
The Problem of Bytecode Verification in
Current Implementations of the JVM

Robert F. Stärk1 and Joachim Schmid2

1 Computer Science Department, ETH Zürich, CH–8092 Zürich
staerk@inf.ethz.ch

2 Siemens Corporate Technology, D–81730 Munich
Joachim.schmid@mchp.siemens.de

Abstract. The main problems of Java Bytecode Verification are em-
bedded subroutines and multiple inheritance via interfaces. The problem
with interfaces has been solved (by using sets of reference types or by
introducing a run-time check for the invokeinterface instruction). It is
widely believed that also the problem with subroutines has been solved.
This is not true. Most research has been focussed on soundness of Byte-
code Verification, i.e., that bytecode accepted by the verifier is type-safe
at run-time and cannot corrupt the memory. The problem of complete-
ness has not been addressed. During an attempt to prove that our Java
compiler generates code that is accepted by the Java Bytecode Verifier,
we found examples of legal Java programs which are rejected by any
Bytecode Verifier. The examples show that Java Bytecode Verification
as it has been introduced by Sun is not possible for the full Java pro-
gramming language. We propose therefore to restrict the so-called rules
of definite assignment for the try-finally statement and for the labeled
statement such that the example programs are no longer allowed. Then
we can prove, using the framework of Abstract State Machines, that
each program from the slightly restricted Java language is accepted by
the Java Bytecode Verifier.

1 Introduction

The Java programming language [4] is a strongly typed general-purpose lan-
guage. Java programs are compiled to bytecode instructions (class files) accord-
ing to the Java Virtual Machine Specification [11]. Class files can be executed
by the Java Virtual Machine (JVM). A correct Java compiler produces bytecode
instructions which can be trustfully executed on a JVM. A JVM, however, can
not distinguish between bytecode generated by a correct compiler and bytecode
produced by a different source to exploit the JVM. This is the reason why a
JVM has to verify bytecode programs before executing them.

Usually, a JVM does not check single bytecode instructions each time it
executes them, because such a virtual machine would be too slow. Instead, a JVM
tries to verify a class file in advance, at link-time, without run-time information.
If this verification is successful, then the class file can be trustfully executed

without violating any type constraints at run-time; otherwise the bytecode is
rejected.

The Java language was designed in a way that every legal Java program
compiled with a correct compiler should be accepted by the verifier. The Java
Virtual Machine Specification [11] states this explicitly:

Sun’s class file verifier is independent of any compiler. It should certify
all code generated by Sun’s compiler for the Java programming language;
it should also certify code that other compilers can generate, as well as
code that the current compiler could not possibly generate.

When we tried to prove that the Java compiler described in [16] generates veri-
fiable code, we found example programs which show that Sun’s intention is not
fulfilled. There are valid Java programs, compiled with Sun’s compiler, which
are not accepted by Sun’s class file verifier.

The programs Test1 and Test2 in Table 1 are legal Java programs. When
they are compiled using a standard Java compiler like Sun’s JDK 1.2 or 1.3
compiler, then the generated bytecode is rejected by any bytecode verifier we
tried including JDK 1.2, JDK 1.3, Netscape 4.73–4.76, Microsoft VM for Java
5.0 and 5.5 and the Kimera Verifier [15]. The problem is that in the eyes of
the verifier the variable i is unusable at the end of the method at the return i
instruction, whereas according to the JLS [4, §16.2.14] the variable i is definitely
assigned after the try-finally statement. The two programs Test1 and Test2
cannot be verified, because the class of valid Java programs is too large for
verifiers. Programs Test1 and Test2 are the reason why we claim that bytecode
verification as described in [11] is not possible for the full Java language. We will
analyze the two programs in detail below and propose a solution to the problem.

There are other reasons for the rejection of valid Java programs by the byte-
code verifier. Table 2 contains some example programs which are rejected by
certain bytecode verifiers when compiled with specific versions of Java compil-
ers. The programs in Table 2 are rejected due to bugs in the specific compiler or
programming errors in the bytecode verifier.

Program Test3 is rejected when compiled with Sun’s JDK 1.2.2 compiler due
to a well-known bug in this version of the compiler [12]. The problem is that the
compiler erroneously uses the same register to store the string s before executing
the finally block at the return s statement, and to store the variable i in the
finally-block. The bytecode verifier detects this error and rejects the incorrect
code reporting that “register 4 contains a wrong type”.

Program Test4 is rejected by the JDK 1.2 and the JDK 1.3 bytecode verifier.
It seems that these versions of the verifier are not prepared to handle nested
try-finally statements in the way they are used in the example. The verifier
reports an “illegal return from subroutine” although the bytecode generated by
the compiler seems to be correct. Fortunately nested try-finally statements are
almost never used in practice.

Program Test5 is rejected by the JDK 1.3 bytecode verifier although it is
a valid Java program. The verifier rejects the compiled program reporting that

2

class Test1 {

int m1(boolean b) {

int i;

try {

if (b) return 1;

i = 2;

} finally {

if (b) i = 3;

}

return i;

}

}

class Test2 {

int m2(boolean b) {

int i;

L: { try {

if (b) return 1;

i = 2;

if (b) break L;

} finally {

if (b) i = 3;

}

i = 4;

}

return i;

}

}

Table 1. Valid Java programs rejected by any bytecode verifier.

class Test3 {

String m3() {

String s = "hello";

try {

synchronized(s) {

return s;

}

}

finally { int i = 0; }

}

}

class Test4 {

void m4(boolean b) {

try {

try { if (b) return; }

finally {

try { if (b) return; }

finally {

if (b) return;

}

}

}

finally { if (b) return; }

}

}

class Test5 {

void m5() {

int[][] a = null;

a[0] = new int[0];

}

}

class Test6 {

void m6(boolean b) {

boolean z;

while (b ? true: true);

b = z;

}

}

Table 2. Valid Java programs rejected due to compiler or verifier bugs.

3

there are “incompatible types for storing into array of arrays”. The problem
is that the verifier does not know that the variable a is an array of arrays of
int. When the value null is assigned to a, the verifier concludes that the type
of a is the null type. When the new array new int[0] is assigned to a[0], the
verifier is not able to conclude that the component type of the null type (when
considered as an array) is again the null type. The program should be accepted
by the verifier. Only at run-time a NullPointerException should be thrown,
since the newly created array is assigned to the non-existing array element a[0].

Program Test6 is a valid Java program according to the JLS [4]. The pro-
gram is rejected by most Java compilers. They report that the variable z may not
have been initialized when it is used in the assignment b = z. These compilers,
however, are wrong. According to §16.2.9 of the JLS [4], a variable is definitely
assigned after a while statement, if it is definitely assigned after the test expres-
sions when the expressions evaluates to false. According to §16.1.5, a variable is
definitely assigned after a boolean conditional expression when it evaluates to
false, if it is definitely assigned after both branches of the expression when they
evaluate to false. Finally, according to §16.1.1, any variable is definitely assigned
after the boolean literal true when it evaluates to false (because this is not pos-
sible). Hence, according to the JLS [4], the variable z is definitely assigned after
the while-statement and the program Test6 is legal.

The JDK 1.3beta compiler is correct and accepts the program, but the code
it generates is rejected by the bytecode verifier. The problem is that the 1.3beta
compiler does not optimize the boolean expression b?true:true and therefore
the verifier thinks that the assignment b = z is reachable. The example Test6
shows that a compiler has to optimize boolean expressions containing the literals
true and false. Otherwise, it generates unverifiable code.

The example Test6 shows in addition a not so obvious inconsistency in the
design of the Java programming language. In the rules of definite assignment
(§16.1.1 of the JLS [4]), the expression b?true:true is treated like the constant
true. In the reachability analysis of §14.20, however, the expression b?true:true
is treated like an arbitrary boolean expression which can also have the value
false. Since the expression b?true:true is not a constant expression with value
true, the while statement can complete normally according to §14.20 and the
assignment b = z has to be regarded as reachable by a Java compiler. Our
compiler described in Part II of [16] compiles the program Test6 correctly and
the generated bytecode is accepted by the verifier.

2 Related work

The programs Test1 and Test2 in Table 1 cannot by typed in many type systems
that have been introduced. For example, Stata and Abadi treat subroutines in
a simplistic way in [17]. They do not consider the possibility to jump out of a
subroutine to an enclosing subroutine via a break, continue or throw. Thus,
there are, in addition to Test1 and Test2, many legal Java programs that cannot
be typed in their system.

4

The bytecode of Test1 and Test2 still cannot be typed in the extended and
refined system of Freund and Mitchell in [3,2]. The two examples can also not
be typed in the system of O’Callahan in [13] which is based on ideas of type
systems for continuations and polymorphic recursion. It seems that any type
system (or bytecode verifier) that checks each subroutine only once will reject
legal Java programs like Test1 and Test2. This includes also various systems
by Qian (e.g. [14]) and other systems (see [7]).

There exists type systems and bytecode verifiers that assign more than one
stack map to instructions in subroutines (e.g. Haase [6] or Henrio and Ser-
pette [8]). Such bytecode verifiers accept Test1 and Test2, since a subroutine
can then be typed (or verified) differently for each call of the subroutine. An
equivalent approach would be to inline finally blocks and embedded subrou-
tines. Both approaches, however, lead to an exponential behavior in the worst
case (for nested subroutines).

Another solution proposed by Leroy in [10] is that the same local variable
can no longer be used with different types for different purposes in a method
body and that the virtual machine initializes local variables with default values.
Then the problems described in this paper disappear and bytecode verification
becomes much simpler and is even feasible on smart cards.

3 Compiling try-finally statements

The problem with the programs Test1 and Test2 in Table 1 is the try-finally
statement. The try-finally statement of Java is used for error recovering. The
syntax is as follows (where block1 and block2 are block statements):

try block1 finally block2

There are several ways for leaving a block. A block can be left by reaching the
end of the block, or via an exception thrown in the block, or by a return,
break, or continue statement inside the block. The semantics of the try-finally
statement is to execute the finally block block2 after the try block block1, no
matter how control leaves the try block. That is, the finally block is guaranteed
to be executed whether its try block completes normally or abruptly (via a break,
continue, return or an exception).

It is the task of the compiler to ensure, that the finally block will be executed
after the try block (no matter how control leaves it). One solution would be to
copy the code for the finally block before each possible position where the try
block could be left. This code duplication, however, would blow up the compiled
code and therefore the designers of the Java Virtual Machine decided to use
embedded subroutines to compile the try-finally statement.

An embedded subroutine is almost like a method invocation. It can be in-
voked from any point in the program. When returning from the subroutine, the
program counter is positioned at the instruction following the instruction where
the subroutine was invoked from. A call of a subroutine does not create a new

5

frame and therefore the local environment of the caller of the subroutine is fully
available in the subroutine.

There are two special bytecode instructions, jsr(s) and ret(x), which are
used to implement subroutines. The instruction jsr(s) takes the current program
counter pc, pushes pc+ 1 on the operand stack, and sets the program counter to
s. At position s, the astore(x) instruction stores the top value of the operand
stack (the return address pc + 1) into the register x. The code for the finally
block follows after the astore(x) instruction. At the end of the finally block the
ret(x) instruction jumps back to the calling position by updating the program
counter pc to the return address stored in register x.

The compilation scheme for the try-finally statement is illustrated for the
body of method m1 of the program Test1. Table 3 contains on the left-hand side
the Java source code of the method m1. The next column contains the bytecode
instructions of the compiled method. Columns 3 and 4 contain the type frames
(stack maps) generated by the verifier in the attempt to verify the program.

The subroutine calls ‘jsr S’ are inserted before the ireturn instruction and
and at the end of the code for the try block. For the ireturn instruction, the
evaluated expression is stored in the register 3, the subroutine is called, and
then the content of the register is returned. The so called default handler for the
try block is not shown in Table 3. The default handler catches any exception
thrown in the try block, saves it into a temporary register, calls the subroutine
and re-throws the saved exception after the return from the subroutine.

There seems to be no error in the bytecode in Table 3, and in fact, there is
no error, because on each path leading to the instruction iload_2 at label C, the
variable 2 is assigned. Nevertheless, the bytecode is rejected due to verification
of subroutines which we describe in the next section.

4 Bytecode verification

Java programs introduce local variables by variable declaration statements as for
example the variable i in Test1 and Test2. The statement declares the name
and the type of the new variable. The types of local variables are known at the
source code level. Additionally, there may be an initial value as for example the
string "hello" in the program Test3.

The compiled Java program is a sequence of bytecode instructions where the
control flow of Java is explicit in the virtual machine instructions. For exam-
ple, the compiler uses a conditional jump instruction for a while loop. On the
bytecode level, variables are local registers (denoted by natural numbers). The
types of local registers are not declared. Furthermore, a compiler may assign to
different variables the same register. For example, it could use the same registers
for variables declared in two disjoint block statements.

One of the main goals of bytecode verification is to ensure that each local
register contains a value of the proper type when it is accessed. For this purpose
the bytecode verifier assigns to each instruction the types of local registers known
to have a value at that instruction. When an instruction accesses a local register,

6

int m1(boolean b){ iload_1 () {1:int}

int i; ifeq A (int) {1:int}

try { iconst_1 () {1:int}

if (b) istore_3 (int) {1:int}

return 1; jsr S () {1:int,3:int}

i = 2; iload_3 () {1:int,3:int}

} finally { ireturn (int) {1:int,3:int}

if (b) A: iconst_2 () {1:int}

i = 3; istore_2 (int) {1:int}

} jsr S () {1:int,2:int}

return i; goto C () {1:int} // 2 mod. by S

} S: astore 4 (ra(S)) {1:int}

iload_1 () {1:int,4:ra(S)}

ifeq B (int) {1:int,4:ra(S)}

iconst_3 () {1:int,4:ra(S)}

istore_2 (int) {1:int,4:ra(S)}

B: ret 4 () {1:int,4:ra(S)}

C: iload_2 () {1:int}

ireturn // 2 contains wrong type

Table 3. Bytecode verification of Test1 fails.

the verifier checks whether the local register has a type and whether the type is
compatible with the type expected at the instruction. If an instruction loads a
register and the register has no type, then the program is rejected. If the register
has a type and the type is not compatible, then the program is rejected, too.

The verifier starts at the first instruction where the registers that have a
type are exactly the arguments of the method (including the this argument).
The types of these registers are the declared types of the method arguments.
The verifier propagates the type information to all direct successors. If different
instructions have the same successor, then the type information at the successor
instruction is the type information which is common to all predecessors. For
example, if the variable x has no type before the statement

if (e) x = true

then it has no type after the statement, because there is a path in the above
statement where x is not assigned. More precisely, a variable x has type t at
instruction i, if on every execution path from the first instruction to i, variable
x has type t.

Since the values of local registers are loaded onto the operand stack and val-
ues on the operand stack are stored into local registers, the length of the operand
stack and the types of the operands have to be considered by the bytecode veri-
fier, too. The bytecode verifier therefore tries to assign to each instruction a type
frame (stack map) consisting of the types of the operands on the operand stack
and the types of the local registers known to have a value at that instruction.

7

Bytecode verification is simple if there are no subroutines. In case of subrou-
tines, the above algorithm has to be adapted. Consider the type frames for the
method m1 listed in Table 3. The subroutine starting at label S is called from two
different positions. At the first ‘jsr S’ the register 3 is of type int, whereas the
the register 2 has no type (it is unusable). At the second ‘jsr S’ the register 2
is of type int, whereas the register 3 has no type. Since the bytecode verifier
scans a subroutine only once, it has to merge the two type frames at label S.
At label S therefore only the register 1 (which corresponds to the argument b of
the method m1) has a type. The registers 2 and 3 are unusable. Since there is a
path from label S to the ‘ret 4’ instruction where the register 2 is not assigned
(when b evaluates to false), register 2 has no type at the ‘ret 4’ instruction at
label B.

The iload_3 and the ‘goto C’ instruction are successors of the ‘ret 4’ in-
struction, because they follow directly a ‘jsr S’. The verifier returns to those
instructions the types of the registers at the ret 4 instruction which are mod-
ified by the subroutine (none in our case). The types of registers which are not
modified by the subroutine are propagated from the preceding ‘jsr S’ instruc-
tion. Modified by the subroutine means assigned in the code for the finally block.
Hence, the register 2 in our example is modified by the subroutine because there
is a istore_2 instruction between S and B.

The type frame from a ret(x) instruction is propagated to the successors as
follows. Let i be the index of the ret(x) instruction and let j be a call to the
subroutine. Hence j+1 is a successor of i. We take the type frame at i restricted
to those registers modified by the subroutine and the type frame at j restricted
to registers which are not modified by the subroutine and propagate it to j + 1.

Since in our example register 2 is modified by the subroutine, it is not propa-
gated from the second ‘jsr S’ instruction to the ‘goto C’ instruction. Hence, at
label C, the register 2 is unusable and the check for the iload_2 instruction fails.
In the eyes of the verifier, register 2 could have no value at label C and therefore
the verifier rejects the program reporting that register 2 contains a wrong type
(the type unusable).

5 Restricting the rules of definite assignment

As mentioned above one of the main tasks of the bytecode verifier is to ensure
that no local register can be accessed before it is assigned a value. The verifier
also has to make sure that execution never falls off the bottom of the code array
of a method [11, §4.8.2].

Therefore, already the Java compiler has to ensure the same two properties on
the source code level. Every Java compiler must carry out a specific conservative
flow analysis to make sure that, for every access of a local variable, the local
variable is definitely assigned before the access; otherwise a compile-time error
must occur [4, §16]. Each local variable must have a definitely assigned value
when any access of its value occurs. An access to its value consists of using

8

int m2(boolean b) { iload_1 () {1:int}

int i; ifeq A (int) {1:int}

L: { try { iconst_1 () {1:int}

if (b) istore_3 (int) {1:int}

return 1; jsr S () {1:int,3:int}

i = 2; iload_3 () {1:int,3:int}

if (b) ireturn (int) {1:int,3:int}

break L; A: iconst_2 () {1:int}

} finally { istore_2 (int) {1:int}

if (b) iload_1 () {1:int,2:int}

i = 3; ifeq B (int) {1:int,2:int}

} jsr S () {1:int,2:int}

i = 4; goto E () {1:int} // 2 mod.by S

} B: jsr S () {1:int,2:int}

return i; goto D () {1:int} // 2 mod.by S

} S: astore 4 (ra(S)) {1:int}

iload_1 () {1:int,4:ra(S)}

ifeq C (int) {1:int,4:ra(S)}

iconst_3 () {1:int,4:ra(S)}

istore_2 (int) {1:int,4:ra(S)}

C: ret 4 () {1:int,4:ra(S)}

D: iconst_4 () {1:int}

istore_2 (int) {1:int}

E: iload_2 () {1:int}

ireturn // 2 contains wrong type

Table 4. Bytecode verification of Test2 fails.

the identifier of the variable occurring anywhere in an expression except as the
left-hand operand of the simple assignment operator =.

In addition, every Java compiler must carry out a conservative flow analysis
to make sure that all statements are reachable and that it is not possible to drop
off the end of a method body [4, §14.20]. A compile-time error occurs, if the
body of a method can complete normally.

It is clear that conservative flow analysis on the source code level and the
static analysis of the bytecode verifier must be related. Otherwise too many
compiled Java programs would be rejected by the verifier. Therefore we propose
that the “rules of definite assignment” in [4, §16] are restricted for the try-finally
statement and for the labeled statement such that the programs in Table 1 are
no longer valid Java programs.

The rules of definite assignment for the try-finally statement in [4, §16.2.14]
are: A variable V is definitely assigned after the try-finally statement iff at least
one of the following is true:

V is definitely assigned after the try block, or
V is definitely assigned after the finally block.

9

Hence, in program Test1, the variable i is definitely assigned after the try-finally
block, because it is definitely assigned after the try block.

We propose to restrict the rule as follows: A variable V is definitely assigned
after the try-finally statement iff at least one of the following is true:

V is definitely assigned after the try block and there is no assignment to V
in the finally block, or
V is definitely assigned after the finally block.

Then, in program Test1, the variable i is no longer definitely assigned after the
try-finally block, because there is the assignment ‘i = 3’ in the finally block.
The Java compiler would reject program Test1 under the restricted rules of
definite assignment, since the variable i may not be initialized in the ‘return i’
statement at the end of the method. An error message would force a programmer
to definitely assign a value to variable i inside the finally block.

The rules of definite assignment for the labeled statement in [4, §16.2.5] are:
A variable V is definitely assigned after a labeled statement ‘lab: stm’ (where lab
is a label) iff all of the following are true:

V is definitely assigned after stm, and
V is definitely assigned before every ‘break lab’ statement that may exit the
labeled statement ‘lab: stm’.

Unfortunately the term ‘may exit’ is not defined in the JLS [4] and different
compilers interpret it differently (see [16] for a possible interpretation). The
term ‘may exit’, however, is not the problem.

Let us consider the labeled statement ‘L: stm’ in program Test2 in Table 1.
The variable i is definitely assigned after stm because of the assignment ‘i = 4’
at the end of stm. The variable i is also definitely assigned before the ‘break L’
statement inside stm because of the preceding assignment ‘i = 2’. Hence, the
variable i is definitely assigned after the labeled statement ‘L: stm’ and the com-
piler concludes that it is initialized when it is used in the ‘return i’ statement
at the end of the method.

In the eyes of the verifier (Table 4) the variable i is possibly not initialized
at the end of the method. The ‘break L’ statement is compiled as a ‘goto E’
instruction that jumps to the end of the code of the labeled statement. A ‘jsr S’
instruction is inserted immediately before the ‘goto E’ instruction, since the code
for the finally block has to be executed before the break can be done. Although
the variable i is modified by the subroutine, it has no type at the end of the
subroutine, since the subroutine is also called before the ‘return 1’ statement,
where i has no value. Hence, the ‘goto E’ instruction which corresponds to
the ‘break L’ does not propagate the type for the variable i and i is therefore
unusable at the end of the method.

We propose to restrict the rule as follows: A variable V is definitely assigned
after a labeled statement ‘lab: stm’ iff all of the following are true:

V is definitely assigned after stm, and

10

V is definitely assigned before every ‘break lab’ statement that may exit the
labeled statement ‘lab: stm’, and
V is definitely assigned after every ‘try block1 finally block2’ statement
inside stm such that block1 contains a ‘break lab’ statement that may exit
the labeled statement ‘lab: stm’.

Then, in program Test2, the variable i is no longer definitely assigned after
the labeled statement, because it is not definitely assigned after the try-finally
statement inside the labeled statement.

6 The main result

The two restrictions of the rules of definite assignment (explained in the previous
section) are sufficient to prove the following theorem:

Theorem 1. If a Java compiler satisfies the constraints of Part II in [16], then
the bytecode it generates from valid Java programs of the restricted Java language
will be accepted by a correct bytecode verifier.

A compiler satisfying the constraints of Part II in [16] must compile boolean test
expressions in a special way taking care of the boolean literals true and false.
It must compile try-finally statements as it is described in [11, §7.13].

In the proof of the theorem we use the framework of Abstract State Ma-
chines (see [5,1]). The compiler as well as the bytecode verifier are specified as
an Abstract State Machine. The specifications are executable in the AsmGofer
system (on the CD of [16]).

An intermediate notion of bytecode type assignment is used. A bytecode type
assignment consists of an assignment of type frames (stack maps) to some (but
not necessarily all) instructions in the code of a method. The type frames have
to satisfy several conditions. A soundness theorem says that bytecode programs
with bytecode type assignments satisfy at run-time the so-called structural con-
straints of [11, §4.8.2]. Hence, they are type-safe and do not corrupt the state of
the JVM at run-time. Moreover, it is shown that a method is accepted by the
bytecode verifier if, and only if, there exists a bytecode type assignment for it.
In fact, if there exists a bytecode type assignment for a method, then the verifier
computes a principal type assignment for it.

The compiler is then extended such that it generates also type frames (stack
maps) for the instructions of the compiled programs. It assigns types to those
local registers which correspond to variables that are definitely assigned in the
source program. The main theorem then says that the so generated type frames
are a bytecode type assignment for the method. The main theorem therefore
relates the static analysis on the Java source code level (rules of definite assign-
ment) to the static analysis on the bytecode level (bytecode verification).

In a first attempt to prove the theorem we found the examples Test1 and
Test2 in Table 1. After restricting the rules of definite assignment the proof
went through. The proof is rather involved, since already simple lemmas about

11

reachability properties of the generated code require many cases due to the com-
plexity of the full Java programming language. Although the compiler is defined
recursively on the structure of expressions and statement, the theorem cannot
be proved by a simple induction, since the notion of bytecode type assignment
is a global notion that depends on the whole code sequence for a method body.

7 Why sets of reference types?

For the definition of bytecode type assignment it is important that one works
with finite sets of reference types. Why? Consider the example program Test7
in Table 5 (similar examples are considered in [9]). The method m7 contains a
local variable x of type Comparable. Since the class Integer as well as class
String implement the interface Comparable, both arguments i and s of the
method can be assigned to the variable x in the body.

In the corresponding bytecode in Table 5, the type of x is not known. When
the verifier reaches label B during its static analysis, the variable x can contain
an Integer or a String. Since both types are reference types, the verifier tries to
merge the two types. The JVM specification says in [11, §4.9.2] that ‘the merged
type of two references is the first common superclass of the two types and that
such a reference type always exists because the type Object is a superclass of
all class and interface types.’ In our example the first common superclass of
Integer and String is the class Object. Hence, the type assigned to variable x
at label B is Object. The method invocation at the next instruction, however,
requires an argument of type Comparable and so the verification process fails.

Sun’s verifier does not reject the bytecode. Instead it inserts an additional
run-time check for invocations of interface methods. According to the JVM spec-
ification [11] an IncompatibleClassChangeError is thrown at run-time, if the
target object of an interface method invocation does not implement the inter-
face.1 In fact, Sun’s verifier makes even a stronger assumption:

Each class implements each possible interface.

This can be seen by compiling class Test8 in Table 6 and afterwards changing
and re-compiling class A such that it does not no longer implement the inter-
face I and does not contain a method m. The program is still accepted by the
JDK 1.3 verifier and the result of the execution on the virtual machine is the
message "done". The only explanation for this behavior is that the verifier al-
lows the assignment of an object of type A to the static field f of type I even
if class A is completely unrelated to the interface I. As a consequence, for ver-
ified bytecode, it is no longer true that at run-time each field contains a value
which is compatible with the declared (compile-time) type of the field. It could
be possible that the declared type of the field is an interface and the value at
1 The additional run-time check for invokeinterface was not required in the first

edition of the JVM specification. Therefore, it seems that Sun adapted the JVM
specification to their implementation of the bytecode verifier.

12

class Test7 {

void m7(Integer i, String s) {

Comparable x;

if (i != null)

x = i;

else

x = s;

n7(x);

}

void n7(Comparable x) { }

}

aload i

ifnull A

aload i

astore x

goto B

A: aload s

astore x

B: aload_0

aload x // Type of x?

invokevirtual n7(Comparable)

return

Table 5. What is the type of variable x in the bytecode?

class Test8 {

static I f;

public static void main(String[] argv) {

f = new A();

System.out.println("done");

}

}

interface I { void m(); }

class A implements I {

public void m() { }

}

Table 6. Sun’s assumption: Each class implements each interface.

public class Test9 {

public static void run(J j) {

j.m();

}

public static void main(String[] argv) {

B b = new B();

run(b);

Object o = new Object();

// run(o);

}

}

interface J {

void m();

}

class B implements J {

public void m() { }

}

Table 7. HotSpot Virtual Machine Error.

13

Count Description General information

7 192 Classes 140 seconds verification time (without
21 191 Methods checking static constraints) on

1 915 585 Instructions 400 Mhz Intel II CPU.
3 669 Unreachable instructions

14 298 Multiply visited instructions
1 081 jsr instructions 4 880 instructions need sets of reference

424 ret instructions types and 10 classes (18 instructions)
12 201 invokeinterface instructions would be rejected without them.

Table 8. Verification of the Java Runtime Environment.

run-time could then be any object. If the field is used as a target object of an
invokeinterface instruction, one has to check at run-time that the class of the
object does implement the interface.

Sun’s assumption that each class implements each interface is not in the
spirit of Java’s notion of compatibility. Moreover, it seems that the HotSpot
compiler has problems with optimizing away the additional run-time check for
invokeinterface. This can be seen by compiling class Test9 in Table 7 and
inserting the commented method call run(o) in the corresponding bytecode.
Although variable o is of type Object and the run-method requires an object
implementing the interface J, Sun’s verifier accepts this bytecode (see discussion
above). The method run is invoked twice and in the run body the method J/m is
called with invokeinterface. It seems that the HotSpot compiler checks only
once that the instance j implements the interface J. In the second call, however,
the variable j does not implement J and when running this example we get the
following error message:

HotSpot Virtual Machine Error, Unexpected Signal 11
Please report this error at
http://java.sun.com/cgi-bin/bugreport.cgi
Error ID: 4F533F4C494E55580E43505005BC
Problematic Thread: prio=1 tid=0x804dbb8 nid=0x18e5 runnable

Class Test9 illustrates that the invokeinterface instruction must be checked
on each call.

A better solution is to allow sets of reference types in the bytecode veri-
fication process. The type of variable x at label B in Table 5 is then the set
{Integer, String}. The meaning of this type is ‘either Integer or String’. At
the method invocation in the next instruction, the verifier has just to check
that each element of the set of reference types assigned to x is a subtype of
Comparable. No additional run-time checks are needed. The modified program
Test9 is already rejected by the verifier (cf. [16]).

Working with sets of reference types is not expensive, since in practice, not
so many instructions require sets with more than one reference type. Table 8
(created with the bytecode verifier of [16]) illustrates that the complete Java

14

Runtime Environment consists of about seven thousand classes containing about
two million instructions. For only 4 880 instructions (0.25%) sets with more
than one reference types are needed. On the other hand there are about 12 200
invokeinterface instructions which must be checked on each call without sets
of reference types. When using the first common superclass in merging (instead
of sets of reference types), then 18 of 4 880 instructions would be rejected by
our verifier.

References

1. E. Börger and J. Huggins. Abstract State Machines 1988–1998: Commented ASM
Bibliography. Bulletin Europ. Assoc. Theoret. Comp. Science, 64:105–127, 1998.
Updated bibliography available at http://www.eecs.umich.edu/gasm.

2. S. N. Freund and J. C. Mitchell. Specification and verification of Java bytecode
subroutines and exceptions. Technical Report CS-TN-99-91, Stanford University,
1999.

3. S. N. Freund and J. C. Mitchell. The type system for object initialization in
the Java bytecode language. ACM Transactions on Programming Languages and
Systems, 21(6):1196–1250, 1999.

4. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java(tm) Language Specification.
Addison Wesley, second edition, 2000.

5. Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor, Specifica-
tion and Validation Methods, pages 9–36. Oxford University Press, 1993.

6. E. Haase. Justice: An implementation of a free class file verifier for Java.
Technical report, Institut für Informatik, Freie Universität Berlin, 2001. http:

//bcel.sourceforge.net/justice/.
7. P. H. Hartel and L. Moreau. Formalising the safety of Java, the Java Virtual

Machine and Java Card. ACM Computing Surveys, 2001. To appear.
8. L. Henrio and B.P. Serpette. A framework for bytecode verifiers: Application to

intra-procedural continuations. Technical report, Inria Sphia-Antipolis, 2001.
9. T. B. Knoblock and J. Rehof. Type elaboration and subtype completion for Java

bytecode. ACM Transactions on Programming Languages and Systems,, 23(2):243–
272, 2001.

10. X. Leroy. On-card bytecode verification for Java Card. In I. Attali and T. Jensen,
editors, Smart Card Programming and Security (E-smart 2001), pages 150–164.
Springer-Verlag, Lecture Notes in Computer Science 2140, 2001.

11. T. Lindholm and F. Yellin. The Java(tm) Virtual Machine Specification. Addison
Wesley, second edition, 1999.

12. Sun Microsystems. Release notes, Java(tm) 2 SDK, standard edition, version
1.2.2, verify error workaround, 2000. http://java.sun.com/products/jdk/1.2/

changes.html\#verify.
13. R. O’Callahan. A simple, comprehensive type system for Java bytecode subrou-

tines. In Proc. 26th ACM Symposium on Principles of Programming Languages,
pages 70–78, 1998.

14. Z. Qian. Standard fixpoint iteration for Java bytecode verification. ACM Trans-
actions on Programming Languages and Systems, 22(4):638–672, 2000.

15. E.G. Sirer, S. McDirmid, and B. Bershad. Kimera: A Java system security archi-
tecture. http://kimera.cs.washington.edu/, 1997.

15

http://www.eecs.umich.edu/gasm
http://bcel.sourceforge.net/justice/
http://bcel.sourceforge.net/justice/
http://java.sun.com/products/jdk/1.2/changes.html#verify
http://java.sun.com/products/jdk/1.2/changes.html#verify
http://kimera.cs.washington.edu/

16. R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine—
Definition, Verification, Validation. Springer-Verlag, 2001.

17. R. Stata and M. Abadi. A type system for Java bytecode subroutines. ACM
Transactions on Programming Languages and Systems, 21(1):90–137, 1999.

16

	The Problem of Bytecode Verification in Current Implementations of the JVM
	Robert F. Stärk cl@@auth and Joachim Schmid

