory [4,10,12] provides a
foundational theory. This theory was applied to systems
theory and systems engineering [3,6]. This theory was
embodied in the software development tool Specware™
[14,16,17].

2.1. Category of Signatures

A signature consists of the following:
1. A set S of sort symbols
2. A triple O = < C, F, P > of operators, where:

• C is a set of sorted constant symbols,
• F is a set of sorted function symbols, and
• P is a set of sorted predicate symbols.

A signature morphism is a consistent mapping from one
signature to another (from sort symbols to sort symbols,
and from operator symbols to operator symbols). The
category Sign consists of objects that are signatures and
morphisms that are signature morphisms. Composition of
two morphisms is the composition of the two mappings.

2.2. Category of Specifications

A specification consists of:
1. A signature Sig = < S, O >, and
2. A set Ax of axioms over Sig

Given two specifications <Sig1, Ax1> and <Sig2, Ax2>, a
signature morphism M between Sig1 and Sig2 is a
specification morphism between the specifications iff:

∀ a∈ Ax1, (Ax2 |- M(a))
That is, every one of the axioms of Ax1, after having been
translated by M, can be proved to follow from the axioms
in Ax2. This assures that everything that is provable from
Ax1 is provable from Ax2 (modulo translation). Of
course, Ax2 may be a stronger theory. The category Spec
consists of objects that are specifications and morphisms
that are specification morphisms.

2.3. Diagrams and Colimits

A diagram in a category C is a collection of vertices
and directed edges consistently labeled with objects and
arrows (morphisms) of C. A diagram in the category Spec
can be viewed as expressing structural relationships
between collections of specifications.

The colimit operation is the fundamental method in
Specware™ for combining specifications. The operation
takes a diagram of specifications as input and yields a
specification, commonly referred to as the colimit of the
diagram. See figures 1 and 2 for examples. The colimit
specification contains all the elements of the specifications
in the diagram, but elements that are linked by arcs in the
diagram are identified in the colimit. Informally, the
colimit specification is a shared union of the specifications
associated with each node of the original diagram. Shared
here means that sorts and operations that are linked by the
morphisms of the diagram are identified as a single sort
and operation in the colimit specification.

The colimit operation can be used to compose any
specifications, which can represent problem statements,
theories, designs, architectures, or programs. The fact that
specifications can be composed via the colimit operation
allows us to build specifications by combining simpler
components modularly, just as systems can be composed
from simpler modules.

3. Specware - A Software Development Tool

Specware™ is software development and maintenance
environment supporting the specification, design, and
semi-automated synthesis of correct-by-construction
software. It represents the confluence of capabilities and
lessons learned from Kestrel’s earlier prototype systems

(KIDS [13], REACTO [18], and DTRE [2]), grounded on
a strong mathematical foundation (category theory). The
current version of Specware™ is a robust implementation
of this foundation. Specware™ supports automation of:

• Component-based specification of programs using
a graphical interface

• Incremental refinement of specifications into
correct code in various target programming
languages (e.g., currently C++ and LISP)

• Recording and experimenting with design
decisions

• Domain-knowledge capture, verification and
manipulation

• Design and synthesis of software architectures
• Design and synthesis of algorithm schemas
• Design and synthesis of reactive systems
• Data-type refinement
• Program optimization
The Specware™ system has some of its roots in the

formal methods for software development community.
Within this community, there are numerous languages that
have been used for specifying software systems; e.g., Z
[15], VDM [1], and Larch among many others [5]. Of the
many formal specification languages, the Vienna
Development Method (VDM) is one of the few that tries
to formally tie software requirement specifications to their
implementations in programming languages. This system
is perhaps the closest to Specware™ in that it allows an
engineer to specify a software system at multiple levels of
refinement. VDM tools allow for the capture and
discharging (sometimes manually) of “proof obligations”
that arise in the refinement of a specification from one
level to another.

Specware™ differs from VDM by having category
theory as its fundamental underlying theory. This appears
to give several benefits. It allows for a greater level of
decomposition, and then composition, of specifications
(the use of diagrams and colimits provides a general
framework for this). It provides a solid basis [7,11] for
preserving semantics in all refinement operations - not
only within Slang (Specware’s specification language),
but also across different logics (e.g., from the logic of
Slang into the logics underlying target programming
languages). It allows for parallel refinement of diagrams
[17], which helps with the scalability of the technology.
Multiple categories underlie Specware™.

4. Stiffened Panel Layout

We began our evaluation of this technology with an
example of a software component that was being

considered for inclusion in a component library for
structural engineering software [19]. The software
component solves a structural engineering layout problem
of how to space lightening holes in a load-bearing panel.
The component was originally part of an application that
designs lay-up mandrels, which are tools that are used in
the manufacturing process for composite skin panels. At
first glance, the software component appears to solve the
following one-dimensional panel layout task (this was
pulled from a comment in the header of this component).
Given a length of a panel, a minimal separation distance
between holes in the panel, a minimal separation distance
between the end holes and the ends of the panel, and a
minimum and maximum width for holes, determine the
number of holes, and their width, that can be placed in a
panel. This software component solves a specific design
task that is part of a broader design task. Prior to the
invocation of this function, a structural engineer has
determined a minimum spacing necessary to assure
structural integrity of the panel.

Upon closer inspection of the software, one realizes
that this function actually minimizes the number of holes
subject to the constraints specified by the input parameter
values. The original set of constraints defines a space of
feasible solutions. Given a set of parameter values for the
inputs, there may be more than one solution to picking the
number of holes and their width so that the constraints are
satisfied. So, the software documentation is incomplete.
However, going beyond this, one is inclined to ask, “Why
did the programmer choose to minimize the number of
holes?” Is there an implicit cost function defined over the
feasible solutions to the original set of constraints? If so,
what is it? Presumably, this is all part of the engineering
design rationale that went into coming up with the (not
fully stated) specification for the software component in
the first place. If we were to use this component to design
a panel that was to fly on an airplane, the panel would be
structurally sound, but not necessarily of optimal cost
(e.g., not making the best trade-off between manufacturing
cost and overall weight of the panel).

Rather than put this incompletely documented software
component into a reuse library, we seek to explicate the
engineering design rationale and tie it directly to the
software. For this purpose, we used the Specware™
system to first document the structural and manufacturing
engineering design rationale leading to the software
component specification, and then generate software that
provably implements the specification (which in turn
requires documenting software design rationale).

Specware™ allows specifications to be composed in a
very modular fashion (using the colimit construction from
category theory). In this example, we were able to

generate a specification for basic structural parts by taking
a colimit of a diagram, which relates specifications for
basic physical properties, material properties, and
geometry (see Figure 1). A specification for stiffened
panels was derived by taking the colimit of another
diagram, this time relating basic structural parts to panel
parts and manufactured parts (see Figure 2). This
specification was then imported into another, which added
manufacturing properties that are specific to stiffened
panels (it is here that we finally state the (originally
implicit) cost function). From this specification, and
another describing basic optimization problems, we are
able to formally state the panel layout problem. This
specification was then refined into Lisp software [20].

4.1. The Challenge of Software Maintenance

As business processes change, software requirements
must change accordingly. Some software changes are
straightforward. Other changes are harder to make, and
the inherent complexity is not always obvious. In the
stiffened panel layout example, suppose there is a change
to the material of the panel. If the density of the new
material is less than five, then the search algorithm that
was used is no longer applicable [20]. In fact, with this
single change to the cost function, it is more cost effective
to have no holes in the panel at all!

What is fundamentally missing in the software (the end
artifact in the software development process) is the fact
that a design decision, that of picking a particular
algorithm to solve a class of optimization problems, is
reliant on a subtle domain constraint. Indeed, in the
original software component, the cost function is nowhere
to be seen in the software, nor the documentation that was
associated with it. Knowledge sharing and reuse cannot
easily and uniformly occur at the software level.

If we place requirement specifications, design
specifications, and software derivations in a repository,
we can reuse them to derive similar engineering software.
When requirements change (e.g., in response to a change
in manufacturing processes), we are able to change the
appropriate specifications, and attempt to propagate those
changes through the derivation history. Sometimes the
software can be automatically regenerated. Other times,
some of the original software design will break down (due
to some constraints no longer holding). In this case, we
need to go back to the drawing board and come up with a
new design to satisfy the requirements. But even in these
cases, presumably only some portions of the software will
need to be redesigned. We leverage those parts of the
software design that we can. In this way, we reuse

knowledge at the appropriate level of abstraction, and not
solely at the software level.

5. Equipment Locator Problem

After the successful experience of using Specware™
on the stiffened panel layout component, we decided to
see if the technology would scale up to industrial strength
applications. There were various criteria that we used to
pick this application. The application should:

• Be large enough to test scalability.
• Be a real problem of importance to Boeing.
• Already have requirement documents written.
• Be an engineering application with relatively

simple geometry.
• Have requirements that change over time.
• Be in a family of related applications.
• Have overlap with the panel layout problem.
• Be functional in nature (i.e., no real time

constraints).
Some of these requirements were chosen in an effort to
maximize reuse of knowledge over time and across
applications. We have felt that the additional up front
costs (associated with rigorously defining requirement
specifications and design specifications) can more easily
be justified if there is a high probability that those costs
can be amortized over a relatively short period of time
(i.e., two or three years). Only the last requirement is due
to current state of the technology (although work is being
in this area).

After some searching, we found the equipment locator
problem, which satisfied all of the criteria listed above.
This is the problem of determining optimal placements of
electronic pieces of equipment (e.g., the flight data
recorder, inertial navigation systems, flight computers,
etc.) on shelves of racks in commercial airplanes. The
purpose of the equipment locator application is to support
the equipment installation design process for determining
optimal locations for electrical equipment. The
application supports the designers in determining optimal
locations for equipment on a new airplane model, as well
as finding a suitable location for new electrical equipment
on an existing airplane model. The application is intended
to reduce the process time required to determine
equipment locations, and also improve the quality of the
equipment location designs.

Numerous specifications are needed for stating and
solving this problem; e.g.:

• Theory of geometry,
• Global and relative part positioning,
• Major airplane part and zone definitions,

• Operations and properties for pieces of equipment,
shelves, and racks,

• Separation and redundancy requirements for
equipment,

• An assignment of a piece of equipment to a
position on a shelf,

• A layout (a set of assignments),
• Hard constraints on layouts,
• Cost function on layouts,
• Theories of classes of optimization problems,
• Theories of search algorithms for classes of

optimization problems,
• The equipment locator problem statement,
• An algorithmic solution to the problem

(instantiating a branch and bound algorithm)
All in all, about 7,000 lines of requirement and design
specifications are needed to state and solve this problem.
The generated Lisp software exceeds 7,000 lines.

5.1. General Problem Statement

With some simplification, the equipment locator
problem has as inputs:

1. A set of shelves
2. A set of equipment
3. A partial layout of equipment to shelves

And produces as output the set of all layouts of equipment
to positions on shelves, such that:

1. The partial layout is preserved/extended,
2. All pieces of equipment are placed in some

position on some shelf,
3. All hard constraints are satisfied,
4. Layout costs (e.g., wiring distances between

pieces of equipment) are minimized.

The hard constraints, which define feasible layouts, are
things like:

• Equipment assignments can not overlap in space,
• Equipment must be placed on shelves with

appropriate cooling properties,
• Redundant pieces of equipment must be placed

on separate cooling systems,
• Critical pieces of equipment have certain

restricted regions in space,
• Equipment with low mean time to failure must be

easily accessible,
• Voice and flight data recorders must be placed in

the front electrical engineering bay,
• Equipment sensitive to electromagnetic

interference must be separated (by a certain

distance) from other equipment emitting that
interference.

The cost function on layouts includes such things as:
• Equipment wiring distances minimized,
• Heavy equipment should be placed as low as

possible (for ergonomic considerations),
• Voice and flight data recorders should be placed

as far aft as possible.

As an example of the formal specifications, here are
three of the hard constraints (Specware™ does have a
prefix notation, but we did not use it):

 op no-overlapping-assignments : layout -> boolean
 axiom (iff (no-overlapping-assignments l)

 (fa (a1:assignment a2:assignment)
 (implies (and (in a1 l) (in a2 l))
 (implies (not (equal a1 a2))

 (not (overlapping a1 a2))))))
 op redundant-separated-enough : layout -> boolean
 axiom (iff (redundant-separated-enough l)

 (fa (a1:assignment a2:assignment)
 (implies (and (in a1 l) (in a2 l))
 (implies (redundant (equipment-of a1)

 (equipment-of a2))
 (gt (min-distance (assigned-geometry a1)

 (assigned-geometry a2))
 (redundant-sep (equipment-of a1)

 (equipment-of a2)))))))
 op redundant-separate-cooling : layout -> boolean
 axiom (iff (redundant-separate-cooling l)

 (fa (a1:assignment a2:assignment)
 (implies (and (in a1 l) (in a2 l))
 (implies (redundant (equipment-of a1)

 (equipment-of a2))
 (not (equal (cooling (shelf-of a1))
 (cooling (shelf-of a2))))))))

5.2. Process for Technology Use

So how does one go about using this technology for
industrial applications? After having learned some of the
underlying theory, and then Specware™ (from working on
the stiffened panel layout problem), we proceeded to learn
the domain of our new application. We had three English
requirement documents to work from. These comprised
about 20 pages of writing, drawings, etc. In addition, we
had several pieces of supporting material (tables,
drawings, etc). Only two discussions with a domain
expert were needed, since the requirement documents
were fairly clear and complete.

Once understood, we formalized the requirements.
Part of this involved figuring out how to best decompose

and abstract various portions of the problem domain. We
estimate that we captured roughly 98% of the
requirements found in the informal material. The
remaining 2% of the requirements dealt with interfacing
with other software systems (of which we had insufficient
information at the time). Next, we went through a manual
validation process in which we compared the formal
requirements with the informal ones. We wrote a brief
document noting places where either:

• Requirements were not formalized (the 2% above),
• Additional detail was needed to formalize the

requirements (due to some degree of ambiguity in
the English documents), or

• Some choice was made between alternate
interpretations of the written material (since the
three English documents were written at different
times, there were minor inconsistencies).

 Once the requirements were formalized, we made and
then encoded our design decisions. Again, there were
decisions to be made about decomposition and
abstraction. For each design decision, we needed to
choose data structures for sorts and algorithms for
operators. Specware™ comes with many built-in
specifications that can be used for this (and other
purposes). For example, there are specifications for sets,
lists, and sets interpreted as lists. These design decisions
then had to be verified to ensure that requirement
properties were upheld. Specware™ has a built-in
resolution based theorem prover. This was used to prove
roughly 25% of the proof obligations. The other 75%
were proven by hand. Eventually, every sort and
operation had to be refined down into some data structure
and operation provided by the Lisp programming
language.

Finally, once the software was initially generated, we
maintained the software with Specware™. As we learned
more about the problem domain, several changes were
made to the requirement specifications, and the software
was easily regenerated. None of these changes required
significant redesign efforts, fortunately. However, one
other change did. The initial optimization algorithm used
an exhaustive search. For purposes of rapid prototyping,
we had used the optimization problem theories (see Figure
3) and search theories from the stiffened panel layout
problem. Since these were inefficient, we encoded an
additional theory of branch and bound optimization
problems, and applied a corresponding search theory to
the domain of the equipment locator problem. The
general branch and bound theories are completely
reusable (i.e., independent of the domain in which they are
instantiated).

6. Getting the Technology into Broader Use

Our overall impression is that this technology does
work for industrial strength applications, but that it needs
additional work to make it more usable. Various
suggestions for technology and tool improvement are
given in this section.

6.1. Methodology for Understanding Refinement
System Interfaces

For maximum ease of use, the user interface of any
system should reflect and reinforce the user’s mental
model of the artifacts and processes involved. One must
keep in mind the education, experience, and general
characteristics of the user community. It is one thing to
have the underlying theory of a tool like Specware™ be
based in category theory. It is quite another to have
categorical terminology and concepts explicitly in the user
interface of the tool. In an effort to have the tool be
usable by a broader range of engineers, an attempt should
be made to present things in the user interface that do not
require explicit knowledge of category theory.

To improve the usability of this technology, human
factors and usability engineers should perform task
analysis, domain modeling, and requirement
elicitation/engineering for the use of this technology by its
intended audience. The emerging understanding of how
this technology could be used should drive the
requirements of the user interface.

6.2. Linking Nonformal Requirements to Formal
Requirements

The people most familiar with application domains
may not be interested or willing to author requirements in
a language based on higher-order sorted logic and
category theory. Natural languages are more widely
known and accepted, and provide needed ambiguity. In
addition, individual communities often have their own
notations and/or visual symbology (this is quite typical in
many traditional engineering disciplines). There needs to
be some type of linkage between less structured
representations of requirements and formal requirement
specifications.

We have in mind a Web-based interface scenario in
which engineers can click on a portion of a natural
language document and get access to portions of the
formal requirement specifications. Perhaps restricted
natural language grammars can be used to present the
formal specifications in a more readable fashion.

6.3. Viewing Linkage between Requirements,
Design, and Software

In the same vein as the previous suggestion, it would
be nice to be able to click on portions of formal
requirement specifications and get access to those portions
of design specifications that reflect those requirements.
These portions could be sorts, operations, axioms, or
theorems. Similarly, clicking on portions of design
specifications could lead to portions of other design
specifications and/or software.

The theme in these two subsections is visibility and
traceability of requirements and designs through the
software derivation history. If someone else were to pick
up our work on the equipment locator problem, what
could be provided to them that would make it easier for
them to understand how requirements and designs are
achieved throughout the software derivation?

6.4. Better Derivation Replay and Visibility

To replay the entire software derivation for the
equipment locator problem, it takes about 30 minutes and
150 operations via the user interface. While it is probably
not hard to do, the tool needs to better automate this task
by recording the sequence of steps and then replaying
them automatically.

There is structure to these sequences of steps, and how
these sequences get put together [9]. This structure
should be easily captured, displayed, and manipulated in
the user interface of the tool. Note that this suggestion
differs from the previous subsection in the granularity of
what is being tracked. Here, we are tracking things at the
level of specifications, diagrams, interpretations, etc. In
the previous subsection, we are interested in portions of
specifications (specific sets of statements/axioms,
objects/sorts, operators, etc.).

6.5. Improved Specification Libraries

If larger specification libraries were available for a tool
like Specware™, then people would be more productive
with this technology. Some obvious examples would be
material from data structure and algorithm courses; e.g.,
trees, graphs, tries, search algorithms, disjoint set-union-
find algorithms, etc. Other suggestions include theories
for dimensional analysis and unit conversion of physical
quantities (e.g., the engineering math ontology of [8]),
theories of geometry, and theories of basic material
properties. We have done some work in the first two
areas.

6.6. Better Proof Support

The effective use of the automated theorem prover in
Specware™ is limited. One way to improve this would be
to use different automated theorem provers, equation
solvers, or model checkers, individually or perhaps in
some combination. Another, more pragmatic approach
might be to use a combination of proof checking and
automated theorem proving. As a software designer, as I
do my proofs "by hand", why not allow me to record my
own proof steps? Perhaps a proof checker can validate
some proof steps fairly easily. Perhaps some steps require
a fair amount of deduction, but might be possible to
discharge in an interactive manner. In the worse case,
simply allow me to record my own "proof,” which can be
manually verified during maintenance operations.

6.7. Generating State Based Programs

The current version of Specware™ only generates
software that is purely functional. No use of state based
variables is possible. This limits the efficiency of
generated software. This limits Specware's use in
embedded systems, where the improved quality of
generated software is highly desirable.

6.8. Software Optimization Transformations

The KIDS system [13] has some very nice, and
extremely useful, program level optimization
transformations. These range from low-level
transformations that are similar to compiler optimizations,
to high-level transformations that perform finite
differencing. To get more efficient software, these
capabilities are needed.

6.9. Expressing Rationale behind Design Choices

During design there are often multiple design
alternatives. It would be nice if we could clearly record
these alternatives and the rationale behind the current
selection of a specific design. This type of rationale could
even be stated formally; e.g., in terms of trade-offs
between space and time complexities. When changes in
requirements happen over time, this information would be
very valuable. All that is currently stored in a derivation
history is one way to achieve a software solution to a
problem. As one initially explores the design
space/alternatives, one learns a lot of information about
various trade-offs. Let's capture that information, and
leverage it in the future.

7. Summary

We have described our experiences in applying a
category theory based approach to industrial strength
software specification, synthesis, and maintenance. This
paradigm is one that allows the capture and structuring of
formal requirement specifications, design specifications,
implementation software, and the refinement processes
that lead from requirements to software. In this approach,
the refinement process can guarantee correctness of the
generated software. By recording, modifying, and then
replaying the refinement history, we are able to more
easily maintain the software. By capturing, abstracting,
and structuring knowledge in a modular fashion, we are
able to more easily reuse this knowledge for other
applications.

Our overall impression is that the technology does
work for industrial strength applications, but that it needs
additional work to make it more usable. It is interesting to
note that when this technology is applied to software
systems whose outputs are designs for airplane parts, the
design rationale that is captured is not only software
engineering design rationale, but also design rationale
from other, more traditional, engineering disciplines (e.g.,
mechanical, material, manufacturing, etc.). This suggests
the technology provides an approach to general systems
engineering that enables one to structure and reuse
engineering knowledge broadly.

8. Bibliography

[1] Bjorner, Dines and Jones, Cliff, Formal Specification &
Software Development, Prentice-Hall International, 1982.

[2] Blaine, Lee and Goldberg, Allen, DTRE – A Semi-
Automatic Transformation System, in Constructing Programs
from Specifications, ed. B. Moller, North Holland, 1991.

[3] Burstall, R. M. and Goguen, J. A., The Semantics of Clear, a
Specification Language, in Proceedings of the 1979
Copenhagen Winter School on Abstract Software Specification,
Lecture Notes in Computer Science, 86, Springer-Verlag, 1980.

[4] Crole, Roy, Categories for Types, Cambridge University
Press, 1993.

[5] Gannon, John et al., Software Specification - A Comparison
of Formal Methods, Ablex Publishing.

[6] Goguen, J. A., Mathematical Representation of
Hierarchically Organized Systems, in Global Systems Dynamics,
ed. E. Attinger and S. Karger, 1970, pp. 112-128.

[7] Goguen, J. A. and Burstall, R. M., Institutions: Abstract
Model Theory for Specification and Programming, Journal of
the Association of Computing Machinery, 1992.

[8] Gruber, Tom et al., An Ontology for Engineering
Mathematics, in Proceedings of the Fourth International
Conference on Principles of Knowledge Representation and
Reasoning, Morgan Kauffman, 1994.

[9] Jullig, R. and Y. V. Srinivas, Diagrams for Software
Synthesis, Proceedings of the 8th Knowledge-Based Software
Engineering Conference, Chicago, IL, 1993.

[10] MacLane, Saunders, Categories for the Working
Mathematician, Springer-Verlag, 1971.

[11] Meseguer, Jose, General Logics, Logic Colloquium ‘87,
Eds. Ebbinghaus et al., Elsevier Science Publishers, 1989.

[12] Pierce, Benjamin C., Basic Category Theory for Computer
Scientists, MIT Press, 1994.

[13] Smith, Doug, KIDS: A Knowledge Based Software
Development System, in Automating Software Design, Eds. M.
Lowry and R. McCartney, MIT Press, 1991.

[14] Smith, Doug, Mechanizing the Development of Software,
in Calculational System Design, Ed. M. Broy NATO ASI series,
IOS Press, 1999.

[15] Spivey, J. M., The Z Notation: A Reference Manual,
Prentice-Hall, New York, 1992.

[16] Srinivas, Y. V. and Jullig, Richard, Specware™: Formal
Support for Composing Software, in Proceedings of the
Conference of Mathematics of Program Construction, Kloster
Irsee, Germany, 1995.

[17] Waldinger, Richard et al., Specware™ Language Manual
2.0.1, Suresoft, Inc, 1996.

[18] Wang, T. C. and Goldberg, Allen, A Mechanical Verifier
for Supporting the Design of Reliable Reactive Systems,
International Symposium on Software Reliability Engineering,
Austin, Texas, 1991.

[19] Williamson, K. and Healy, M., Formally Specifying
Engineering Design Rationale, in Proceedings of the Automated
Software Engineering Conference, 1997.

[20] Williamson, K. and Healy, M., Deriving Engineering
Software from Requirements, Journal of Intelligent
Manufacturing, to appear, 1999.

Physics

physical-object, g,
weight, mass, volume, density,
weight(p) = mass(p) * g,
mass(p) = volume(p) * density(p)

Real Numbers

Geometry

geometry, volume,
box, height, length, width, box-volume,
cylinder, radius, depth, cylinder-volume,
box-volume(b) = height(b) * length(b) * width(b),
cylinder-volume(c) = depth(c) * pi * radius(c)^2

Parts

part, g, weight, mass, volume, ...,
material, aluminum-7075,
geometry, box, box-volume, …,
weight(p) = mass(p) * g, ... ,
if material(p)=aluminum-7075 …,
box-volume(b) = ..., …

Materials

material, aluminum-7075,
if material(p)=aluminum-7075
 then density(p)=20

import

import

import

Figure 1. Colimit of a Specification Diagram

Manufactured Parts
part, manufacturing-cost,
cost-of-raw-stock, cost-of-drilling-hole,
If material(p)=aluminum-7075 then
 cost-of-drilling-hole(p,h)= 2*cylinder-volume(h)
 cost-of-raw-stock(p) = 5*raw-stock-volume(p)

Parts
part, weight, mass, ..., volume, height, ...
weight(p) = mass(p) * g, ... ,
box-volume(b) = ..., ...

Panels
panel, boundary, hole, number-of-holes,
vertical separation, horizontal separation,
volume(p) =box-volume(boundary(p)) -
 (number-of-holes(p)*cylinder-volume(hole(p)))
material(p) = aluminum-7075

Manufactured Panels
panel, cost,
raw-stock-volume(p) = box-volume(boundary(p))
manufacturing-cost(p) = cost-of-raw-stock(p) +
 number-of-holes(p)*cost-of-drilling-hole(p,hole(p))
cost(p) = (5*manufacturing-cost(p)) + (2*weight(p))

Colimit of Diagram

import

import

import

Figure 2. Another Colimit and Specification Morphism

spec problem is
 sort D, R
 op I : D -> Boolean
 op O : D, R -> Boolean
 end-spec

diagram prob-set-real-diagram is
 nodes triv, problem, set, real
 arcs triv -> problem : { E -> R },
 triv -> set : { E -> E }
 end-diagram

spec optimization-stuff is
 import translate colimit of prob-set-real-diagram
 by { D -> Input,
 E -> Output,
 Set -> Set-of-Output,
 I -> Valid-Input,
 O -> Feasible-Output}
 op cost : Output -> Real
 end-spec

spec optimization-problem is

 import optimization-stuff

 op optimal-output : Input, Output -> Boolean
 op optimal-solutions : Input -> Set-of-Output

 axiom (implies (valid-input input)
 (iff (optimal-output input output)
 (and (feasible-output input output)
 (implies (feasible-output input x)
 (leq (cost output) (cost x))))))
 axiom (implies (not (valid-input input))
 (not (optimal-output input output)))
 axiom (implies (valid-input input)
 (iff (in x (optimal-solutions input))
 (optimal-output input x)))
 axiom (implies (not (valid-input input))
(equal (optimal-solutions input) empty-set))

 end-spec

Figure 3. Some Specifications for Optimization Problems

