Shortcourse on
Next Generation Database Systems

11-12 February 1988
Portland State University

Organized by
Oregon Database Forum

Sponsored by
Oregon Center for Advanced Technology Education (OCATE)

In Cooperation with
Willamette Valley ACM
Schedule

Thursday, 11 February

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-10:00</td>
<td>Introduction: Maier</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>Break</td>
</tr>
<tr>
<td>10:30-12:00</td>
<td>Carey</td>
</tr>
<tr>
<td>12:00-1:00</td>
<td>Lunch</td>
</tr>
<tr>
<td>1:00-2:00</td>
<td>Carey</td>
</tr>
<tr>
<td>2:00-3:00</td>
<td>Tolbert</td>
</tr>
<tr>
<td>3:00-3:30</td>
<td>Break</td>
</tr>
<tr>
<td>3:30-5:00</td>
<td>Tolbert</td>
</tr>
</tbody>
</table>

Friday, 12 February

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-10:30</td>
<td>Stonebraker</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>Break</td>
</tr>
<tr>
<td>11:00-12:00</td>
<td>Stonebraker</td>
</tr>
<tr>
<td>12:00-1:00</td>
<td>Lunch</td>
</tr>
<tr>
<td>1:00-2:30</td>
<td>Zdonik</td>
</tr>
<tr>
<td>2:30-3:00</td>
<td>Break</td>
</tr>
<tr>
<td>3:00-4:00</td>
<td>Zdonik</td>
</tr>
<tr>
<td>4:00-4:30</td>
<td>Reception</td>
</tr>
<tr>
<td>4:30-5:30</td>
<td>Shootout at the OCATE Corral</td>
</tr>
<tr>
<td>Speaker/Affiliation</td>
<td>Topic/Project</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Mike Carey</td>
<td>Extensible Database Systems</td>
</tr>
<tr>
<td>U. Wisconsin</td>
<td>Exodus</td>
</tr>
<tr>
<td>Doug Tolbert</td>
<td>Semantic Database Systems</td>
</tr>
<tr>
<td>Unisys</td>
<td>SIM</td>
</tr>
<tr>
<td>Mike Stonebraker</td>
<td>Enhanced Relational Systems</td>
</tr>
<tr>
<td>UC Berkeley</td>
<td>Postgres</td>
</tr>
<tr>
<td>Stan Zdonik</td>
<td>Object-Oriented Databases</td>
</tr>
<tr>
<td>Brown</td>
<td>Encore/Obsver</td>
</tr>
</tbody>
</table>
Semantic Data Models in Practice
SIM and the InfoExec(tm) Environment

Douglas M. Tolbert
Manager, Data Base Technology
Unisys Corporation

February 11, 1988

InfoExec is a trademark of Unisys Corporation
InfoExec Overview

Objectives

Data Models

File Systems
Database Systems
Semantic Systems

SIM Concepts

An Example

Application development effort
Query formation

InfoExec Product Environment

SIM Architecture and Implementation
Objectives

Create an environment that minimizes effort required to manage data by providing

 Ease of Use
 Productivity
 Data Integrity
 Coexistence
 Performance
Objectives

Ease of Use

High level interface
Integrated interface
Flexibility
Data independence
Objectives

Productivity

Set-oriented, non-procedural interface
Naturally represent complex relationships
Easy to learn
Minimum programming effort
Data retrieval without programming
Objectives

Data Integrity
- System enforced integrity
- Shared data definitions
- Referential integrity
Objectives

Coexistence

No impact on existing DMSII data bases

New capabilities for existing data bases

Performance

Production level
Data Model

A way of describing real-world application systems
Formalized into four components

Objects: Concepts to organize data
Operators: Instructions to manipulate data
Constraints: Rules to ensure correctness
Methodology: Instructions for designing "good" data bases.
File Systems

Data Model

- **Objects:** Records and files
- **Operators:** Primitive (Read and Write)
- **Constraints:** Almost none (parity?)
- **Methodology:** Good programming practices

Knowledge Location

- **Data:** I/O techniques
- **Program:** Data item integrity
 - Simple relationships
 - Complex relationships
- **User:** Complex relationships
 - Very complex relationships
 - Referential integrity
 - Resource sharing (concurrency)
 - Operational events (recovery)
 - Application specifics
File System

Computer

Data

Program

User
Database Systems

Data Model

Objects: Records (Network)
 Tuples and Tables (Relational)

Operations: Navigational (Network)
 Non-procedural (Relational)

Constraints: Limited

Methodology: Good programming practices (Network)
 Normalization (Relational)

Knowledge Location

Data: Data item integrity
 Simple relationships (limited in Relational)
 Resource sharing
 Operational events

Program: Complex relationships
 Referential integrity
 Application specifics

User: Very complex relationships
 Referential integrity
 Application specifics

Unisys Corporation DMT 2/88
Database System

Computer

Data

Program

User
DMS II

Runs on Unisys A-Series mainframes (Burroughs B6700 descendants)
Early 1970s DBMS technology extended and adapted to present
Flexible data model allows specification of hierarchical network, tabular, and hybrid schemas
Variety of physical data organizations and access methods
Resource management, recovery, and data access algorithms are sophisticated and well understood
Closely integrated with language compilers and operating system
Full suite of supporting utilities, including relational-like on-line query processor
Reputation for high transaction throughput
High customer base penetration: about 95 percent of A-Series customers license DMS II
DMS II

Provides efficient basic data management functions

But data model and interfaces do not provide benefits of newer, developing technologies

Our challenge

To provide benefits of new technology without destroying investment in existing database application systems
Options

Enhance DMS II

Ease of Use can be improved
Productivity and Data Integrity without sacrificing
Coexistence
Performance already near architectural limits
Not likely to expand customer base

Build a Relational system

Ease of Use would improve
Productivity would be marginally improved
Data Integrity very limited
Coexistence

Extensive rework of basic data management software
No migration path for many existing DMS II data bases
"Two data base" strategy not desirable
Performance questionable
Would be one of many when released

Unisys Corporation

DMT 2/88
Options

Explore new "semantic" data models

Examined

Semantic Networks (Quillian, Brachman)
Entity-Relationship (Chen)
RM/T (Codd)
SDM (Hammer and McLeod)
DAPLEX (Shipman)
GORDAS (El-Masri)

Meets Ease of Use, Productivity, and Data Integrity objectives

Many new features can be adapted to existing databases without migration

Performance based on proven DMS II algorithms

SDM provided

Clear conceptual basis
Best DMS II coexistence possibilities
Good vehicle for query language development
Semantic Data Model References

Unisys Corporation

DMT 2/88
What makes a data model semantic?

"During the last few years numerous investigations have been aimed at capturing (in a reasonably formal way) more of the meaning of the data, while preserving independence of implementation. This activity is sometimes called semantic data modeling. Actually, the task of capturing the meaning of data is a never-ending one. So the label 'semantic' must not be interpreted in any absolute sense."

Codd, pp 397-398

That is, they attempt to capture the meaning of the data, not just physical data values.

So, the more "meaning" a data model captures, the more "semantic" it is.

Unisys Corporation DMT 2/88
How does a semantic data model capture meaning?

Abstract objects for modeling data, not physical storage containers

"... it is appropriate that the structure of a database mirror the structure of the system that it models. A database whose organization is based on naturally occuring structures will be easier for a database designer to construct and modify than one that forces him to translate the primitives of his problem domain into artificial specificityon constructs."

Hammer and McLeod, pp 351-352

Abstraction techniques

Aggregation

Relationship between objects regarded as a higher level object ("PART_OF").

Generalization

Collection of individual objects viewed as single object ("IS_A").
How does a semantic data model capture meaning?

Database description allows expression of

Relationships between objects
 one-to-one, one-to-many, many-to-many
 generalization hierarchies
Limits on values that attributes may take
 type mechanism (a la Pascal)
 subrange enforcement
 uniqueness
Cardinality constraints
 required value
 minimum and maximum instances
 single- and multi-valued
Ad hoc constraints
 non-structural constraints
Semantic Systems

Data Model

Objects: Entities (logical)
Operations: Non-procedural
Constraints: Attribute, Referential
Methodology: Application understand

Knowledge Location

Data: Data item integrity
 Referential integrity
 Simple relationships
 Complex relationships
 Very complex relationships
 Resource sharing
 Operational events

Program: Application specifics

User: Application specifics
Semantic System

Computer

Data

Program

User
SIM Concepts

Entity

An object of interest in the application environment

For example: John Doe, an employee
Accounting, a department
Annual Report Preparation, a project
SIM Concepts

Attribute

A characteristic of an entity

For example: Employee John Doe has a name, address and employee ID.
SIM Concepts

Class

A collection of entities of the same type

Does not imply any specific physical implementation

For example: Employee, a collection of all employees working for a company
SIM Concepts

Subclass

A subset of entities in a class

For example: Project-Employee, all employees that work on projects
SIM Concepts

Attribute Inheritance

Subclasses inherit attributes from super classes

Additional attributes may be declared for subclasses

For example: Every employee has an employee ID, but only project employees have titles.
SIM Concepts

Data-Valued Attributes

An attribute whose values can be displayed
For example: An employee's ID number
SIM Concepts

Compound Attributes

A collection of attributes that may be treated as a unit

For Example: An employee's name is a compound attribute made up of first name, middle initial, and last name.
SIM Concepts

Entity-Valued Attributes

An attribute whose values are entities in a class
Indicate relationships between entities
For example: A project employee's department
SIM Concepts

Extended Attributes

Attributes of related entities may be considered extended attributes of an entity

For example: The department number of a project employee
Perspective

A point of view chosen for a query

Extended attributes used to view information elsewhere in the database

Same data viewed from different perspectives may have different meanings

Dept-No of Dept-In of Project-Employee = 123

Dept-No of Department = 123
SIM Concepts

Single-Valued Attributes

An attribute that can have only one value for an entity

For example:
- An employee's ID number
- A project employee's department
SIM Concepts

Multi-Valued Attributes

An attribute that may have more than one value for an entity

For example: An employee's education degrees

The project employees in a department
SIM Concepts

Bidirectional Relationships

Inverse relationship between two entity-valued attributes

For example: The project employees in a department, and
The members of a department
SIM Concepts

Types

Similar to Pascal

String type checking relaxed

More widely understood than SDM class-based domains

System Defined

Integer, Real, Boolean, Date, Time, Character, Number (packed decimal), String (fixed or variable), Kanji, Symbolic, Ordered Symbolic

User Defined

Based on system defined types or other user defined types

Strings may be base on user defined string types

Set membership for strings

Enforced subranges

Employee-Age : Integer (18..70)
SIM Concepts

Class Attributes

Belong to class as a whole, not any particular entity
One value per class
Data-valued only
SIM Concepts

Generalized Verify

General constraints not related to schema structure

Allows user specified error messages

For example, the spouse of an employee hired after December 31, 1987 may not work for the company

VERIFY NoCouples ON Employee
ASSERT NOT (Spouse ISA Employee)
WHERE Employee-Hire-Date > 12/31/87
ELSE "Spouse may not work for company"

available on first release
SIM Concepts

Security

Access limits

Visibility of attributes

Retrieval and update operations

Permission associates Access with user or program

Example, the Accounting department may see but not change the salary of journeyman and higher employees

ACCESS LookButDontTouch ON Employee
(Employee-Salary) RETRIEVE
WHERE Employee-Status >= Journeyman

PERMISSION
USERCODE = Accounting,
ACCESS = LookButDontTouch
SIM Concepts

Index

Visible only to database administrator and SIM Optimizer
Not visible to programmers or query users
Multiple data-valued attributes, ascending, and descending
Used for performance improvement
For Example,

INDEX (Employee-ID) ON Employee ASCENDING
ORGANIZATION -- An Example

A projects and employees data base.

Data base description

- DMSII: A record oriented system
- DB2: A relational system
- SIM: A semantic system

Application Responsibilities

Query Formation
<table>
<thead>
<tr>
<th>ORGANIZATION Entities</th>
</tr>
</thead>
<tbody>
<tr>
<td>People</td>
</tr>
<tr>
<td>Employees</td>
</tr>
<tr>
<td>Project Employees</td>
</tr>
<tr>
<td>Managers</td>
</tr>
<tr>
<td>Interim-Managers</td>
</tr>
<tr>
<td>Projects</td>
</tr>
<tr>
<td>Assignments</td>
</tr>
<tr>
<td>Departments</td>
</tr>
<tr>
<td>Previous Employees</td>
</tr>
</tbody>
</table>
APPLICATION PROGRAM

<table>
<thead>
<tr>
<th>DATA DEFINITION</th>
<th>USER INTERFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA MANAGEMENT</td>
<td>APPLICATION LOGIC</td>
</tr>
</tbody>
</table>

Unisys Corporation

DMT 2/88
<table>
<thead>
<tr>
<th>PERSON SET</th>
<th>PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soc-Sec-No</td>
<td>Spouse-SSN</td>
</tr>
<tr>
<td>Manager-SSN</td>
<td>Assignment-No</td>
</tr>
<tr>
<td>Dept-No</td>
<td>Employed</td>
</tr>
<tr>
<td></td>
<td>Employee-ID</td>
</tr>
<tr>
<td></td>
<td>PERSON-SET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FAMILY SET</th>
<th>FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent-SSN</td>
<td>Chkng-SSN</td>
</tr>
<tr>
<td></td>
<td>FAMILY-SET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPARTMENT SET</th>
<th>DEPARTMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dept-No</td>
<td>DEPARTMENT-SET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASSIGNMENT SET</th>
<th>ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment-No</td>
<td>Project-No</td>
</tr>
<tr>
<td></td>
<td>ASSIGNMENT-SET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJECT-SET</th>
<th>PROJECT-PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee-ID</td>
<td>Project-No</td>
</tr>
<tr>
<td></td>
<td>PROJECT-SET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERIM-SET</th>
<th>INTERIM-MANAGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee-ID</td>
<td>INTERIM-HISTORY</td>
</tr>
<tr>
<td></td>
<td>INTERIM-SET</td>
</tr>
</tbody>
</table>

Unisys Corporation
DMT 2/88
ORGANIZATION - SIM Description

PERSON

PREVIOUS-EMPLOYEE

EMPLOYEE

PROJECT-EMPLOYEE

INTERIM-MANAGER

MANAGER

DEPARTMENT

PROJECT

ASSIGNMENT

Unisys Corporation

DMT 2/88
ORGANIZATION Data Integrity Enforcement

<table>
<thead>
<tr>
<th>System</th>
<th>Data Item Validation</th>
<th>Referential Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DBMS</td>
<td>Application</td>
</tr>
<tr>
<td>DMSII</td>
<td>77</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>0</td>
</tr>
</tbody>
</table>

Unisys Corporation DMT 2/88
ORGANIZATION COBOL Source Lines

<table>
<thead>
<tr>
<th>Operation</th>
<th>DMS II</th>
<th>SIM</th>
<th>SIM / DMS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population DB</td>
<td>482</td>
<td>227</td>
<td>0.47</td>
</tr>
<tr>
<td>Retrieve 1</td>
<td>49</td>
<td>44</td>
<td>0.90</td>
</tr>
<tr>
<td>Retrieve 2</td>
<td>79</td>
<td>42</td>
<td>0.53</td>
</tr>
<tr>
<td>Modify 1</td>
<td>43</td>
<td>12</td>
<td>0.28</td>
</tr>
<tr>
<td>Modify 2</td>
<td>76</td>
<td>12</td>
<td>0.16</td>
</tr>
<tr>
<td>Delete 1</td>
<td>122</td>
<td>12</td>
<td>0.10</td>
</tr>
<tr>
<td>Delete 2</td>
<td>90</td>
<td>8</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Query Examples

Simple Retrieval

Print the names of all non-managers and the title of the department in which they work

Complex Retrieval

Print the names of employees and the titles of all their projects if they work on any project assigned to the Accounting Department

More Complex Retrieval

For the Annual Report Preparation project, print the titles of its subprojects and the names of employees currently assigned
Simple Query

Print the names of all non-managers and the title of the department in which they work

DMSII

RELATE Person TO Department BY MATCHING Dept-No WITH Dept-No AS Person-Dept;

TAB First-Name, Mid-Initial, Last-Name, Dept-Title
WHERE Employed NEQ "Manager"
FROM Person TO Department;
Simple Query

Print the names of all non-managers and the title of the department in which they work

DB2

SELECT First-Name, Mid-Initial, Last-Name, Dept-Title
FROM Person, Department
WHERE Person.Dept-No = Department.Dept-No AND
 Person.Employed NEQ "Manager";
Simple Query

Print the names of all non-managers and the title of the department in which they work

SIM

RETRIEVE Name of Project-Employee,
Dept-Title of Dept-In
Complex Query

Print the names of employees and the titles of all their projects if they work on any project assigned to the Accounting Department

DMSII

RELATE Deptment TO Project BY MATCHING Dept-No WITH Dept-No AS Dept- Proj;

RELATE Project TO Project-Person BY MATCHING Project-No WITH Project-No AS Proj-Person;

RELATE Project-Person TO Person BY MATCHING Soc-Sec-No WITH Soc-Sec-No AS Proj-Emp;

EXTRACT Soc-Sec-No, COUNT AS SSN-Cnt WHERE Dept-Title = "Accounting" FROM Person TO Project-Person TO Project TO Department : EXTRACTFILE = Extfile;

OPEN FILE Extfile;

RELATE Extfile TO Project-Person BY MATCHING Soc-Sec-No WITH Soc-Sec-No AS Extrel;

TAB First-Name, Mid-Initial, Last-Name, Project-Title FROM Extfile TO Project-Person TO Project WHERE SSN-Cnt > 0;
Complex Query

Print the names of employees and the titles of all their projects if they work on any project assigned to the Accounting Department.

DB2

SELECT First-Name, Mid-Initial, Last-Name, Project-Title
FROM Person, Project-Person, Project
WHERE Person.Soc-Sec-No = Project-Person.Soc-Sec-No
 AND Project.Project-No = Project-Person.Project-No
 AND EXISTS
 (SELECT *
 FROM Project-Person, Project, Department
 WHERE Project-Person.Soc-Sec-No = Person.Soc-Sec-No
 AND Project-Person.Project-No = Project.Project-No
 AND Department.Dept-No = Project.Dept-No
 AND Department.Dept-Title = "Accounting")
Complex Query

Print the names of employees and the titles of all their projects if they work on any project assigned to the Accounting Department

SIM

RETRIEVE Name of Project-Employee,
 Project-Title of Current-Project
WHERE Dept-Title of SOME (Dept-Assigned of Current-Project)
 = "Accounting"
More Complex Query

For the Annual Report Preparation project, print the titles of its subprojects and the names of employees currently assigned.

DMSII

OPEN DMSII Organization;

OPEN DMSII OrgCopy (DMI = DMINTERPRETER/ORANIZATION);

RELATE Project of Organization TO Project of OrgCopy BY MATCHING Project-No WITH SuperProject-No AS SubProj;

RELATE Project of Organization TO Person of OrgCopy MATCHING Project-No WITH Project-No AS Project-Emp;

RELATE Project-Person of OrgCopy TO Person of OrgCopy BY MATCHING Employee-ID WITH Employee-ID AS Proj-Person;

TAB Project-Title of Project of OrgCopy, First-Name of Person of OrgCopy, Mid-Initial of Person of OrgCopy, Last-Name of Person of OrgCopy FROM Project of Organization TO Project of OrgCopy TO Project-Person of OrgCopy TO Person of OrgCopy WHERE Project-Title of Project of Organization = "Annual Report Preparation";
More Complex Query

For the Annual Report Preparation project, print the titles of its subprojects and the names of employees currently assigned

DB2

```
SELECT Project-Title, First-Name, Mid-Initial, Last-Name
FROM Project, Project SubProj, Person, Project-Person
WHERE Project.Project-No = SubProj.SuperProject-No
AND SubProj.Project-No = Project-Person.Project_No
AND Project-Person.Soc-Sec-No = Person.Soc-Sec-No
AND Project.Project-Title = "Annual Report Preparation"
```
More Complex Query

For the Annual Report Preparation project, print the titles of its subprojects and the names of employees currently assigned

SIM

RETRIEVE Project-Title of Sub-Projects of Project,
 Name of Project-Team of Sub-Projects
WHERE Project-Title of Project = "Annual Report Preparation"
Host Language Interface

High-level interface to full SIM functionality
Extended language grammar
Transaction orientation
Full data independence
 Structured, Tabular, Hybrid retrievals
Language statements may be interleaved with SIM constructs
Language variables allowed in queries
Host Language Interface

Hybrid Retrieval, COBOL

OD DEPARTMENT-QUERY.
 01 DEPARTMENT-RECORD.
 02 DEPT-TITLE PIC X(20).

OD MANAGER-QUERY.
 01 MANAGER-RECORD.
 02 LAST-NAME PIC X(20).
 02 PROJECT-TITLE PIC X(30).
Host Language Interface

Hybrid Retrieval, COBOL

SELECT DEPARTMENT-QUERY FROM DEPARTMENT
 (DEPT-TITLE,
 SELECT MANAGER-QUERY FROM DEPT-MANAGERS
 (LAST-NAME = LAST-NAME OF NAME,
 PROJECT-TITLE = PROJECT-TITLE
 OF PROJECTS-MANAGING)).

RETRIEVE DEPARTMENT-QUERY.

RETRIEVE MANAGER-QUERY.
Host Language Interface

Hybrid Retrieval, Sample Data

<table>
<thead>
<tr>
<th>Departments</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managers</td>
<td></td>
</tr>
<tr>
<td>Accounting</td>
<td>Payroll</td>
</tr>
<tr>
<td>Adams</td>
<td>Year-end Statements</td>
</tr>
<tr>
<td>Burns</td>
<td>Accounts Payable</td>
</tr>
<tr>
<td>Engineering</td>
<td>Maintenance</td>
</tr>
<tr>
<td>Duncan</td>
<td>New Products</td>
</tr>
<tr>
<td>Eaton</td>
<td></td>
</tr>
<tr>
<td>Eaton</td>
<td></td>
</tr>
<tr>
<td>Purchasing</td>
<td></td>
</tr>
<tr>
<td>Carr</td>
<td>Inventory</td>
</tr>
</tbody>
</table>
Update: Insert

Create a new employee named John Doe and assign him to the manager named Smith

INSERT Employee
 (Name := (First-Name := "John", Last-Name := "Doe"),
 Gender := Male,
 Soc-Sec-No := 123-45-6789,
 US-Citizen := True,
 Employee-ID := 46060,
 Spouse := Person WITH
 (First-Name of Name = "Mary" AND
 Last-Name of Name = "Doe"),
 Child := INCLUDE Person WITH
 (First-Name of Name = "Junior" AND
 Last-Name of Name = "Doe"),
 Employee-Manager := Manager WITH
 (Last-Name of Name = "Smith")
)

Promote John Doe to a department manager with a bonus of $5000

INSERT Manager FROM Employee
WHERE Last-Name of Name = "Doe"
 (Manager-Title := Department-Manager,
 Bonus := 5000
)
Update: Modify

Reassign all journeyman Project-Employees in the Construction Department to the Maintenance Department

MODIFY Project-Employee
 (Dept-In := Department WITH
 (Dept-Title = "Maintenance"))
WHERE Title = Journeyman AND
 Dept-Title of Dept-In = "Construction"
Update: Delete

Remove all projects assigned to managers that manage departments located in Los Angeles

DELETE Project
WHERE Dept-Location of Managers-Department of Project-Manager = "Los Angeles"
Expressions

Allowed in target list and where expression

Automatic null handling (tri-state logic)

Operators

Arithmetic (+, -, *, /, DIV, MOD, **)
Boolean (NOT, AND, OR)
Relational (<, >, =, <=, >=, <>)
String (&)
Existence (EXISTS)

Functions

Arithmetic (ABS, ROUND, TRUNC, SORT)
String (LENGTH, EXT, POS, RPT)
Symbolic (PRED, SUCC)
Date (YEAR, MONTH, DAY, ELAPSED DAYS, ADD_DAYS, DAY_OF_WEEK, MONTH_NAME, CURRENT_DATE)

Time (HOUR, MINUTE, SECOND, ELAPSED_TIME, ADD_TIME, CURRENT_TIME)

INVERSE

TRANSITIVE

Pattern matching
Multi-valued Expressions

Operators

INCLUDE
EXCLUDE

Functions

Aggregate (AVG, SUM, COUNT, MIN, MAX)
Quantifiers (SOME, ALL, NO)
Advanced Query Topics

Subrole attribute

Read-only enumeration of subclasses of a class

May be used in queries

Retrieve the names of employees that are managers

RETRIEVE Name of Employee
WHERE Profession = Manager

Role testing

Retrieve the names of employees whose spouses are managers

RETRIEVE Name of Employee
WHERE Spouse ISA Manager

Role qualification

Retrieve the names of US citizens and the employee ID of their spouses

RETRIEVE Name of Person, Employee-ID of Spouse AS Employee
WHERE US-Citizen
Advanced Query Topics

Multiple perspective queries: Value-based joins

Retrieve the names of project employees and managers that are the same age

RETRIEVE Name of Project-Employee,
Name of Manager
WHERE Age of Project-Employee = Age of Manager

Reference variables

Created implicitly by SIM for aggregate functions and quantifiers

Created explicitly in query

Retrieve the names of all managers who manage employees making more than $40,000 and employees making less than $20,000

RETRIEVE Name of Manager
WHERE Employee-Salary of Employees-Managing > 40000
AND Employee-Salary of Employees-Managing
CALLED OtherEmp < 20000

Local Selection

Retrieve the names of managers of all departments and the salaries of only the division managers

RETRIEVE Name of Dept-Managers of Department
Employee-Salary of Dept-Managers
WITH (Manager-Tile of Dept-Managers
Division-Manager)
InfoExec Environment

General

Single, screen-based environment
Seamless, function-oriented screen flow
Screen flows can be record and played back later
Multi-lingual support
All new documentation -- user oriented
Classes available from Joseph & Cogan Associates
InfoExec Environment

Applications

Host Language Interfaces

COBOL74, Pascal, ALGOL

Definition

Advanced Data Dictionary System (ADDS)

SIM, DMS II, COBOL74, Screen Formats, Saved Queries

Logical entities: Program, Process, Keyword

Usage tracking and reporting

A SIM database application

Screen Design Facility (SDF)

Screen definition and manipulation outside user application program
InfoExec Environment

Query

Interactive Query Facility (IQF)

- Host-based query, update, browsing, and reporting
- Screen and menu based

Workstation Query Facility (WQF)

- Workstation-based query, update, browsing, and reporting
- Mouse and window based
- Unisys B25 and PC families, IBM PC compatibles

Utilities

Operations Control Manager (OCM)

- Screen-based operations for SIM and DMS II

Dictionary Utilities

- Database schema management and generation
- Dictionary management and security
- COBOL74 program loader

DMS.View and LINC.View

- Inquiry-only SIM access to existing DMS II databases and LINC systems
SIM Architecture

Goals

Performance
Date Independence
Simplified Application Logic

Compilation Architecture
Execution Architecture
SIM Architecture
Interesting Implementation Problems

Bootstrapping

ADDS required to describe SIM schemas, but ADDS is itself a SIM database

DMS II-mapped SIM databases contain an internal, self-describing SIM database

Solution: Special bootstrapping programs

Automatic Reparsing

Some queries may need reparsing and reoptimization between compilation and execution because of conceptual, interface, or physical schema changes

Solution: Queries are timestamped and recompiled as needed

Postponed Updates

Some integrity constraints are enforced during query parsing while others are delayed until execution. Some of the latter require postponing updates until integrity checking is complete.

Solution: Implement update tanking scheme
Interesting Implementation Problems

Locking Protocols

Many interesting locking problems surfaced due to predefined relationships and full referential integrity.

Solution: Implement two-phase locking protocol employing shared and exclusive locks in DMS II.

Performance Tuning

Many mapping options available for each conceptual component, but choice of defaults that perform well in a wide range of applications was not obvious.

Solution: Performance of alternatives studied for surrogates, relationships, and generalization hierarchies.

Host Language Interface

Stylistically difficult to blend query language with host language without destroying data independence.

Solution: Hybrid retrieval.
On-going Issues

Views

Challenging for strongly typed data models

May not be as important as in relational model

Derived attributes
System-maintained ordering of classes and EVAs
Dependent classes
Nested queries
Temporal data
Efficient integrity constraint algorithms
Quantifying naturalness and ease of use
Graphic interfaces
Three Layered Architecture