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The Theory of Classification 
Part 7: A Class is a Type Family 

Anthony J H Simons, Department of Computer Science, University of 
Sheffield, U.K.

1 INTRODUCTION 

This is the seventh article in a regular series on object-oriented type theory, aimed 
specifically at non-theoreticians. So far, we have built up a model of objects as simple 
records, which are instances of corresponding record types [1]. Initially, we took the 
seemingly attractive view that a programmer's class in C++ or Java corresponds in some 
way to a type in the formal model, and that a compatible subclass therefore corresponds 
to a subtype [2], linking this with an algebraic description of subtype-compatible 
semantic behaviour [3]. Naturally, the class-construct in an object-oriented language also 
defines an implementation for the instances of the class, but there is no formal 
contradiction here in considering just the typeful aspects of class declarations. Subtyping 
does indeed provide a simple, flexible model for type compatibility, but we shall find that 
it is not always as useful as we might expect. 

We shall discover circumstances in which a type system based on subtyping breaks 
down, providing less than useful information. Object-oriented languages like Smalltalk 
and Eiffel exhibit sophisticated, systematic kinds of behaviour which cannot adequately 
be described in terms of types and subtyping. By appealing to natural notions of 
classification in biology, we shall demonstrate the extent to which the subtyping model 
fails to capture the intuitive notion of a class. In this article, we shall define the notion of 
class formally, and prove that it is more than just a type. To understand this, we will need 
to extend our formal model to include type polymorphism. This requires the second-order 
λ-calculus and notions of universal [4, 5] and function-bounded quantification [6, 7].

2 THE PROBLEM OF RECURSIVE CLOSURE 

There used to be a popular rhyming couplet that joked about the terminology used in the 
biological classification of the animal kingdom: 
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Cats have kittens, dogs have puppies, 
But guppies just have baby guppies. 

While every species has young of its own kind, the biologists seemed to have left some 
holes in the taxonomy, surely an oversight! What is more disturbing is that most object-
oriented languages will assert that Dog, Cat and Guppy, by virtue of being kinds of 
Animal, all mate with an Animal and produce an offspring, which is (you guessed) an 
Animal, something forced upon recursive types by the rules of subtyping. To see why, let 
us express the reproducing behaviour of all animals (ignoring litters of offspring) 
formally as: 

Animal = µσ.{..., mate : σ → σ, ...} 
This defines Animal as a recursive record type whose methods (most of which are not 
shown) include the mate method. In such a recursive definition, σ is the self-type, a 
placeholder for the eventual type name, bound recursively using µ to refer to the whole 
record (the earlier articles [1, 2] explain this notation). Once the recursion is established, 
we can access the type of the mate method as: 

Animal.mate : Animal → Animal 
showing that an Animal mates with an Animal and produces an Animal offspring, 
suitably capturing the general notion. Intuitively, we should like to introduce the Animal 
subclasses Dog, Cat (and even Guppy), such that these creatures all mate with, and 
produce young of their own kind, in the uniformly specialised style: 

Dog.mate : Dog → Dog 
Cat.mate : Cat → Cat 

We might expect Cat and Dog to be subtypes of Animal; however this is not the case, 
since they both redefine the signature of the mate method a way that violates subtyping. 
The function subtyping rule allows a subtype function to have more general arguments 
and a more specific result [2]. Here, the Dog type replaces the signature Animal → 
Animal with the retyped signature Dog → Dog, which unhelpfully specialises both 
argument and result. The best we could do while still preserving subtyping is to break 
with uniform specialisation and invent strangely retyped versions of mate which still 
accept Animal arguments: 

Dog = µσ.{..., mate : Animal → σ, ...} 
Dog.mate : Animal → Dog 

This ensures that Dogs produce puppies, but still allows a Dog to mate with any kind of 
Animal, which seems intuitively wrong, but is formally correct by the rules of subtyping. 
The Animal type declared that its mate method always accepts an argument of at least the 
Animal type and we cannot go back on this, particularly if we expect to invoke Dog.mate 
dynamically through an Animal variable and supply any legal Animal argument. 
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In general, recursion interacts poorly with subtyping. If any type T has a method that 
is closed over its own type: T.m : T → T, then it is impossible to specialise the type of 
this method uniformly. Let us assume that such a type S existed, with a method S.m : S 
→ S. If we want to establish a subtype relationship S <: T, then for the replaced method 
m to be a subtype, we have to show, on the result-side, that S <: T, which is consistent, 
and also show, on the argument-side, that T <: S, which is precisely the opposite of the 
relationship we seek. The only condition under which both S <: T and T <: S is if S = T!  

This is one reason why redefined methods cannot change their types in languages 
with both type recursion and subtyping. Consider that in Java, the equals method is 
recursively typed at the root: Object.equals : Object → Boolean, making every Java type 
recursive. Recursion fixes the type of this method, which can never be specialised. This 
leads to a damaging lack of expressiveness: any redefinition of equals must still accept a 
generic Object argument, yet it is usually a semantic error to seek to equate a Cat with 
anything other than another Cat. In practice, programmers compare like with like, but 
they can only do this by type downcasting the argument of the equals method, forcibly 
overriding the natural type system. 

3 THE PROBLEM OF TYPE LOSS 

A different but related problem arises when recursively-typed methods are inherited and 
invoked in a subtype object. So far, we have not modelled the notion of inheritance in any 
detail, but let us invent a simple rule to create subtypes by record extension [2]. Since 
records are merely maps from labels to values, and maps are really just sets, we can 
combine records using set union. Let us assume that we wish to define a hierarchy of 
numeric types, and that the basic Number type provides a primitive notion of addition: 

Number = µσ.{plus : σ → σ}, 
= {plus : Number → Number} 

after unrolling the recursion. We can seek to derive other numeric types by extending 
this, yielding for example the Natural, Integer, Real and Complex numbers. In particular, 
the Integer type offers a full range of arithmetical methods: 

Integer = µσ.(Number ∪ {minus : σ → σ, times : σ → σ, divide : σ → σ}) 
This defines the Integer type by extending the Number type with a record of 

additional fields, and then fixing the recursion. After unrolling Number to yield the 
corresponding record type, we can compute the union of fields, yielding the recursive 
record type: 

Integer = µσ.{plus : Number → Number, minus : σ → σ,  
 times : σ → σ, divide : σ → σ}, 
= {plus : Number → Number, minus : Integer → Integer,  
 times : Integer → Integer, divide : Integer → Integer} 
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after unrolling the Integer recursion. Curiously, while the locally declared methods are all 
typed in terms of Integer, the inherited plus method is already fixed in terms of Number. 
As a consequence, the intuitively reasonable arithmetic expression: 

i, j, k : Integer 
i.plus(j).minus(k) 

fails even to typecheck! This is because the sub-expression i.plus(j) returns a result of the 
general type Number, for which the minus method is not defined. This is the problem of 
type-loss under inheritance, something with which Java and C++ programmers will be 
familiar. It arises because the type recursion in Number fixes the signature of the plus 
method, and this more general type is still retained in Integer, after the union of fields. In 
practice, Java and C++ programmers have to use type downcasting to override the natural 
type system, if they wish expressions like this to compile, something like: 

i, j, k : Integer 
((Integer) i.plus(j)).minus(k) 

Type downcasting is typically considered a last resort, a dirty trick to be used on 
occasions when the natural type system doesn't help. Here, we have shown how type 
downcasting has to be used systematically all the time to overcome deficiencies in the 
type system. This is a strong indicator that subtyping is not the most appropriate formal 
model for object-oriented languages. Instead, we need a more expressive type system. 

4 QUANTIFICATION OVER TYPES 

Working backwards from the desired goal, it seems that our intuitive notion of 
classification requires a type system in which recursive types can have methods that are 
closed over their own type, but which are nonetheless related to each other in some 
systematic way. We want to be able to support families of related types that behave in 
similar ways, such as the numeric types which all provide addition: 

Integer.plus : Integer → Integer 
Complex.plus : Complex → Complex 
Natural.plus : Natural → Natural 

and somehow be able to assert that these all belong to the class of numbers. There is 
clearly a systematic pattern here, in which all related numeric types τ have a plus method 
with the type signature τ.plus : τ → τ. We can get close to this idea with universal 
quantification: 

∀τ . τ.plus : τ → τ 
which says that “all types τ have a method plus which accepts and returns a value of the 
same type τ.” This is still not quite right, since we want plus to be defined only for the 
numeric types, not for absolutely every type. 
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Universal quantification was adopted independently by Girard [4] and Reynolds [5] 
as a way of introducing type parameters, variables which range over types (ie which 
receive types as their bound value). They are used in the second-order λ-calculus, in 
which functions can accept both value- and type-arguments. This was found useful to 
express the notion of polymorphism, describing functions that work uniformly on families 
of types. Parametric polymorphism was built into the early functional programming 
languages ML and Hope, and exists in object-oriented languages as the templates in C++, 
or generic types in Ada and Eiffel. Before we can understand the usefulness of type 
parameters in modelling polymorphism, we need to explain the idea of different orders of 
calculus, and understand something of how to construct and simplify expressions. 

5 SIMPLY-TYPED AND POLYMORPHIC CALCULUS 

A zero-order system has no variables, but only sets of values. A first-order system has 
functions, whose bound variables range over simple values. A second-order system has 
functions, whose bound variables range over both values and simple types. The λ-
calculus is a basic functional language. In its primitive form, it is untyped, so we cannot 
yet say anything about its order. About the simplest function you can write in the untyped 
λ-calculus is the identity function, which accepts an argument and returns it unchanged: 

λx.x    the untyped identity function 
λx.x  3  ⇒  3   apply identity to an Integer 
λx.x  'a'  ⇒  'a'    apply identity to a Character 

Recall that "λx" means "a function of x" and everything after the dot is the function body, 
here just "x". Placing the function next to a value applies the function to this value, rather 
like calling a function in a programming language. Applying λx.x to the integer 3 simply 
binds the argument x←3 then returns the body x, which has the substituted value 3 (see 
also [1]). In the untyped calculus, we can apply λx.x to anything, such as integers, 
characters or even other functions (in which case we would have a higher-order system). 

We may attach simple types to the function's arguments in the simply-typed λ-
calculus. This is a first-order system, since simply-typed variables can only range over 
basic values. If we so wish, we can restrict the identity function to accept only Integer 
values: 

λ(x:Integer).x     a typed identity function 
λ(x:Integer).x  3:Integer  ⇒  3  type-safe application 
λ(x:Integer).x  'a':Character  ⇒  error   type-incorrect application 

The difference here is that the types of the formal argument and the actual value 
must match, otherwise the application is deemed illegal, a type error. We can say that this 
identity is a monomorphic function, since it is defined only for a single type, Integer. We 
say that identity has the type: Integer → Integer. 



 
THE THEORY OF CLASSIFICATION. PART 7: A CLASS IS A TYPE FAMILY 

 
 
 
 

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3 

In the second-order λ-calculus, functions have extra arguments standing for types, which 
are introduced ahead of the arguments standing for values of these types. A polymorphic 
version of identity is given by the following, in which τ is a type parameter: 

λτ.λ(x:τ).x     a polymorphic identity function 
λτ.λ(x:τ).x Integer  ⇒  λ(x:Integer).x instantiation with Integer 
λτ.λ(x:τ).x Character  ⇒  λ(x:Character).x instantiation with Character 
λτ.λ(x:τ).x Integer 3:Integer  ⇒  3  instantiation and application 
λτ.λ(x:τ).x Character 'a':Character  ⇒  'a' instantiation and application 

Identity now expects a type argument: λτ and then a value of this type: λ(x:τ). If we 
apply identity just to a type, such as Integer, then we bind τ←Integer and return the body, 
which after the type substitution is the simply-typed version of the function. This models 
the notion of type parameter instantiation in C++ or Eiffel, in which type parameters are 
replaced by actual types. We may apply the resulting simply-typed function to a value of 
the expected type, as before. Second-order functions expect to be applied to a type, then 
to a value in that order. We say that polymorphic identity has the type: ∀τ.τ → τ, since it 
applies to any type and returns a result of the same type. 

6 GENERIC OBJECT TYPES 

This kind of construction can be used to extend our formal model of object types and 
allows us to define polymorphic types (generic, or templated types). Let us start with a 
monomorphic recursive record type for an IntegerStack: 

IntegerStack = µσ.{push : Integer → σ,  pop : → σ,  top : → Integer,   
   empty : → Boolean,  size : → Integer} 

As before, σ is a recursive placeholder for the eventual IntegerStack. We may modify this 
definition to create a polymorphic type if we replace occurrences of Integer by a type 
parameter. We must introduce the parameter at the head of the type definition: 

Stack = λτ.µσ.{push : τ → σ,  pop : → σ,  top : → τ,   
   empty : → Boolean,  size : → Integer} 

Here, λτ introduces the parameter τ standing for the element-type, ahead of µσ, which 
binds the recursion in the rest of the record. This Stack definition now has the form of a 
type function, that is, a function which expects a type argument: τ and then returns a 
result, a record type in which τ will be bound to some actual type. To see how this works, 
we can apply Stack to the Integer type (ie call Stack with Integer as its actual type 
argument): 

Stack[Integer] = µσ.{push : Integer → σ,  pop : → σ,  top : → Integer,   
   empty : → Boolean,  size : → Integer} 
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and the result we obtain is identical to the IntegerStack type from above, after substituting 
{Integer/τ} in the record body. This is interesting, because we may apply Stack to any 
type we fancy, such as Stack[Character] or Stack[Boolean], creating specific 
instantiations of the polymorphic type. There is no restriction on the actual element type 
we could supply, so this kind of polymorphism is sometimes known as universal 
polymorphism. We can express the polymorphic types of individual methods using 
universal quantification: 

∀τ . Stack[τ].push : τ → Stack[τ] 
∀τ . Stack[τ].pop : → Stack[τ] 
∀τ . Stack[τ].top : → τ 

which we read as: "for all types τ, a Stack of τ has a push method that accepts an 
argument of the type τ, and returns a Stack of τ", and similarly for the other methods. 
Clearly, the generic Stack type expresses something about a family of related Stack-
types, but this is still not the notion of class that we are seeking to capture. 

7 FUNCTION-BOUNDED QUANTIFICATION 

It was Cook [6, 7] who first realised that in order to model a class as a polymorphic 
family of related types, the key lay in making the self-type flexible, so that it could refer 
to a different actual type in every member of the type family. In an earlier article [1] we 
introduced type generators for recursive types, in which the self-type σ is a parameter 
and is not yet bound. Type generators are similar to our type functions for generic types, 
except that the self-type parameter σ eventually stands for the whole type, not for a part 
of it. 

Type generators can be used, exactly like type functions above, to create different 
instantiated versions of a parameterised record type. To see how this works, we revisit the 
Number type, but this time express it as a type generator, in which the self-type is not 
recursively fixed, but is a parameter introduced by λσ: 

GenNumber = λσ.{plus : σ → σ} 
GenNumber is a generator for a family of related record types which have the general 
structure of numbers with a plus method. To show this, we can apply GenNumber to 
other numeric types, and this has the effect of adapting the self-type σ, which is 
substituted by whatever type-argument we supply: 

GenNumber[Integer] = {plus : Integer → Integer} 
GenNumber[Real] = {plus : Real → Real} 
GenNumber[Complex] = {plus : Complex → Complex} 
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This looks promising, in that we are able to construct record types with a plus method 
that is uniformly specialised to specific numeric types. We shall use this adaptive ability 
below.  

The ideal type for an Integer is a recursive type whose methods are all closed over its 
own type, which we can unroll to a record type expressed in terms of Integers: 

Integer = µσ.{plus : σ → σ, minus : σ → σ, times : σ → σ, divide : σ → σ}, 
= {plus : Integer → Integer, minus : Integer → Integer,  
  times : Integer → Integer, divide : Integer → Integer} 

Although this type can never be a subtype of the recursive Number type from section 3 
above (because it uniformly specialises plus : Number → Number to plus : Integer → 
Integer), it is nonetheless a subtype of a specially adapted GenNumber generator, that is: 

Integer <: GenNumber[Integer], 
which we can demonstrate by unrolling Integer to a record (on the left-hand side) and 
then evaluating GenNumber[Integer] (on the right-hand side) and comparing the two 
records: 

{plus : Integer → Integer, minus : Integer → Integer,  
 times : Integer → Integer, divide : Integer → Integer} 
<:   {plus : Integer → Integer} 

This satisfies the record subtyping rule [2]. The left-hand side contains more fields than 
the right-hand side, a simple case of record extension. It turns out that all the other 
numeric types (with more methods than Number) can be shown to enter into a similar 
relationship with a suitably-adapted version of the generator, for example: 

Real <: GenNumber[Real] 
Complex <: GenNumber[Complex] 

and it follows intuitively that any type τ satisfying: τ <: GenNumber[τ] belongs to the 
family of numeric types which share at least the plus-method. From this, Cook realised 
that a class is a polymorphic family of types that satisfy a constraint, or bound [6, 7], 
expressed using a generator function. Whereas universal quantification introduces type 
parameters that range over any type, Cook's function-bounded quantification introduces 
type parameters that only range over a restricted group of types which satisfy the 
constraint. The whole class of numbers can be expressed formally as the type family: 

∀(τ <: GenNumber[τ]) 
meaning "all those types which are subtyes of the adapted GenNumber generator". 

What is unusual about this special kind of quantification is that the parameter τ appears 
on both sides of the <: subtyping constraint; but it turns out that this is exactly what is 
necessary to express the notion of a family of recursively closed types that have a shared 
minimum structure. 
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A suitable polymorphic type for the plus method may now be given, by restricting the 
family of types to those in the class of numbers: 

∀(τ <: GenNumber[τ]) . τ.plus : τ → τ 
The constraint τ <: GenNumber[τ] is known as a function bound, or F-bound for short. F-
bounded quantification was a revolutionary discovery, because it captured exactly the 
kind of polymorphism present in object-oriented languages, in which methods apply to 
families of types sharing a minimum common structure. 

8 CONCLUSION 

We have formally defined the notion of class, using Cook's F-bounded quantification to 
express the idea that a class is a family of types that share a minimum common structure. 
This is a radical departure from the earlier view that a programmer's class corresponds to 
a simple type. Although the languages Java and C++ adopt this simpler view, we found 
that there were sufficient reasons to challenge this view, particularly the evidence from 
the frequent use of type downcasting needed to overcome inadequacies of first-order type 
systems based on types and subtyping. We are moving towards a second-order type 
system, in which a programmer's class really corresponds to a polymorphic type. We 
showed how polymorphism is modelled systematically using type parameters, and 
explained the relationship between universal quantification, which supports the definition 
of generic types, and F-bounded quantification, which supports the definition of classes: 

GenAnimal = λσ.{mate : σ → σ} 
∀(τ <: GenAnimal[τ]) . τ.mate : τ → τ 

and even satisfies natural intuitions about biological classification in which animals 
reproduce their own kind. Mathematics, as someone once said, is pure poetry. 
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