
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 3, May-June 2003

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification. Part 7: A Class is
a Type Family”, in Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 13-22.
http://www.jot.fm/issues/issue_2003_05/column2

13

The Theory of Classification
Part 7: A Class is a Type Family

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the seventh article in a regular series on object-oriented type theory, aimed
specifically at non-theoreticians. So far, we have built up a model of objects as simple
records, which are instances of corresponding record types [1]. Initially, we took the
seemingly attractive view that a programmer's class in C++ or Java corresponds in some
way to a type in the formal model, and that a compatible subclass therefore corresponds
to a subtype [2], linking this with an algebraic description of subtype-compatible
semantic behaviour [3]. Naturally, the class-construct in an object-oriented language also
defines an implementation for the instances of the class, but there is no formal
contradiction here in considering just the typeful aspects of class declarations. Subtyping
does indeed provide a simple, flexible model for type compatibility, but we shall find that
it is not always as useful as we might expect.

We shall discover circumstances in which a type system based on subtyping breaks
down, providing less than useful information. Object-oriented languages like Smalltalk
and Eiffel exhibit sophisticated, systematic kinds of behaviour which cannot adequately
be described in terms of types and subtyping. By appealing to natural notions of
classification in biology, we shall demonstrate the extent to which the subtyping model
fails to capture the intuitive notion of a class. In this article, we shall define the notion of
class formally, and prove that it is more than just a type. To understand this, we will need
to extend our formal model to include type polymorphism. This requires the second-order
λ-calculus and notions of universal [4, 5] and function-bounded quantification [6, 7].

2 THE PROBLEM OF RECURSIVE CLOSURE

There used to be a popular rhyming couplet that joked about the terminology used in the
biological classification of the animal kingdom:

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_05/column2

THE THEORY OF CLASSIFICATION. PART 7: A CLASS IS A TYPE FAMILY

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

Cats have kittens, dogs have puppies,
But guppies just have baby guppies.

While every species has young of its own kind, the biologists seemed to have left some
holes in the taxonomy, surely an oversight! What is more disturbing is that most object-
oriented languages will assert that Dog, Cat and Guppy, by virtue of being kinds of
Animal, all mate with an Animal and produce an offspring, which is (you guessed) an
Animal, something forced upon recursive types by the rules of subtyping. To see why, let
us express the reproducing behaviour of all animals (ignoring litters of offspring)
formally as:

Animal = µσ.{..., mate : σ → σ, ...}
This defines Animal as a recursive record type whose methods (most of which are not
shown) include the mate method. In such a recursive definition, σ is the self-type, a
placeholder for the eventual type name, bound recursively using µ to refer to the whole
record (the earlier articles [1, 2] explain this notation). Once the recursion is established,
we can access the type of the mate method as:

Animal.mate : Animal → Animal
showing that an Animal mates with an Animal and produces an Animal offspring,
suitably capturing the general notion. Intuitively, we should like to introduce the Animal
subclasses Dog, Cat (and even Guppy), such that these creatures all mate with, and
produce young of their own kind, in the uniformly specialised style:

Dog.mate : Dog → Dog
Cat.mate : Cat → Cat

We might expect Cat and Dog to be subtypes of Animal; however this is not the case,
since they both redefine the signature of the mate method a way that violates subtyping.
The function subtyping rule allows a subtype function to have more general arguments
and a more specific result [2]. Here, the Dog type replaces the signature Animal →
Animal with the retyped signature Dog → Dog, which unhelpfully specialises both
argument and result. The best we could do while still preserving subtyping is to break
with uniform specialisation and invent strangely retyped versions of mate which still
accept Animal arguments:

Dog = µσ.{..., mate : Animal → σ, ...}
Dog.mate : Animal → Dog

This ensures that Dogs produce puppies, but still allows a Dog to mate with any kind of
Animal, which seems intuitively wrong, but is formally correct by the rules of subtyping.
The Animal type declared that its mate method always accepts an argument of at least the
Animal type and we cannot go back on this, particularly if we expect to invoke Dog.mate
dynamically through an Animal variable and supply any legal Animal argument.

THE PROBLEM OF RECURSIVE CLOSURE

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 15

In general, recursion interacts poorly with subtyping. If any type T has a method that
is closed over its own type: T.m : T → T, then it is impossible to specialise the type of
this method uniformly. Let us assume that such a type S existed, with a method S.m : S
→ S. If we want to establish a subtype relationship S <: T, then for the replaced method
m to be a subtype, we have to show, on the result-side, that S <: T, which is consistent,
and also show, on the argument-side, that T <: S, which is precisely the opposite of the
relationship we seek. The only condition under which both S <: T and T <: S is if S = T!

This is one reason why redefined methods cannot change their types in languages
with both type recursion and subtyping. Consider that in Java, the equals method is
recursively typed at the root: Object.equals : Object → Boolean, making every Java type
recursive. Recursion fixes the type of this method, which can never be specialised. This
leads to a damaging lack of expressiveness: any redefinition of equals must still accept a
generic Object argument, yet it is usually a semantic error to seek to equate a Cat with
anything other than another Cat. In practice, programmers compare like with like, but
they can only do this by type downcasting the argument of the equals method, forcibly
overriding the natural type system.

3 THE PROBLEM OF TYPE LOSS

A different but related problem arises when recursively-typed methods are inherited and
invoked in a subtype object. So far, we have not modelled the notion of inheritance in any
detail, but let us invent a simple rule to create subtypes by record extension [2]. Since
records are merely maps from labels to values, and maps are really just sets, we can
combine records using set union. Let us assume that we wish to define a hierarchy of
numeric types, and that the basic Number type provides a primitive notion of addition:

Number = µσ.{plus : σ → σ},
= {plus : Number → Number}

after unrolling the recursion. We can seek to derive other numeric types by extending
this, yielding for example the Natural, Integer, Real and Complex numbers. In particular,
the Integer type offers a full range of arithmetical methods:

Integer = µσ.(Number ∪ {minus : σ → σ, times : σ → σ, divide : σ → σ})
This defines the Integer type by extending the Number type with a record of

additional fields, and then fixing the recursion. After unrolling Number to yield the
corresponding record type, we can compute the union of fields, yielding the recursive
record type:

Integer = µσ.{plus : Number → Number, minus : σ → σ,
 times : σ → σ, divide : σ → σ},
= {plus : Number → Number, minus : Integer → Integer,
 times : Integer → Integer, divide : Integer → Integer}

THE THEORY OF CLASSIFICATION. PART 7: A CLASS IS A TYPE FAMILY

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

after unrolling the Integer recursion. Curiously, while the locally declared methods are all
typed in terms of Integer, the inherited plus method is already fixed in terms of Number.
As a consequence, the intuitively reasonable arithmetic expression:

i, j, k : Integer
i.plus(j).minus(k)

fails even to typecheck! This is because the sub-expression i.plus(j) returns a result of the
general type Number, for which the minus method is not defined. This is the problem of
type-loss under inheritance, something with which Java and C++ programmers will be
familiar. It arises because the type recursion in Number fixes the signature of the plus
method, and this more general type is still retained in Integer, after the union of fields. In
practice, Java and C++ programmers have to use type downcasting to override the natural
type system, if they wish expressions like this to compile, something like:

i, j, k : Integer
((Integer) i.plus(j)).minus(k)

Type downcasting is typically considered a last resort, a dirty trick to be used on
occasions when the natural type system doesn't help. Here, we have shown how type
downcasting has to be used systematically all the time to overcome deficiencies in the
type system. This is a strong indicator that subtyping is not the most appropriate formal
model for object-oriented languages. Instead, we need a more expressive type system.

4 QUANTIFICATION OVER TYPES

Working backwards from the desired goal, it seems that our intuitive notion of
classification requires a type system in which recursive types can have methods that are
closed over their own type, but which are nonetheless related to each other in some
systematic way. We want to be able to support families of related types that behave in
similar ways, such as the numeric types which all provide addition:

Integer.plus : Integer → Integer
Complex.plus : Complex → Complex
Natural.plus : Natural → Natural

and somehow be able to assert that these all belong to the class of numbers. There is
clearly a systematic pattern here, in which all related numeric types τ have a plus method
with the type signature τ.plus : τ → τ. We can get close to this idea with universal
quantification:

∀τ . τ.plus : τ → τ
which says that “all types τ have a method plus which accepts and returns a value of the
same type τ.” This is still not quite right, since we want plus to be defined only for the
numeric types, not for absolutely every type.

QUANTIFICATION OVER TYPES

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 17

Universal quantification was adopted independently by Girard [4] and Reynolds [5]
as a way of introducing type parameters, variables which range over types (ie which
receive types as their bound value). They are used in the second-order λ-calculus, in
which functions can accept both value- and type-arguments. This was found useful to
express the notion of polymorphism, describing functions that work uniformly on families
of types. Parametric polymorphism was built into the early functional programming
languages ML and Hope, and exists in object-oriented languages as the templates in C++,
or generic types in Ada and Eiffel. Before we can understand the usefulness of type
parameters in modelling polymorphism, we need to explain the idea of different orders of
calculus, and understand something of how to construct and simplify expressions.

5 SIMPLY-TYPED AND POLYMORPHIC CALCULUS

A zero-order system has no variables, but only sets of values. A first-order system has
functions, whose bound variables range over simple values. A second-order system has
functions, whose bound variables range over both values and simple types. The λ-
calculus is a basic functional language. In its primitive form, it is untyped, so we cannot
yet say anything about its order. About the simplest function you can write in the untyped
λ-calculus is the identity function, which accepts an argument and returns it unchanged:

λx.x the untyped identity function
λx.x 3 ⇒ 3 apply identity to an Integer
λx.x 'a' ⇒ 'a' apply identity to a Character

Recall that "λx" means "a function of x" and everything after the dot is the function body,
here just "x". Placing the function next to a value applies the function to this value, rather
like calling a function in a programming language. Applying λx.x to the integer 3 simply
binds the argument x←3 then returns the body x, which has the substituted value 3 (see
also [1]). In the untyped calculus, we can apply λx.x to anything, such as integers,
characters or even other functions (in which case we would have a higher-order system).

We may attach simple types to the function's arguments in the simply-typed λ-
calculus. This is a first-order system, since simply-typed variables can only range over
basic values. If we so wish, we can restrict the identity function to accept only Integer
values:

λ(x:Integer).x a typed identity function
λ(x:Integer).x 3:Integer ⇒ 3 type-safe application
λ(x:Integer).x 'a':Character ⇒ error type-incorrect application

The difference here is that the types of the formal argument and the actual value
must match, otherwise the application is deemed illegal, a type error. We can say that this
identity is a monomorphic function, since it is defined only for a single type, Integer. We
say that identity has the type: Integer → Integer.

THE THEORY OF CLASSIFICATION. PART 7: A CLASS IS A TYPE FAMILY

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

In the second-order λ-calculus, functions have extra arguments standing for types, which
are introduced ahead of the arguments standing for values of these types. A polymorphic
version of identity is given by the following, in which τ is a type parameter:

λτ.λ(x:τ).x a polymorphic identity function
λτ.λ(x:τ).x Integer ⇒ λ(x:Integer).x instantiation with Integer
λτ.λ(x:τ).x Character ⇒ λ(x:Character).x instantiation with Character
λτ.λ(x:τ).x Integer 3:Integer ⇒ 3 instantiation and application
λτ.λ(x:τ).x Character 'a':Character ⇒ 'a' instantiation and application

Identity now expects a type argument: λτ and then a value of this type: λ(x:τ). If we
apply identity just to a type, such as Integer, then we bind τ←Integer and return the body,
which after the type substitution is the simply-typed version of the function. This models
the notion of type parameter instantiation in C++ or Eiffel, in which type parameters are
replaced by actual types. We may apply the resulting simply-typed function to a value of
the expected type, as before. Second-order functions expect to be applied to a type, then
to a value in that order. We say that polymorphic identity has the type: ∀τ.τ → τ, since it
applies to any type and returns a result of the same type.

6 GENERIC OBJECT TYPES

This kind of construction can be used to extend our formal model of object types and
allows us to define polymorphic types (generic, or templated types). Let us start with a
monomorphic recursive record type for an IntegerStack:

IntegerStack = µσ.{push : Integer → σ, pop : → σ, top : → Integer,
 empty : → Boolean, size : → Integer}

As before, σ is a recursive placeholder for the eventual IntegerStack. We may modify this
definition to create a polymorphic type if we replace occurrences of Integer by a type
parameter. We must introduce the parameter at the head of the type definition:

Stack = λτ.µσ.{push : τ → σ, pop : → σ, top : → τ,
 empty : → Boolean, size : → Integer}

Here, λτ introduces the parameter τ standing for the element-type, ahead of µσ, which
binds the recursion in the rest of the record. This Stack definition now has the form of a
type function, that is, a function which expects a type argument: τ and then returns a
result, a record type in which τ will be bound to some actual type. To see how this works,
we can apply Stack to the Integer type (ie call Stack with Integer as its actual type
argument):

Stack[Integer] = µσ.{push : Integer → σ, pop : → σ, top : → Integer,
 empty : → Boolean, size : → Integer}

GENERIC OBJECT TYPES

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 19

and the result we obtain is identical to the IntegerStack type from above, after substituting
{Integer/τ} in the record body. This is interesting, because we may apply Stack to any
type we fancy, such as Stack[Character] or Stack[Boolean], creating specific
instantiations of the polymorphic type. There is no restriction on the actual element type
we could supply, so this kind of polymorphism is sometimes known as universal
polymorphism. We can express the polymorphic types of individual methods using
universal quantification:

∀τ . Stack[τ].push : τ → Stack[τ]
∀τ . Stack[τ].pop : → Stack[τ]
∀τ . Stack[τ].top : → τ

which we read as: "for all types τ, a Stack of τ has a push method that accepts an
argument of the type τ, and returns a Stack of τ", and similarly for the other methods.
Clearly, the generic Stack type expresses something about a family of related Stack-
types, but this is still not the notion of class that we are seeking to capture.

7 FUNCTION-BOUNDED QUANTIFICATION

It was Cook [6, 7] who first realised that in order to model a class as a polymorphic
family of related types, the key lay in making the self-type flexible, so that it could refer
to a different actual type in every member of the type family. In an earlier article [1] we
introduced type generators for recursive types, in which the self-type σ is a parameter
and is not yet bound. Type generators are similar to our type functions for generic types,
except that the self-type parameter σ eventually stands for the whole type, not for a part
of it.

Type generators can be used, exactly like type functions above, to create different
instantiated versions of a parameterised record type. To see how this works, we revisit the
Number type, but this time express it as a type generator, in which the self-type is not
recursively fixed, but is a parameter introduced by λσ:

GenNumber = λσ.{plus : σ → σ}
GenNumber is a generator for a family of related record types which have the general
structure of numbers with a plus method. To show this, we can apply GenNumber to
other numeric types, and this has the effect of adapting the self-type σ, which is
substituted by whatever type-argument we supply:

GenNumber[Integer] = {plus : Integer → Integer}
GenNumber[Real] = {plus : Real → Real}
GenNumber[Complex] = {plus : Complex → Complex}

THE THEORY OF CLASSIFICATION. PART 7: A CLASS IS A TYPE FAMILY

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

This looks promising, in that we are able to construct record types with a plus method
that is uniformly specialised to specific numeric types. We shall use this adaptive ability
below.

The ideal type for an Integer is a recursive type whose methods are all closed over its
own type, which we can unroll to a record type expressed in terms of Integers:

Integer = µσ.{plus : σ → σ, minus : σ → σ, times : σ → σ, divide : σ → σ},
= {plus : Integer → Integer, minus : Integer → Integer,
 times : Integer → Integer, divide : Integer → Integer}

Although this type can never be a subtype of the recursive Number type from section 3
above (because it uniformly specialises plus : Number → Number to plus : Integer →
Integer), it is nonetheless a subtype of a specially adapted GenNumber generator, that is:

Integer <: GenNumber[Integer],
which we can demonstrate by unrolling Integer to a record (on the left-hand side) and
then evaluating GenNumber[Integer] (on the right-hand side) and comparing the two
records:

{plus : Integer → Integer, minus : Integer → Integer,
 times : Integer → Integer, divide : Integer → Integer}
<: {plus : Integer → Integer}

This satisfies the record subtyping rule [2]. The left-hand side contains more fields than
the right-hand side, a simple case of record extension. It turns out that all the other
numeric types (with more methods than Number) can be shown to enter into a similar
relationship with a suitably-adapted version of the generator, for example:

Real <: GenNumber[Real]
Complex <: GenNumber[Complex]

and it follows intuitively that any type τ satisfying: τ <: GenNumber[τ] belongs to the
family of numeric types which share at least the plus-method. From this, Cook realised
that a class is a polymorphic family of types that satisfy a constraint, or bound [6, 7],
expressed using a generator function. Whereas universal quantification introduces type
parameters that range over any type, Cook's function-bounded quantification introduces
type parameters that only range over a restricted group of types which satisfy the
constraint. The whole class of numbers can be expressed formally as the type family:

∀(τ <: GenNumber[τ])
meaning "all those types which are subtyes of the adapted GenNumber generator".

What is unusual about this special kind of quantification is that the parameter τ appears
on both sides of the <: subtyping constraint; but it turns out that this is exactly what is
necessary to express the notion of a family of recursively closed types that have a shared
minimum structure.

FUNCTION-BOUNDED QUANTIFICATION

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 21

A suitable polymorphic type for the plus method may now be given, by restricting the
family of types to those in the class of numbers:

∀(τ <: GenNumber[τ]) . τ.plus : τ → τ
The constraint τ <: GenNumber[τ] is known as a function bound, or F-bound for short. F-
bounded quantification was a revolutionary discovery, because it captured exactly the
kind of polymorphism present in object-oriented languages, in which methods apply to
families of types sharing a minimum common structure.

8 CONCLUSION

We have formally defined the notion of class, using Cook's F-bounded quantification to
express the idea that a class is a family of types that share a minimum common structure.
This is a radical departure from the earlier view that a programmer's class corresponds to
a simple type. Although the languages Java and C++ adopt this simpler view, we found
that there were sufficient reasons to challenge this view, particularly the evidence from
the frequent use of type downcasting needed to overcome inadequacies of first-order type
systems based on types and subtyping. We are moving towards a second-order type
system, in which a programmer's class really corresponds to a polymorphic type. We
showed how polymorphism is modelled systematically using type parameters, and
explained the relationship between universal quantification, which supports the definition
of generic types, and F-bounded quantification, which supports the definition of classes:

GenAnimal = λσ.{mate : σ → σ}
∀(τ <: GenAnimal[τ]) . τ.mate : τ → τ

and even satisfies natural intuitions about biological classification in which animals
reproduce their own kind. Mathematics, as someone once said, is pure poetry.

REFERENCES

[1] A J H Simons, “The theory of classification, part 3: Object encodings and
recursion”, in Journal of Object Technology, vol. 1, no. 4, September-October
2002, pp. 49-57. http://www.jot.fm/issues/issue_2002_09/column4

[2] A J H Simons, “The theory of classification, part 4: Object types and subtyping”, in
Journal of Object Technology, vol. 1, no. 5, November-Decembe 2002, pp. 27-35.
http://www.jot.fm/issues/issue_2002_11/column2

[3] A J H Simons, “The theory of classification, part 5: Axioms, assertions and
subtyping”, in Journal of Object Technology, vol. 2, no. 1, January-February, pp.
13-21. http://www.jot.fm/issues/issue_2003_01/column2

http://www.jot.fm/issues/issue_2002_09/column4
http://www.jot.fm/issues/issue_2002_11/column2
http://www.jot.fm/issues/issue_2003_01/column2

THE THEORY OF CLASSIFICATION. PART 7: A CLASS IS A TYPE FAMILY

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

[4] J-Y Girard, “Interpretation fonctionelle et elimination des coupures de
l'arithmetique d'ordre superieur”, PhD Thesis, Universite Paris VII, 1972.

[5] J Reynolds, “Towards a theory of type structure”, Proc. Coll. Prog., New York,
LNCS 19 (Springer Verlag, 1974), 408-425.

[6] W Cook, “A denotational semantics of inheritance”, PhD Thesis, Brown
University, 1989.

[7] P Canning, W Cook, W Hill, W Olthoff and J Mitchell, “F-bounded polymorphism
for object-oriented programming”, Proc. 4th Int. Conf. Func. Prog. Lang. and
Arch. (Imperial College, London, 1989), 273-280

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Science, University of Sheffield, where he
leads object-oriented research in verification and testing, type theory
and language design, development methods and precise notations. He
can be reached at a.simons@dcs.shef.ac.uk.

mailto:a.simons@dcs.shef.ac.uk

