Design Patternsin Petri Net System M odeling

Martin Naedele, Jorn W. Janneck
Swiss Federal Institute of Technology Zurich
Computer Engineering and Networks Laboratory (TIK)
CH-8092 Zurich, Switzerland
{naedele,janneck} @tik.ee.ethz.ch

Abstract

Petri nets are an established and well researched means
for systems modeling and simulation, but its use in the en-
gineering community is not as widespread as the applica-
bility of the formalism would suggest. A reason for this
might lie in the fact that there is no established concept
for the concise presentation of reusable Petri net design
knowledge. This paper proposes Petri net design patterns
asa style of presentation of such design knowledge ranging
from building blocks to architectural considerations. The
template for description is introduced using a number of
exampl es taken from our design experience.

1. Introduction

Petri nets are an established and well researched model
of computation that is applicable in various domains, not
only in economics, work flow modeling, and theoretical
computer science, but also for the design of complex con-
current computer systems. However, users are mostly
found in academic and research environments, whereas the
engineering community seems to be reluctant to adopt Petri
nets for systems modeling and simulation. A reason for
this may be found in the fact that while there exists a fair
number of introductory literature on Petri nets as well as a
large body of advanced theoretical papers, there are to our
knowledge no references available that would teach a prac-
tising engineer how to apply the basic concepts of Petri nets
to the modeling of systems of greater complexity.

From our experience in introducing Petri nets to design
engineers we conclude that it is easy to grasp the basic con-
cepts of places, transitions, and concurrent sequences, and
that one is very quickly able to apply this to the modeling of
systems that have an internal structure that only consists of
applications of those basic concepts. The situation changes
when one tries to model complex technical systems. It ap-
pears to us that there is a need for a structured collection

of easily accessible design experience that can be used as
reference for “best practices” by the design engineer who
is not so much interested in learning about the theoretical
implications of Petri net semantics but rather wants to use
the formalism to specify, simulate, and evaluate systems.

The main objective of this paper is to give an initial im-
pulse to collect and spread Petri net modeling knowledge
in the form of building blocks and pattern descriptions in
order to make Petri nets more popular for the use in real
world applications. The representation of design knowl-
edge and experience in the form of patterns is increasingly
being used in the software engineering domain (see section
3), and we believe that it can successfully be transferred to
the area of Petri net modeling. We intend to provide a start-
ing point for discussion by introducing the concept of Petri
net patterns with a small number of patterns taken from our
practical experience [15]. The principal issue of this pa-
per, though, is to demonstrate a specific way of illustrating
patterns, not the presentation of the patterns we selected as
examples. Although we are not aware that any of the pat-
terns in this paper have been described elsewhere, we do
not claim that they are original or overly sophisticated. We
do, however, know from our experience that they are suf-
ficiently intricate to be considered valuable information in
addition to descriptions of the basic Petri net elements.

The paper is organized as follows: Section 2 contains a
short reference on the Petri net language we use in the pat-
tern descriptions later on. In section 3 we give an introduc-
tion to design patterns and suggest a notational template.
The main part of the paper, section 4, presents a detailed
description of four Petri net design patterns. We close with
a discussion of ideas we have on further work to be done
in the area of Petri net design patterns in order to make the
Petri nets formalism more useful for engineers.

2. Petri nets

Petri nets [18][19][20] are a graphical and mathematical
formalism for modeling, simulation, and formal analysis of

discrete event systems [25]. Petri nets allow the represen-
tation of both control and data flow within one formalism.
Other frequently used modeling formalisms like finite state
machines (FSM), marked graphs, and Synchronous Data
Flow are specialisations of Petri nets.

2.1. Basic Petri nets

There exist many different Petri net variants and defi-
nitions, which are extensions of so-called condition/event
nets:

Definition 1 (Condition/event net) A condition/event net
isdefinedasa 4-tuple CEN = (P, T, F, My), where

e Pisafiniteset of places,

e T isafinite set of transitions,

e PUT #10)

e PNT =10

o FC(PxT)U(T x P)isasetof directed arcs.

e My : P — {0,1} is the initial marking. It defines
theinitial number of undistinguishabletokens on each
placep € P.

A Petri net is a bipartite graph, which means that p € P
and ¢t € T alternate along each path in the graph. In the
usual graphical representation of Petri net graphs, places
are depicted as circles and transitions as rectangles.

The marking, that is, the distribution of tokens on
places, represents the state of a Petri net model. Transi-
tion firings change the token distribution and thus the state
of the system. They may reflect the occurrence of events
or the execution of an operation. The flow of tokens can be
defined as follows:

Definition 2 (Enabling rule) A transition ¢t; € T is en-
abled if all input places of ¢; contain a token and all out-
put places are empty, M (p;) = 1V pi|(pi,t;) € F and
M(p) = 0V pel(tj; pr) € F.

Definition 3 (Firing rule) An enabled transition may fire.
Onfiring it removes the tokens from all itsinput places and
places one token in each of its output places.

2.2. Petri net extensions

To make modeling with Petri nets easier and to keep
the resulting net sizes small, various extensions have been
suggested. The following paragraph lists the most common
ones, a detailed discussion can be found in [18] and [25].

e A capacity function C': P — N U {oo} determines
the number of tokens that is permitted on a certain
place. A transition can only fire if, in addition to the
enabling rule given above, the output places can take
the resulting tokens without exceeding their capacity.
The initial marking function is extended to M : P —
N.

¢ \Weights on the incoming and outgoing arcs of a transi-
tion determine the amount of tokens that are removed
from a place or written to a place via this arc. In addi-
tion, the weight on incoming arcs also prescribes that
at least this number of tokens has to be on the respec-
tive input place to enable the transition.

e In so-called high-level Petri nets, tokens are distin-
guishable [11] (e. g. Coloured Petri Nets, (CPN) [16])
by carrying data values of different types. Futher-
more, transition guards enable transitions based on to-
ken values and token manipulating functions change
token values when a transition fires.

e Transitions are annotated with firing durations. Tem-
poral Petri nets can be divided into timed Petri nets,
where a time ¢ passes between removal of tokens from
input places and addition of tokens on output places of
a temporal transition, and time Petri nets, where the
waiting is done between enabling of a transition and
its (atomic) firing, thus allowing disenabling in con-
flict situations when one token enables several transi-
tions concurrently.

¢ An inhibitor arc [7] can prevent the transition to which
it is connected from being enabled if the place on the
origin of the arc contains at least n tokens. In this
paper, an inhibitor arc is denoted by a dashed line
with a circle at the transition end. While inhibitor
arcs greatly facilitate system modeling, they in fact in-
crease the expressiveness of the formalism to such an
extend (Turing-equivalence) that formal analysis of-
ten becomes impossible. For this reason, Petri net for-
malisms extended with inhibitor arcs are mostly used
in modeling tasks where the resulting net is to be sim-
ulated, but not analysed.

Each of the design patterns described later in this paper
relies on some of the Petri net extensions presented above.
As the modeling projects that are the basis for our involve-
ment with patterns were mostly oriented towards simula-
tion for performance evaluation [15], some patterns make
use of inhibitor arcs.

3. Patterns

3.1. History of patternsand previouswork

Attempts to capture the building blocks and architec-
tural considerations of a design as so-called "patterns” have
their origin in the work of the architect Christopher Alexan-
der [1], and have recently, become more and more popular
in the software engineering domain, especially in the con-
text of object-oriented techniques (e. g. [13], [8], [10],
[24]).

A pattern in this sense is the description of a recurring
problem or problem type and a generalized solution for this
problem. Gamma et al. [13] state that a pattern consists of
four essential elements: a name, a problem, a solution, and
a description of consequences. A suitable and concise pat-
tern name transforms the complex array of elements that
make up the solution to an entity in its own right, that can
be manipulated and, more importantly, be communicated
and discussed as a whole. The problem part of a pattern
describes the situation that calls for the application of this
particular pattern as well as conditions that need to be met
to allow its use. The solution section presents a collection
of elements and relationships that are necessary to solve
the problem. The designer should regard the “solution” as
a starting point and template which he will in most cases
need to modify and extend to suit the context of his par-
ticular problem set. Finally a pattern may contain a sec-
tion discussing the consequences of the application of this
pattern, the trade-offs and possible alternatives, to allow an
informed decision between patterns that solve similar prob-
lems. This section will become more and more important
after the pattern catalog for a particular design domain has
reached a certain size.

Alexander introduced not only patterns, he also sug-
gested to arrange the patterns of a domain in the form of a
so-called “pattern language[1] to systematically guide the
designer from the system level specification to a detailed
design of a certain quality. This paper however does not
yet suggest or discuss a possible Petri net modeling pattern
language.

The idea of using patterns, though not known under this
name, is in principle not new to the Petri net community.
There exists a rather small body of recurring examples to
illustrate certain behaviors of a net that can very well be
called patterns. However, the problem with those particular
examples like deadlock (e. g. [2, 19]), dining philosophers
(e. 9. [19, 14, 3]), producer/consumer and reader/writer
(e. g. [2, 19, 14, 20, 21]) etc. is that, while they do illus-
trate their particular theoretical point, the style of presen-
tation used is not intended to show how to integrate those
examples into models of real systems. The idea of general
purpose building blocks is hinted at in [9], but the authors

of this case study do not put strong emphasis on the reuse
aspect. The presentation of building blocks for communi-
cation protocols in [5] and [4] is also heading in the same
direction as what we suggest in this paper, but the focus
there is more on the demontration of a hierarchy and com-
ponent concept than on the concise description of funda-
mental design principles.

3.2. A templatefor thedescription of Petri net pat-
terns

One of the most important issues when discussing pat-
terns as design aid is that the pattern description should
be detailed, so that there is enough information to apply
the pattern, and at the same time it should be possible to
quickly survey a number of patterns. Last but not least,
pattern descriptions should be uniform to a certain extend
to facilitate comparisons between patterns.

We do not claim to know the “correct” way to describe
a pattern. Some people may prefer actual application do-
main examples to explain a pattern, others might like a con-
densed description of the architectural skeleton. The most
suitable form may also depend on the particular pattern it-
self, its problem context or level of granularity. As a start-
ing point for discussion we suggest the following descrip-
tion template, which follows the four principal elements of
a pattern that were mentioned in the previous section. It is,
with some modifications, taken from [13]. Certain descrip-
tional sections may not apply to a specific pattern.

Name block:

Name: A name to identify the pattern and distinguish
it from others. The name should be such that it
clearly conveys the main idea of the pattern.

Problem block:

Problem: The problem and problem context which
the pattern addresses.

Example: A concrete example of the problem within
some application domain.

Required net formalism : Most of the patterns in
this paper rely on the availability of certain ex-
tensions of the basic Petri net formalism, such as
inhibitor arcs, or CPN-like values on tokens.

Solution block
Solution: The basic idea of the pattern (if non-trivial)

Samplestructure: A graphical representation of a
Petri net that implements/uses the pattern. The
sample structure may be a neutral skeleton or re-
fer to the example given before. In the latter case
the description needs to make clear which parts

are fixed elements of the solution and which be-
long to the example only.

Description: A detailed description of the function of
the Petri net building block, also discussing de-
sign considerations, variations and options. As
far as possible, the explanation should make use
of other patterns contained within the pattern un-
der consideration.

Consequences block:

Uses: References to other patterns that are contained
within the described pattern.

Similar to: References to and comparisons with
other patterns that are similar in some aspect like
net structure or targeted problem.

Further sections may be used to highlight special as-
pects or trade-offs of using a certain pattern.

3.3. Patternsand components

In the following section, sample solutions are presented
as complete Petri nets. It might appear as if a logical next
step would be to cast those patterns into building-block-like
components. While part of the authors’ research work is
actually concerned with the development of a general and
flexible component concept for Petri nets which will also
provide features for genericity and parametrization, it must
be pointed out that patterns are a more general concept.
The structural modifications necessary to adapt a pattern to
its actual problem context can generally not be effected by
simple component parametrization only.

4. Pattern descriptions
4.1. A-before-B

Name: A-before-B

Problem: On synchronizing two concurrent subnets it
may be interesting to know the order in which the en-
abling tokens arrive at the synchronization point. Of
course, this pattern is only useful in temporal Petri
nets, so that there exists a notion of “before”.

Example: Ina manufacturing cell some product is assem-
bled from two components. One component is pre-
viously tooled within the same cell and the other is
added from another cell with the aid of a robot manip-
ulator. Ideally, the manipulator would deliver compo-
nent 2 the very moment component 1 gets ready for
the assembly, otherwise one component will have to
wait for the other. In some realistic situation the ma-
nipulator would not wait for component 1 at the end

B A before-B

. i B-before-A

a) with inhibitor arcs

A-before-B

B-before-A
i

b) without inhibitor arcs

Figure 1. A-before-B

position, but will insert an additional stop on the way.
The total delay then does not only depend on the pure
time to wait for the slower component to arrive, but
also on the the additional time to accelerate the ma-
nipulator every time the manipulator had to wait.

Required net formalism: Petri nets with a concept of
time.

Solution: The pattern is asymmetrical and consists of two
stages: First, it is detected whether token B is already
in place when A arrives, and second, there is an ad-
ditional synchronization so that an early token A has
to wait for the later arrival of B (for the other case the
arrival of A effects the synchronization).

Sample structure: see Figure 1.

Description: Token A arrives first on P1. Only T1 can
fire as T3 would need a token on P2 to be enabled. T1
fires and places one Token on P3. Now a token arrives
on P2 and T2 fires (A before B). Otherwise, token B
arrives first on 2. Transition T1 cannot be fired upon
arrival of Token A because of the inhibitor arc from
P2 to T1, therefore T3 fires (B before A). The addi-
tional inhibitor arc between P3 and T3 is necessary to

prohibit the firing of T3 before T2 in case of an arrival
sequence A-B-A.

If this is not already enforced by the surrounding net,
it will be necessary to restrict the capacities of places
Pl and P2 to C'(P1) = 1 and C(P2) = 1. Figure
1(b) shows how the pattern can be implemented using
a Petri net formalism without inhibitor arcs. For high-
level Petri nets with distiguishable tokens this pattern
may be extended to deliver always the first (or the sec-
ond) token at the output.

4.2. Token multiplier

Name: Token multiplier

process

[z>0]
produce

Data_out

Figure 2. Token multiplier

Problem: With the firing of a certain transition it is desired

to produce several tokens on the outgoing arc. The
number of tokens to be produced is determined by an
input token value at run time, so constant arc weights
cannot be used to achieve this purpose.

Example: For the model of a piece of semiconductor man-

ufacturing machinery it is necessary to generate the
tokens representing the dies from one token symbol-
izing the wafer. For this model there can be a variety
of wafer tokens that differ in the value of the wafer di-
ameter attribute. From the wafer diameter a function
in the transition calculates the corresponding number
of dies, this number is therefore only known at run
time.

Required net formalism: Coloured Petri nets or compa-
rable high-level Petri net formalisms (necessary are
value tokens, guard conditions and arc expression
functions)

Solution: The basic idea is to model desired behavior of
the single transition (process in Fig. 2) using a
loop-like structure where a token, the value of which
is decremented in each iteration, acts as loop counter.

Sample structure: see Fig. 2

Description: The pattern requires three items of input in-
formation: a value from which the number of tokens
that should be generated can be derived, a prototype
of the tokens to be produced, and a starting signal. In
the example structure of Fig. 2, the input token acts
as starting signal and also provides the other items
of information. The preprocess transition calcu-
lates the number of tokens that will be generated, ex-
tracts the prototype information from the input, and
distributes the the resulting tokens to the Counter
and Prototype places respectively. Each subse-
quent firing of the produce transition places a copy
of the prototype into the Data _out place and decre-
ments the value of the loop counter token stored in
Counter. When the loop counter value reaches zero,
the transition £inish is enabled instead of pro-
duce. lts firing clears the Counter and Proto-
type places. Additionally, a completion signal can
be generated.

For the example stated above, w would contain infor-
mation about the wafer and the prototype would cor-
respond to the token representation of a die.

Variations to the pattern may deal with different ways
to provide the input information, to generate the out-
put tokens from the prototype, or to include additional
processing steps for each iteration.

Similar to: This pattern is similar to the Petri net exten-
sion of “marking controlled arc weights” suggested in
[3],[22] and [12]. Whereas these refer to a notational
extension of the basic Petri net formalism that deter-
mines the weight of an arc by the number of tokens
in a certain place, we discuss here a more flexible, ar-
chitectural approach to the solution of the underlying
problem.

Uses: The structure of the net in Fig. 2 can be regarded as
composed from even simpler patterns: Prototype
and produce form a producer loop, Counter and
produce form a counter loop, and the combination
of Counter with the alternatively enabled transitions
produce and finish is a deterministic branch in
the control flow.

Token_in
End_removal

Place_to

_be_emptief - _OD_IDo>r1e
Remove -
Enable_Removal
Token_out

a)

" Remove

+ Token_out

-

EraneIRemoyal I Initiate_removal

Figure 3. Complete removal a) basic pattern b) without priority supportin the formalism

4.3. Complete removal

Name: Complete removal

Problem: All tokens stored in a particular place are to be
removed from that place while the number of tokens
is not known a priori.

Example: see pattern “quasi-continuous movement” later
in this paper

Required net formalism: Petri nets with inhibitor arcs
[7]. If the intention is to remove all tokens en bloc
from the place before the tokens that were removed
first cause any other transition firings in the net then
it is either necessary to utilize some transition pri-
ority concept provided by the formalism or the pat-
tern needs to be embedded in an environment like
the one shown in Figure 3 b). All inhibitors ex-
cept for the on between Place_to be_emptied
and End_removal can be substituted with auxiliary
constructions like in the A-before-B pattern.

Solution: A transition is fired repeatedly and each time re-
moves one token from the place to be emptied. This
continues until the place is empty.

Samplestructure: see Figure 3

Description: After a token is placed into En-
able_removal the Remove transition can
fire. Because the Enable token is returned to
the Enable removal place after each firing,
the transition can fire repeatedly, until there are
no more tokens in Place to be emptied.
Then the inhibitor arc enables the End removal
transition which removes the token from the Enable
removal place.

Similar to: This pattern is similar to the concept of “reset
arcs” (“Abrdumkanten”) [3] or “erase arcs” [7]. The

“complete removal” pattern can be regarded as a re-
placement of reset arcs valid for Petri nets extended
only with inhibitor arcs. “Erase arcs” are introduced
mainly to realize some sort of reset functionality for
parts of a system, consequently erasing is regarded as
an atomic operation, and the tokens taken from the
“erase place” are destroyed. The “complete removal”
pattern on the other hand is more flexible as it allows
to embed additional actions into the removal process
and the tokens removed from the place are not neces-
sarily lost.

4.4. Quasi-continuous movement

Name: Quasi-continuous movement

Problem: A token progressing through several processing
stages is usually modeled using a simple sequence of
places and transitions. This is not possible if either
the number of discrete positions varies at run-time,
the processing stages are partly overlapping, the speed
of progress is variable or a guasi-continuous move-
ment from one processing station to the next has to be
modeled. More generally, this pattern may be used to
model all sorts of problems where numerical attributes
of a collection of tokens are changing synchronously,
transitions are to be fired whenever those attributes
reach certain values, and where the amount of change
per step or the limit values to fire the transitions are
only known at run-time.

Example: We consider the model of an assembly line (see
Figure 5) with a conveyor belt of fixed physical length
and one or more processing stations on which a (con-
tinuous) stream of parts to be processed is flowing,
one immediately after the other. The parts moving on
this assembly line (represented as tokens) are assumed
to be of variable length so that the position of a certain

token in
| (Ou)

Storage

(v,u) Temp_storage_1
[v-u<3or
(v-u-1>=3
and v-u<12)]
[v-u>=3 and

Do_something

v,u))

Star172|

~OF {5

(v.u)

Increment

initiate increment
1

<

(v+1,U) enable2

[v-u>=12]

Token out
V-u-1<3] (v,u;

Do_nothing Leave

token in
|)

. (v.u) Temp_storage_1

I
i\ Kooy -~ -~~~ ~
[v-u<3or 0 &
(v-u-1>=3
and v-u<12)] [v-u>=12]
[v-u>=3and Token out
v-u-1<3] D_(m
g Do_something
oy v o psional
e . einiystorege.2

Temp_storage_2

(v.u)

[

enablel
- <_I—_rl Move v,u: Real
(@

v,u: Real

(b)

Figure 4. a) Quasi-continuous movement b) Pattern “complete removal” within pattern “quasi-

continuous movement”

part can not be given in terms of it being the n-th part
counting from the start of the line, but only in terms
of the numerical position of e. g. the front edge of the
part. Each processing station then has a certain phys-
ical range on the belt within which it can operate on
parts.

v: front edge position of the part

Processing range u: length of the part

C T T 17]
(conveyor belt) —

TTTTTTTT
012345678 9101112

Figure 5. Conveyor belt with transported
parts of varying size

Required net formalism: Coloured Petri nets (numerical
token attributes), inhibitor arcs

Solution: The *“quasi-continuous movement” pattern does
not use a sequence of places and transitions to model
the position of the parts on the assembly line but circu-
lates the tokens in a loop with one transition to incre-
ment the token attribute value and other guarded tran-

sitions to initiate actions for tokens whose attribute
values fall within a range specified in the guard predi-
cate.

Sample structure: see Figure 4

Description: The pattern consists mainly of two appli-
cations of the “complete removal” pattern and a de-
terministic branching stage. In the first application
of “complete removal” (places ‘Storage and En-
able_2 with transitions Increment and Start_2)
(Figure 4 (b), “A”) there is an additional inhibitor
arc necessary between Temp_storage_1 and En-
able_2 to ensure that all tokens have passed the
branching stage before they get pumped back to the
Storage place. The second application (Figure 4
(b), “A”) (places Temp_storage_2 and Enable_1
with transitions Move and Start _1) uses the unmod-
ified basic pattern.

Uses pattern; Complete removal
5. Conclusion

In this paper a style of presentation for design knowl-
edge in Petri net systems modeling was suggested, which

is by no means complete or finished - on the contrary, we
hope to initiate a discussion among Petri net users about
how to present, categorize, and select this kind of knowl-
edge for modeling tasks in the various fields where Petri
nets might be used.

There is still much work to be done before a complete
catalog of Petri net design patterns is available to be applied
to practical modeling tasks. We see the most important ar-
eas as follows:

o Definition of appropriate, domain specific pattern pre-
sentation styles and templates.

o Collection, identification, abstraction, and categoriza-
tion of the existing body of Petri net design knowledge
and the patterns behind it.

o Design of a sufficiently general Petri net language al-
lowing for powerful mechanisms for composition and
parametrization. The experience from and with dif-
ferent Petri net languages [6], [11], [16], [17], [23]
must be taken into account as well as the huge body
of knowledge from programming language design.

¢ Design of a pattern language, at least for a restricted
set of patterns.

Experience shows that application knowledge of this
kind enhances the acceptance of a tool or a language. Not
only does it raise the productivity of individuals using it,
a systematic categorization of design experience also pro-
motes a common terminology and thus makes communi-
cation and discussion much more efficient. This paper is
intended as a contribution towards this end.

References

[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel. A Pattern Language. Ox-
ford University Press, 1977.

[2] H. Balzert. Lehrbuch der Software-Technik, volume 1.
Spektrum Akademischer Verlag, 1996.

[3] B. Baumgarten. Petri-Netze, Grundlagen und Anwendun-
gen. Spektrum Akademischer Verlag, 1996.

[4] B. Baumgarten, H. J. Burkhardt, P. Ochsenschlager, and
R. Prinoth. The signing of a contract - a tree-structured
application modelled with petri net building blocks. In
G. Goos and J. Hartmanis, editors, Advances in Petri Nets
1985, number 222 in Lecture Notes in Computer Science.
Springer, 1985.

[5] B. Baumgarten, P. Ochsenschldger, and R. Prinoth. Proto-
col Specification, Testing, and Verification, chapter Build-
ing Blocks for Distributed System Design, pages 19-38.
Elsevier Science Publishers B.V. (North-Holland), 1986.

[6] D. Buchs and N. Guelfi. CO-OPN: A concurrent object-
oriented Petri net approach. In Proceedings of the 12th In-
ternational Conference on the Application and Theory of
Petri Nets, 1991.

[7] H.J. Burkhardt, P. Ochsenschléger, and R. Prinoth. Product
nets, a formal description technique for cooperating sys-
tems. GMD-Studien 165, GMD, Gesellschaft fiir Mathe-
matik und Datenverarbeitung mbH, 1989.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture - A System
of Patterns. Wiley and Sons, 1996.

[9] A. Caloini, G. A. Magnani, and M. Pezze. Software de-
sign of robot controllers with petri nets: a case-study. In
Proceedings of the 1996 |EEE International Conference on
Systems, Man and Cybernetics, 1996.

[10] J. O. Coplien and D. C. Schmidt, editors. Pattern Lan-
guages of Program Design. Addison-Wesley, 1995.

[11] R. Esser. An Object Oriented Petri Net Approach to Em-
bedded System Design. PhD thesis, ETH Zurich, 1996.

[12] H. Fuss. P-T-Netze zur numerischen Simulation von asyn-
chronen Flissen. In J. H. G. Goos, editor, Gl - 4. Jahresta-
gung, Berlin Oktober 1974, number 26 in Lecture Notes in
Computer Science, pages 326—-335. Gl, Gesellschaft fiir In-
formatik, Springer-Verlag, 1975.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[14] R. G. Herrtwich and G. Hommel.
gramme. Springer Verlag, 1994.

[15] J. W.Janneck and M. Naedele. Modeling a die bonder with
petri nets: A case study. |EEE Transactions on Semicon-
ductor Manufacturing, Aug. 1998.

[16] K. Jensen. Coloured Petri Nets: Basic Concepts, Analy-
sis Methods and Practical Use, volume 1: Basic Concepts,
of EATCS Monographs in Computer Science. Springer-
Verlag, 1992.

[17] C. A. Lakos. Object Petri nets - definition and relationship
to coloured nets. Technical Report TR94-3, Computer Sci-
ence Department, University of Tasmania, 1994.

[18] T. Murata. Petri nets: Properties, analysis, and applications.
Proceedings of the |EEE, 77(4):541-580, Apr. 1989.

[19] J. L. Peterson. Petri Net Theory and the Modeling of Sys-
tems. Prentice Hall, 1981.

[20] W. Reisig. Petri Nets, An Introduction. Springer-Verlag,
1985.

[21] W. Reisig. A Primer in Petri Net Design. Springer-\erlag,
1992.

[22] R. Valk. Self-modifying nets, a nautural extension of petri
nets. In J. H. G. Goos, editor, Automata, Languages and
Programming, Fifth Colloquium, Undine, July 17-21, 1978,
number 62 in Lecture Notes in Computer Science, pages
464-476. Springer-Verlag, 1978.

[23] R. Valk. On processes of object Petri nets. Technical Report
185, Fachbereich Informatik, Universitat Hamburg, 1996.

[24] J. M. Vlissides, J. O. Coplien, and N. L. Kerth, editors.
Pattern Languages of Program Design 2. Addison-Wesley,
1996.

[25] R. Zurawski and M.-C. Zhou. Petri nets and industrial
applications: A tutorial. |EEE Transactions on Industrial
Electronics, 41(6):567-583, Dec. 1994.

Nebenlaufige Pro-

