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ABSTRACT

Labelled transition systems are a simple yet powerful formalism for desribing the operational

behaviour of omputing systems. They an be extended to model onurreny faithfully by

permitting transitions between states to be labelled by a olletion of ations, denoting a

onurrent step.

Petri nets (or Plae/Transition nets) give rise to suh step transition systems in a natural

way|the marking diagram of a Petri net is the anonial transition system assoiated with it.

In this paper, we haraterize the lass of PN-transition systems, whih are preisely those

step transition systems generated by Petri nets.

We express the orrespondene between PN-transition systems and Petri nets in terms

of an adjuntion between a ategory of PN-transition systems and a ategory of Petri nets

in whih the assoiated morphisms are behaviour-preserving in a strong and natural sense.

Keywords: Petri nets, models for onurreny, ategory theory

1. Introdution

Transition systems are an appealingly simple yet powerful formalism for desrib-

ing the operational behaviour of models of onurreny. They provide a ommon

framework for investigating the relationships between di�erent models of distributed

systems.

Nielsen, Rozenberg and Thiagarajan [14℄ have established a lose orrespon-

dene between a lass of transition systems alled elementary transition systems

and a basi model of net theory alled elementary net systems. They desribe

this orrespondene in terms of a oreetion between a ategory of elementary

transition systems and a ategory of elementary net systems.

Here, we extend the results of [14℄ to a muh riher model of net theory alled

Petri nets (also known as Plae/Transition nets). Petri nets give rise to transition

systems in a natural way|the reahability graph of a Petri net de�nes a anonial

transition system assoiated with it. In this paper, we haraterize a sublass of

transition systems alled PN-transition systems, whih are preisely those transition

systems generated by (unlabelled) Petri nets.

The results of [14℄ are established within the framework of onventional sequen-

tial transition systems, where the transitions are labelled by single events. Beause

of the relatively unompliated struture of elementary net systems, information
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about onurreny an be reovered from the sequential transition relation of an

elementary transition system by heking loal \diamond" properties.

However, when we move over to Petri nets, we need to introdue expliit in-

formation about onurreny into our transition systems. For instane, onsider

the two nets in Figure 1. Both give rise to the same sequential transition system,

shown on the right. However, in the �rst net a and b an our onurrently, while

in the seond net a and b an our only sequentially (though in any order).

Thus, to represent onurreny faithfully, we shall enrih the transition relation

by permitting one state to be transformed to another in a single step onsisting of

a �nite multiset of ations. (We have to permit multisets and not just sets beause

of autoonurreny.)

We all this new lass of transition systems step transition systems. PN-

transition systems are de�ned as a sublass of step transition systems whih satisfy

ertain restritions that ensure that the steps are \onsistent".

As in [14℄, we desribe the onnetion between Petri nets and PN-transition

systems using the language of ategory theory. We �rst de�ne a ategory PNts

whose objets are PN-transition systems and whose arrows are standard transition

system morphisms, extended to respet steps. We then onstrut a ategory PNet

of Petri nets. The morphisms we de�ne between nets are a smooth generalization of

the morphisms de�ned between elementary net systems in [14℄. These morphisms

are strengthened versions of the morphisms de�ned by Winskel [18℄. They preserve

the dynami behaviour of nets in a strong way.

There is a natural funtor NT : PNet ! PNts whih maps eah Petri net to

the transition system assoiated with its marking diagram. Our main result is the

onstrution of a funtor TN : PNts ! PNet whih is left adjoint to NT. In

fat, the unit of the adjuntion is a natural isomorphism, so we atually have a

oreetion between this pair of funtors.

To onstrut a Petri net orresponding to a PN-transition system, we have to

onstrut plaes whih appropriately onstrain the behaviour of the net. To do

this, we generalize the notion of a region.

Regions are used by Nielsen, Rozenberg and Thiagarajan in [14℄ to de�ne the

onditions of an elementary net system orresponding to a given elementary transi-

tion system. Their notion an be generalized in several ways to haraterize lasses

m

�

m

�

m m

?

?

?

?

a

b

m

�

m

�

m

�

m m

A

A

AU

A

A

AU

�

�

��

�

�

��

? ?

�

6

�

6

a

b



m

 










�

J

J

Ĵ
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of transition systems orresponding to di�erent models of onurreny. For in-

stane, Winskel and Nielsen [20℄ use a version of regions to establish a oreetion

between a speial lass of asynhronous transition systems [1, 17℄ and 1-safe Petri

nets. On a slightly di�erent trak, Hoogers, Kleijn and Thiagarajan [5℄ use regions

to obtain a language-theoreti haraterization of the non-sequential behaviour of

Petri nets in terms of a generalized version of Mazurkiewiz trae languages. We

shall disuss the relationship between our regions and these other notions in the

onluding setion.

The paper is organized as follows. We begin with the de�nition of step transition

systems, followed by a brief introdution to Petri nets. In Setion 4, we desribe

the lass of PN-transition systems and onstrut the ategory PNts in Setion 5.

Next, we show how to de�ne a ategory PNet of Petri nets. In Setion 7, we

onstrut the funtor NT : PNet ! PNts whih serves as the right adjoint of the

adjuntion desribed in Setion 8. In setion 9, we disuss the existene of universal

onstrutions suh as produts and oproduts in the ategoriesPNts and PNet . In

the onluding setion, we tie up some loose ends and disuss possible extensions of

our work. We also ompare our ategories PNts and PNet with related formalisms

desribed in the literature.

2. Step Transition Systems

A transition system is usually de�ned as a quadruple TS = (Q;�;!; q

in

), where

Q is a set of states and ! � Q���Q is a (sequential) transition relation whih

desribes how the system evolves from state to state by performing ations from �,

beginning with the initial state q

in

.

We enrih the transition relation by permitting one state to be transformed to

another in a single step onsisting of a �nite multiset of ations. Later, we shall

de�ne the lass of PN-transition systems as a sublass of this new lass of transition

systems whih satis�es some simple axioms ensuring that all the steps in the system

are \onsistent".

We �rst �x some terminology and notation regarding multisets.

De�nition 1. Let A be a set.

� A multiset u over A is a funtion u : A! N

0

, where N

0

is the set of natural

numbers f0; 1; 2; : : :g. The set of all multisets over A is denoted by MS (A).

� For u 2 MS (A), let juj, the size of u, be given by

P

a2A

u(a). u is �nite i�

juj is �nite. The set of all �nite multisets over A is denoted by MS

�n

(A).

� The empty multiset over A is the unique funtion O

A

: A ! N

0

suh that

8a 2 A: O

A

(a) = 0. If A is lear from the ontext, we shall often use just O

to mean O

A

.

� Let u; v 2 MS (A). Then u is a submultiset of v, written u �

MS

v, in ase

8a 2 A: u(a) � v(a).

Thus, if u is a multiset over A, for eah a 2 A, u(a) is the number of ourrenes of a

in u. Abusing notation, we shall write a 2 u to signify that u(a) � 1. For simpliity,
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we shall usually write out multisets as sets with multipliities|for instane, if

a; b 2 A, then fa; a; bg denotes the multiset u over A whih assigns u(a) = 2,

u(b) = 1 and u() = 0 for all  2 A suh that  6= a and  6= b.

Multisets an be added and subtrated pointwise | if u and v are two multisets

over A, then u+ v and u� v are de�ned as follows:

8a 2 A: (u+ v)(a) = u(a) + v(a).

If v �

MS

u then 8a 2 A: (u� v)(a) = u(a)� v(a).

Given a partial funtion f : A * B between sets, f an be extended in a natural

way to a (total) funtion

^

f : MS

�n

(A)! MS

�n

(B) as follows:

8u 2 MS

�n

(A): 8b 2 B:

^

f(u)(b) =

X

fa2Ajf(a)=bg

u(a):

By onvention,

^

f(u) = O

B

in ase f(a) is unde�ned for all a 2 u.

For onveniene, we shall denote both f and its extension

^

f to multisets by f .

De�nition 2. A step transition system is a struture TS = (Q;E;!; q

in

), where

� Q is a ountable set of states, with q

in

2 Q as the initial state.

� E is a ountable set of events.

� ! � Q�MS

�n

(E)�Q is the transition relation.

We shall often write q

u

! q

0

instead of (q; u; q

0

) 2 !. We also write q

u

! to denote

that u is enabled at q|i.e. 9q

0

2 Q: (q; u; q

0

) 2 !.

We an extend ! to a relation !

�

over step sequenes in the usual way. Let

� = u

1

u

2

: : : u

n

2 (MS

�n

(E))

�

be a sequene of steps. Then (q; �; q

0

) 2 !

�

i�

9q

0

; q

1

; : : : ; q

n

: q

0

= q; q

n

= q

0

and q

i�1

u

i

! q

i

for 1 � i � n.

We put two basi restritions on transition systems. We �rst introdue idling

transitions, represented by the empty multiset, as self loops at eah state and

demand that these speial transitions our only as self loops. We also ensure that

all states in a transition system are reahable from the initial state. Formally, we

have the following basi axioms.

(A1) 8q; q

0

2 Q: q

O

E

�! q

0

i� q = q

0

.

(A2) 8q 2 Q: 9� 2 (MS

�n

(E))

�

: (q

in

; �; q) 2 !

�

.

Heneforth, we shall assume that every step transition system we onsider satis�es

axioms (A1) and (A2).

Notie that (A1) does not rule out the presene of non-trivial self-loops of the

form q

u

! q.

Axioms (A1) and (A2) are fairly weak. In partiular, we have not introdued

any \step axioms" to ensure that the multisets whih label the transitions atually

represent onurrent steps. Later, when we introdue additional axioms for PN-

transition systems, we shall see how the steps are onstrained.
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Figure 2: A step transition system

Figure 2 is an example of a step transition system. As usual we graphially

represent a transition system by a direted graph whose nodes are the states and

whose arrows, labelled by multisets over E, denote the relation!. The initial state

is marked out speially. The trivial self-loops at eah state are not expliitly drawn,

to avoid luttering up the piture.

Before introduing the harateristi axioms for PN-transition systems, let us

take a look at Petri nets.

3. Petri Nets

We give a brief introdution to Plae/Transition nets, whih are often simply alled

Petri nets. A more detailed disussion of this lass of nets an be found in [16℄.

De�nition 3. A Petri net is a quadruple PN = (S; T;W;M

in

), where:

� S is set of plaes, T is a set of transitions and S \ T = ;. T is assumed to

be ountable.

� W : (S � T ) [ (T � S)! N

0

is the weight funtion.

� M

in

: S ! N

0

is the initial marking.

For t 2 T , let

�

t = fs 2 S j W (s; t) > 0g and t

�

= fs 2 S jW (t; s) > 0g. Similarly,

for s 2 S, let

�

s = ft 2 T jW (t; s) > 0g and s

�

= ft 2 T jW (s; t) > 0g.

Figure 3 is an example of a Petri net. We follow the usual graphial notation

for nets|plaes are denoted by irles, transitions are denoted by boxes. An arrow

is drawn from a plae s to a transition t (from t to s) i� W (s; t) > 0 (W (t; s) > 0)

and is labelled by the value ofW (s; t) (W (t; s)). By onvention, an arrow without a

label orresponds to the ase where W (s; t) = 1 (W (t; s) = 1). The initial marking

is denoted by drawing dots in the plaes. Thus if M

in

(s) = n, we draw n dots (or

tokens) in the irle orresponding to s.

The plaes of a Petri net intuitively orrespond to loal states of the system. A

global state, alled a marking, is a multiset M : S ! N

0

. If M(s) = n, then s is

said to be assigned n tokens by M .

A transition t an our at a marking M if for all s 2 S, M(s) � W (s; t). We

say that t is enabled at M and denote this by M [ti.
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When a transition t ours at a marking M , a new marking M

0

is generated

aording to the following rule:

8s 2 S: M

0

(s) =M(s)�W (s; t) +W (t; s):

We denote the fat that M evolves to M

0

via t by M [tiM

0

.

Suppose t

1

and t

2

are two transitions and M is a marking suh that 8s 2

S: M(s) �W (s; t

1

) +W (s; t

2

). Then t

1

and t

2

an both our independently at M

and are thus onurrently enabled. In suh a situation, M an evolve in a single

step by the ourrene of both t

1

and t

2

to a marking M

0

where

8s 2 S: M

0

(s) =M(s)�W (s; t

1

)�W (s; t

2

) +W (t

1

; s) +W (t

2

; s):

We an thus extend the transition relation assoiated with a Petri net to permit

steps of ations between a pair of markings. In general, suh a step will be a

multiset over T rather than a subset of T beause a transition may be onurrent

with itself (a phenomenon alled autoonurreny). For instane, in Figure 3, two

opies of the transition a are enabled at the initial marking.

Let u 2 MS

�n

(T ). u is enabled at a marking M , denoted M [ui, if for all s 2 S,

M(s) �

P

t2T

u(t) �W (s; t). (Reall that u(t) denotes the number of ourrenes

of t in u). When u ours, M is transformed to M

0

(denoted M [uiM

0

) where

8s 2 S: M

0

(s) =M(s) +

X

t2T

u(t) � (W (t; s)�W (s; t)):

The set of all markings reahable from a marking M is denoted by [Mi. [Mi is

the smallest set of markings suh that:

� M 2 [Mi.

� If M

0

2 [Mi and 9u 2 MS

�n

(T ): M

0

[uiM

00

then M

00

2 [Mi.

Notie that if M

0

2 [Mi, we an always �nd a step sequene leading from

M to M

0

where eah step in the sequene is a singleton step|i.e. the multiset of

transitions onstituting eah step is atually a singleton set.

Given a Petri net PN = (S; T;W;M

in

), we an assoiate a transition relation

)

PN

� [M

in

i �MS

�n

(T )� [M

in

i with PN as follows.
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)

PN

= f(M;u;M

0

) jM 2 [M

in

i and M [uiM

0

g:

Just as we extended ! to !

�

for transition systems, we extend )

PN

to a

relation)

�

PN

over step sequenes. Let � = u

1

u

2

: : : u

n

2 (MS

�n

(T ))

�

be a sequene

of steps. Then (M;�;M

0

) 2 )

�

PN

i� M 2 [M

in

i and 9M

0

;M

1

; : : : ;M

n

: M

0

=

M;M

n

=M

0

and M

i�1

[u

i

iM

i

for 1 � i � n.

Thus, given a Petri net PN = (S; T;W;M

in

), we an assoiate a step transition

system TS

PN

= ([M

in

i; T;)

PN

;M

in

) whih desribes the operational behaviour

of the net PN . For example, it is easy to see that the transition system of Figure 2

is the step transition system assoiated with the Petri net of Figure 3. It is straight-

forward to verify that for any Petri net PN = (S; T;W;M

in

), TS

PN

satis�es the

two axioms we have introdued for step transition systems in the previous setion.

The main aim of this paper is to haraterize those step transition systems

whih arise out of desribing the behaviour of Petri nets. As mentioned in the

introdution, this haraterization will be desribed using the language of ategory

theory in terms of an adjuntion between the ategory of Petri nets and the ategory

of a sublass of step transition systems alled PN-transition systems.

Before onstruting these two ategories, we must �rst de�ne PN-transition

systems.

4. PN-transition systems

To desribe PN-transition systems, we need to introdue the notion of a region.

Regions have originally been de�ned in the ontext of sequential transition systems

by Ehrenfeuht and Rozenberg [4℄ as a transition system ounterpart of the notion

of a ondition in an elementary net system. Using regions, they haraterize the

lass of elementary transition systems whih represent the behaviour of elementary

net systems. This haraterization is extended to a oreetion between elementary

transition systems and elementary net systems in [14℄.

Here we generalize regions to apture the notion of a plae of a Petri net.

De�nition 4. Let TS = (Q;E;!; q

in

) be a step transition system. A region is a

pair of funtions r = (r

Q

; r

E

) suh that:

(i) r

Q

: Q! N

0

.

(ii) r

E

: E ! N

0

�N

0

.

For onveniene, we denote the �rst omponent of r

E

(e) as

r

e and the seond

omponent of r

E

(e) as e

r

. In other words, if r

E

(e) = (n

1

; n

2

), then

r

e = n

1

and e

r

= n

2

.

(iii) 8(q; u; q

0

) 2 ! : r

Q

(q) �

X

e2E

u(e) �

r

e and

r

Q

(q

0

) = r

Q

(q) +

X

e2E

u(e) � (e

r

�

r

e).
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We shall denote both r

Q

and r

E

by r, unless it is unlear from the ontext whih

omponent we are referring to. Thus, normally we shall write r(q) for r

Q

(q) and

r(e) for r

E

(e),

So, a region r orresponds to a plae of the Petri net whih we would like to

assoiate with a given step transition system. Reall that for a Petri net PN , the

assoiated transition system TS

PN

has as its states the reahable markings of PN

and as its events the transitions of PN . We speify the number of tokens on the

\plae" r at the \marking" q by r(q). For eah e 2 E, r(e) spei�es the \weights"

W (r; e) and W (e; r). The last ondition in the de�nition of a region ensures that

r

Q

is onsistent with the overall behaviour of the net|for every transition q

u

! q

0

present in the system, r(q) must have enough \tokens" to permit u to our and

r(q

0

) must ontain the orret number of \tokens" as spei�ed by the normal �ring

rule of a Petri net.

We disregard regions r whih are \disonneted" from all the events|i.e. r suh

that r(e) = (0; 0) for all e 2 E. These trivial regions orrespond to isolated plaes

in a Petri net and do not ontribute in any way to haraterizing the behaviour of

the system.

De�nition 5. Let TS = (Q;E;!; q

in

) be a step transition system. A region r is

non-trivial i� for some e 2 E, r(e) 6= (0; 0). We denote the set of non-trivial

regions of TS by R

TS

.

Heneforth, whenever we make a statement referring to all regions, we assume

that we are only onsidering non-trivial regions (unless expliitly stated otherwise).

PN-transition systems are haraterized by two \regional" axioms in addition

to the basi axioms (A1) and (A2):

(A3) Let q; q

0

2 Q. If 8r 2 R

TS

: r(q) = r(q

0

) then q = q

0

. (Separation)

(A4) 8q 2 Q: 8u 2 MS

�n

(E):

If 8r 2 R

TS

: r(q) �

X

e2E

u(e) �

r

e then 9q

0

2 Q: q

u

! q

0

. (Forward losure)

Axiom (A3) says that any pair of distint states inQ will be distinguished by at least

one (non-trivial) region. Axiom (A4) aptures the fundamental idea underlying the

dynami behaviour of a Petri net. It says that whenever a multiset of ations u is

enabled at a state q of the system by all regions, it must be possible to perform u

and reah some state q

0

in the system. In other words, if the system annot perform

a step labelled by u at the state q then there must be some region r whih does not

have enough \tokens" at q to permit u to our.

De�nition 6. A PN-transition system is a step transition system TS =

(Q;E;!; q

in

) whih satis�es axioms (A1) to (A4).

Figure 4 shows two step transition systems that are not PN-transition systems.

The transition system on the left violates (A3)|it is easy to see that for any region

r,

r(q

2

) = r(q

in

)�

r

a+ a

r

�

r

b+ b

r

= r(q

0

2

);
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Figure 4: Step transition systems whih are not PN-transition systems

and so q

2

really denotes the same state as q

0

2

from a \regional" point of view.

The transition system on the right violates (A4). At q

in

, the step fa; bg is

enabled. This means that every region must also allow the step onsisting of just

fbg at q

in

, but there is no transition orresponding to this step present in !.

A ruial observation about PN-transition systems is that they are deterministi.

TS = (Q;E;!; q

in

) is said to be a deterministi step transition system in ase the

following is true:

8q 2 Q: 8u 2 MS

�n

(E): (q; u; q

0

) 2 ! and (q; u; q

00

) 2 ! implies q

0

= q

00

:

Proposition 7. Every PN-transition system is deterministi.

Proof. Let TS = (Q;E;!; q

in

) be a PN-transition system. Suppose that there

exists q 2 Q and u 2 MS

�n

(E) suh that q

u

! q

0

and q

u

! q

00

. Then, for every

region r, we know that

r(q

0

) = r(q) +

X

e2E

u(e)(e

r

�

r

e) = r(q

00

):

Thus, by axiom (A3), q

0

= q

00

. 2

As we had mentioned earlier, we have to ensure that the steps in a step transition

system atually represent onurrent ations. For instane, Lodaya, Ramanujam

and Thiagarajan [7℄ de�ne distributed transition systems , whih are basially step

transition systems with a \step axiom" whih insists that for every step, all substeps

must be present and ombine together in a onsistent way.

For PN-transition systems, the required step axiom is a straightforward onse-

quene of (A3) and (A4).

Proposition 8. Let TS = (Q;E;!; q

in

) be a PN-transition system and let

(q; u; q

0

) 2 !. Then, for every v �

MS

u, there exists q

00

2 Q suh that (q; v; q

00

) 2 !

and (q

00

; u� v; q

0

) 2 !.

Proof. From (A4) it follows that if a step u is permitted by all regions, so is every

substep v of u. So we know that 9q

00

: q

v

! q

00

. It is easy to ompute that u � v
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must still be enabled at q

00

, so there exists a q

000

suh that q

00

u�v

�! q

000

. So, all we

have to show is that q

000

is the same as q

0

.

Consider any region r. We know that

r(q

000

) = r(q

00

) +

X

e2E

(u� v)(e)(e

r

�

r

e),

and that

r(q

00

) = r(q) +

X

e2E

v(e)(e

r

�

r

e).

From this it follows that

r(q

000

) = r(q) +

X

e2E

v(e)(e

r

�

r

e) +

X

e2E

(u� v)(e)(e

r

�

r

e),

and therefore

r(q

000

) = r(q) +

X

e2E

u(e)(e

r

�

r

e) = r(q

0

).

Sine q

000

and q

0

agree on all regions, it follows from (A3) that q

000

= q

0

and we are

done. 2

The step axiom formulated in [7℄ is atually muh more subtle than the one de-

sribed by Proposition 8 beause distributed transition systems are, in general,

non-deterministi. In the presene of determinay, however, their step axiom re-

dues to the simple ondition stated in Proposition 8.

5. PNts|A Category of PN-transition Systems

To onstrut a ategory of PN-transition systems, we now de�ne morphisms be-

tween PN-transition systems. These morphisms are essentially the G-morphisms of

[14℄. They apture a notion of simulation whih preserves onurreny.

De�nition 9. Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition systems.

A transition systemmorphism f from TS

1

to TS

2

is a pair of funtions f = (f

Q

; f

E

)

where:

(i) f

Q

: Q

1

! Q

2

is a total funtion suh that f

Q

(q

1

in

) = q

2

in

.

(ii) f

E

: E

1

* E

2

is a partial funtion.

(iii) If (q; u; q

0

) 2 !

1

then (f

Q

(q); f

E

(u); f

Q

(q

0

)) 2 !

2

.

As with regions, we shall denote both f

Q

and f

E

by f , unless it is unlear from the

ontext whih omponent we are referring to. Thus, normally we shall write f(q)

for f

Q

(q) and f(e) for f

E

(e).

Notie that the last lause ensures that if a step u is hidden by f then ev-

ery transition (q; u; q

0

) 2 !

1

results in q and q

0

being mapped to the same

state in Q

2

; i.e. if for all e 2 u, f(e) is unde�ned, then (q; u; q

0

) 2 !

1

implies

(f(q); O

E

2

; f(q

0

)) 2 !

2

, whih by axiom (A1) fores f(q) = f(q

0

).

Figure 5 shows two examples of transition system morphisms. It is important

to notie that lause (iii) in De�nition 9 desribes a simulation requirement for all
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Figure 5: Some examples of transition system morphisms

multisets between pairs of states mapped by the morphism. Thus, for the last pair

of systems shown in Figure 5, there an be no morphism going in the opposite

diretion that is de�ned for both a

0

and b

0

beause there is no mathing step in the

�rst system orresponding to the step q

0

0

fa

0

;b

0

g

�! q

0

3

in the seond system.

Given a PN-transition system TS = (Q;E;!; q

in

), let 1

TS

= (id

Q

; id

E

) denote

the identity morphism where id

Q

: Q! Q and id

E

: E ! E are the (total) identity

funtions. Let f

1

= (f

1

Q

; f

1

E

) : TS

1

! TS

2

and f

2

= (f

2

Q

; f

2

E

) : TS

2

! TS

3

be two

transition system morphisms. The omposition f

2

Æ f

1

: TS

1

! TS

3

is de�ned as

the pair (f

2

Q

Æf

1

Q

; f

2

E

Æf

1

E

) (where the omposition on the �rst omponent is normal

funtional omposition and omposition on the seond omponent is the obvious

omposition operation on partial funtions).

It is easy to see that PN-transition systems with transition system morphisms

form a ategory. Let us all this ategory PNts.

The rest of the setion is devoted to establishing some results onerning tran-

sition system morphisms.

Our �rst observation is that these morphisms preserve regions in the reverse

diretion.

Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition systems, f : TS

1

!

TS

2

be a morphism and r be a region in TS

2

. De�ne r

�1

as follows:

8q 2 Q

1

: r

�1

(q) = r(f(q)) and

8e 2 E

1

: r

�1

(e) =

�

r(f(e)) if f(e) is de�ned

(0; 0) otherwise
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Proposition 10. Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition sys-

tems, f : TS

1

! TS

2

a morphism and r 2 R

TS

2

. Then r

�1

is a (possibly trivial)

region in TS

1

.

Proof. We only have to hek that:

8(q; u; q

0

) 2 !

1

: r

�1

(q) �

X

e

1

2E

1

u(e

1

) �

r

�1

e

1

and

r

�1

(q

0

) = r

�1

(q) +

X

e

1

2E

1

u(e

1

) � (e

1

r

�1

�

r

�1

e

1

)

Let E

0

1

� E

1

be the set of events over whih f has a de�ned value. We know by

de�nition that r

�1

(e) = (0; 0) for e 2 (E

1

nE

0

1

), so what we atually have to hek

is that:

8(q; u; q

0

) 2 !

1

: r

�1

(q) �

X

e

0

1

2E

0

1

u(e

0

1

) �

r

�1

e

0

1

and

r

�1

(q

0

) = r

�1

(q) +

X

e

0

1

2E

0

1

u(e) � (e

0

1

r

�1

�

r

�1

e

0

1

)

Rewriting r

�1

in terms of r we must show that:

8(q; u; q

0

) 2 !

1

: r(f(q)) �

X

e

0

1

2E

0

1

u(e

0

1

) �

r

f(e

0

1

)

and

r(f(q

0

)) = r(f(q)) +

X

e

0

1

2E

0

1

u(e

0

1

) � (f(e

0

1

)

r

�

r

f(e

0

1

))

Sine f is a morphism, (q; u; q

0

) 2 !

1

implies that (f(q); f(u); f(q

0

)) 2 !

2

. r is a

region in TS

2

, so we know that the following holds:

8(q; u; q

0

) 2 !

1

: r(f(q)) �

X

e

2

2E

2

f(u)(e

2

) �

r

e

2

and

r(f(q

0

)) = r(f(q)) +

X

e

2

2E

2

f(u)(e

2

) � (e

2

r

�

r

e

2

)

Sine f(u)(e

2

) =

X

fe

0

1

2E

0

1

jf(e

0

1

)=e

2

g

u(e

0

1

) for every e

2

2 E

2

, it is straightforward to

verify that the result follows.

2

Notie that r

�1

will be trivial in ase r(e

2

) = (0; 0) for every e

2

in the range of f .

Otherwise r

�1

2 R

TS

1

.
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Our next observation about transition system morphisms exploits determinay.

For PN-transition systems, it turns out that morphisms are ompletely harater-

ized by the way they map events.

Lemma 11. Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition systems

and let f

1

and f

2

be two morphisms from TS

1

to TS

2

. If f

1

E

= f

2

E

then f

1

= f

2

.

Proof. We have to show that f

1

(q) = f

2

(q) for every q 2 Q

1

. We know that q

is reahable by a �nite step sequene from q

1

in

. Let � = u

1

u

2

: : : u

k

be a sequene

of steps suh that q

1

in

�

!

�

1

q. We proeed by indution on k = j�j (where by j�j we

mean the number of steps in the sequene �).

k = 0: Then q = q

1

in

and so f

1

(q) = q

2

in

= f

2

(q).

k > 0: Then we an write � as �

0

u

k

where j�

0

j = k�1. We thus have q

1

in

�

0

!

�

1

q

1

u

k

!

1

q.

By the indution hypothesis, we know that f

1

(q

1

) = f

2

(q

1

).

By the de�nition of a morphism, we must have (f

1

(q

1

); f

1

(u

k

); f

1

(q)) 2 !

2

and (f

2

(q

1

); f

2

(u

k

); f

2

(q)) 2 !

2

. Sine f

1

E

= f

2

E

, we have f

1

(u

k

) = f

2

(u

k

). We

already know that f

1

(q

1

) = f

2

(q

1

). Sine TS

2

is a PN-transition system, it must

be deterministi. So it follows that f

1

(q) = f

2

(q) and we are done. 2

6. PNet|A Category of Petri Nets

Next, we onstrut a ategory of Petri nets. To do so, we have to de�ne a suitable

notion of morphism.

De�nition 12. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets. A net

morphism from PN

1

to PN

2

is a pair � = (�

S

; �

T

) where:

(i) �

S

: S

2

* S

1

is a partial funtion. (Notie that �

S

is a map from S

2

to S

1

and not from S

1

to S

2

. Thus, in the \forward" diretion, �

�1

S

� S

1

� S

2

is a

relation. For X � S

1

, �

�1

S

(X) denotes the set fy 2 S

2

j �

S

(y) 2 Xg.)

(ii) �

T

: T

1

* T

2

is a partial funtion.

(iii) 8s

1

2 S

1

: 8s

2

2 S

2

: If s

1

= �

S

(s

2

) then M

1

in

(s

1

) =M

2

in

(s

2

).

(iv) 8t

1

2 T

1

: If �

T

(t

1

) is unde�ned then �

�1

S

(

�

t

1

) = �

�1

S

(t

1

�

) = ;.

(v) 8t

1

2 T

1

: If �

T

(t

1

) = t

2

then:

{ �

�1

S

(

�

t

1

) =

�

t

2

and �

�1

S

(t

1

�

) = t

2

�

.

{ 8s 2

�

t

2

: W

1

(�

S

(s); t

1

) =W

2

(s; t

2

).

{ 8s 2 t

2

�

: W

1

(t

1

; �

S

(s)) =W

2

(t

2

; s).

Following [2℄, we have diretly de�ned the map on plaes as a partial funtion in the

reverse diretion, rather than as a relation in the forward diretion whose inverse

is a partial funtion (as in [14℄).
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Figure 6: Some examples of net morphisms

As with transition system morphisms, we shall denote both �

S

and �

T

by �,

unless it is unlear from the ontext whih omponent we are referring to. Thus,

normally we shall write �(s) for �

S

(s) and �(t) for �

T

(t).

Figure 6 shows two examples of net morphisms. Notie that in the �rst example,

if we omit the plae s

1

we an no longer onstrut a morphism mapping t

1

to t

0

1

,

though the behaviour of the �rst net remains unhanged. This is a problem with

all struturally de�ned notions of net morphisms|they are very sensitive to the

hoie of Petri net for \implementing" a given behaviour.

Quite a few di�erent types of morphisms on Petri nets have been de�ned in

the literature. Our morphisms are losest in spirit to the morphisms de�ned by

Winskel [18℄. The main di�erene is that, following [14℄, we insist that the map

on the plaes be a partial funtion in the reverse diretion, whereas Winskel only

requires the forward map to be a relation (atually, a multirelation) whih preserves

the initial marking and the neighbourhoods of de�ned events. We shall disuss the

onnetion between our net morphisms and those studied by others in greater detail

in the onluding setion.

For eah objet PN = (S; T;W;M

in

), let 1

PN

= (id

S

; id

T

) be the identity mor-

phism where id

S

: S ! S and id

T

: T ! T are the (total) identity funtions. Let

(�

1

S

; �

1

T

) : PN

1

! PN

2

and (�

2

S

; �

2

T

) : PN

2

! PN

3

be two net morphisms. De�ne

the omposition (�

2

S

; �

2

T

) Æ (�

1

S

; �

1

T

) of these two morphisms as (�

1

S

Æ �

2

S

; �

2

T

Æ �

1

T

).
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It follows easily that Petri nets equipped with net morphisms form a ategory.

Let us all this ategory PNet .

In the rest of this setion, we shall prove some useful properties of net mor-

phisms. We �rst show that net morphisms preserve onurrent behaviour in a

strong way. This follows from the following result.

Lemma 13. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets and let � be

a net morphism from PN

1

to PN

2

. For eah M 2 [M

1

in

i, de�ne M

�

: S

2

! N

0

as

follows:

8s 2 S

2

: M

�

(s) =

�

M(�(s)) if �(s) exists

M

2

in

(s) otherwise

We then have the following:

(i) 8M 2 [M

1

in

i: M

�

2 [M

2

in

i.

(ii) Suppose that (M;u;M

0

) 2 )

PN

1

. Then (M

�

; �(u);M

0

�

) 2 )

PN

2

.

Proof.

(i) Sine M 2 [M

1

in

i, we know that there is a step sequene � = u

1

u

2

: : : u

n

suh

that (M

1

in

; �;M) 2 )

�

PN

1

. Without loss of generality, we an assume that

ju

i

j = 1 for 0 � i � n|i.e. � is atually a sequene of singleton steps. We

proeed by indution on k = j�j.

k = 0: Then M = M

1

in

and by ondition (iii) of net morphisms, (M

1

in

)

�

=

M

2

in

2 [M

2

in

i.

k > 0: We an write � as �

0

t where j�

0

j = k � 1. Then there exists a

markingM

0

suh that (M

1

in

; �

0

;M

0

) 2 )

�

PN

1

and M

0

[ti

1

M . By the indution

hypothesis, M

0

�

2 [M

2

in

i.

Suppose that �(t) is unde�ned. Then �

�1

(

�

t) = �

�1

(t

�

) = ; so the plaes in

S

1

whose marking hanges in going from M

0

to M do not have �

�1

images

in S

2

. As a result, M

�

=M

0

�

2 [M

2

in

i.

On the other hand, if �(t) = t

0

then �

�1

(

�

t) =

�

t

0

and �

�1

(t

�

) = t

0

�

. Consider

any s 2

�

t

0

. We know that M

0

�

(s) = M

0

(�(s)). Furthermore, W

2

(s; t

0

) =

W

1

(�(s); t) by the de�nition of net morphisms. Sine M

0

[ti we know that

M

0

(�(s)) � W

1

(�(s); t) and so M

0

�

(s) � W

2

(s; t

0

). This holds for all s 2

�

t

0

, so we have M

0

�

[t

0

i as well. Let M

0

�

[t

0

i

2

M

00

. Using the de�nition of net

morphisms, it is straightforward to hek that M

00

=M

�

.

(ii) Suppose thatM 2 [M

1

in

i andM [ui

1

. By part (i) of this lemma, we know that

M

�

2 [M

2

in

i. By the de�nition of M

�

and the de�nition of a net morphism it

is straightforward to ompute that M

�

[�(u)i

2

and that (M;u;M

0

) 2 )

PN

1

and (M

�

; �(u);M

00

) 2 )

PN

2

implies that M

00

=M

0

�

.

2
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Corollary 14. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets and let

� be a net morphism from PN

1

to PN

2

. Then (M

1

in

; �;M) 2 )

�

PN

1

implies

(M

2

in

; �(�);M

�

) 2 )

�

PN

2

, where � is a step sequene over T

1

and M

�

is de�ned

as in the previous lemma. (By abuse of notation, we have denoted the obvious

extension of �

T

to step sequenes also as �.)

In ertain restrited ases, it turns out that net morphisms, like transition sys-

tem morphisms, are haraterized by the way they map transitions.

To establish this result, we need to restrit our attention to morphisms whose

soure nets are simple with respet to plaes.

De�nition 15. Let PN = (S; T;W;M

in

) be a Petri net. PN is simple with respet

to S in ase

8s

1

; s

2

2 S: If M

in

(s

1

) =M

in

(s

2

) and

8t 2 T: W (s

1

; t) =W (s

2

; t) and W (t; s

1

) =W (t; s

2

)

then s

1

= s

2

:

Lemma 16. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets, suh that

PN

1

is simple with respet to S

1

and has no isolated plaes (i.e. 8s

1

2 S

1

: 9t

1

2

T

1

: s

1

2

�

t

1

[ t

1

�

). Let �

1

= (�

1

S

; �

1

T

) and �

2

= (�

2

S

; �

2

T

) be two net morphisms

from PN

1

to PN

2

. If �

1

T

= �

2

T

then �

1

= �

2

.

Proof. We have to establish that �

1

S

= �

2

S

. We �rst show that if s

1

= �

1

S

(s

2

)

then s

1

= �

2

S

(s

2

) as well.

Suppose s

1

= �

1

S

(s

2

). Sine PN

1

has no isolated plaes, there exists t

1

2 T

1

suh

that s

1

2

�

t

1

or s

1

2 t

1

�

. Then �

1

T

(t

1

) must be de�ned|suppose that �

1

T

(t

1

) = t

2

.

Assume, without loss of generality, that s

1

2 t

1

�

. Then, sine (�

1

S

)

�1

(t

1

�

) = t

2

�

,

we must have s

2

2 t

2

�

. Sine �

1

T

= �

2

T

, we have s

2

2 �

2

T

(t

1

)

�

as well, whih implies

that �

2

S

(s

2

) exists and furthermore �

2

S

(s

2

) = s

0

1

2 t

1

�

. To establish that s

0

1

= s

1

it

suÆes to establish the following:

Claim. M

1

in

(s

1

) = M

1

in

(s

0

1

) and 8t 2 T

1

: W

1

(s

1

; t) = W

1

(s

0

1

; t) and W

1

(t; s

1

) =

W

1

(t; s

0

1

).

Proof of Claim.

We know that M

1

in

(s

1

) = M

2

in

(s

2

) sine s

1

= �

1

S

(s

2

). M

1

in

(s

0

1

) = M

2

in

(s

2

) as

well sine s

0

1

= �

2

S

(s

2

). So M

1

in

(s

1

) =M

1

in

(s

0

1

).

Suppose t 2

�

s

1

. Then, sine s

1

= �

1

S

(s

2

), �

1

T

(t) is de�ned. Further,W

1

(t; s

1

) =

W

2

(�

1

T

(t); s

2

). Sine �

2

T

= �

1

T

and s

0

1

= �

2

S

(s

2

), W

1

(t; s

0

1

) = W

2

(�

2

T

(t); s

2

) =

W

2

(�

1

T

(t); s

2

). Thus W

1

(t; s

1

) =W

1

(t; s

0

1

).

A symmetri argument an be used to show that for eah t 2

�

s

0

1

, W

1

(t; s

0

1

) =

W

1

(t; s

1

).

Similarly, we an establish that for eah t 2 T

1

, W

1

(s

1

; t) = W

1

(s

0

1

; t), thus

establishing the laim.

Returning to the main proof, sine PN

1

was assumed to be simple with respet to

plaes, we an onlude that s

1

= s

0

1

. Hene s

1

= �

1

S

(s

2

) implies that s

1

= �

2

S

(s

2

)

as well.
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By a symmetri argument we an show that s

1

= �

2

S

(s

2

) implies that s

1

=

�

1

S

(s

2

). Thus �

1

S

= �

2

S

and so �

1

= �

2

. 2

7. From Petri nets to PN-transition systems

We now onstrut a funtor NT from the ategoryPNet of Petri nets to the ategory

PNts of PN-transition systems.

NT maps objets in the obvious way|eah Petri net PN is mapped to its

assoiated transition system TS

PN

. Let PN = (S; T;W;M

in

) be a Petri net. Then

NT(PN) = ([M

in

i; T;)

PN

;M

in

)

where, as usual, [M

in

i is the set of markings reahable from M

in

in PN , T is the

set of transitions of PN , )

PN

is the step transition relation for Petri nets de�ned

in Setion 3 and M

in

is the initial marking of PN .

Next we de�ne how NT maps arrows. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be

two Petri nets and let � = (�

S

; �

T

) be a net morphism from PN

1

to PN

2

. Then,

NT(�) = f

�

is de�ned as follows:

� 8t 2 T

1

: f

�

E

(t) = �

T

(t).

� 8M 2 [M

1

in

i: f

�

Q

(M) =M

�

.

(Reall that 8s 2 S

2

: M

�

(s) =

�

M(�

S

(s)) if �

S

(s) exists

M

2

in

(s) otherwise

)

Proposition 17. Let PN = (S; T;W;M

in

) be a Petri net. Then NT(PN) =

([M

in

i; T;)

PN

;M

in

) is a PN-transition system.

Proof. T is ountable by assumption. To establish that [M

in

i is ountable,

we �rst observe that the free monoid T

�

is ountable. Eah marking M 2 [M

in

i

is reahable by some sequene of transitions t

1

t

2

: : : t

n

2 T

�

. Further, TS

PN

is

deterministi|a given sequene of transitions an lead to only one marking. From

this, it follows that the ardinality of [M

in

i is less than or equal to the ardinality

of T

�

and so [M

in

i must be ountable.

Sine M [O

T

iM

0

in PN i� M =M

0

, learly NT(PN) satis�es axiom (A1). The

fat that NT(PN) satis�es (A2) follows diretly from the de�nition of [M

in

i.

To verify (A3) we have to show that distint states in NT(PN) an be separated

by non-trivial regions. For eah s 2 S, it is easy to hek that r

s

is a region where

8M 2 [M

in

i: r

s

(M) =M(s) and 8t 2 T: r

s

(t) = (W (s; t);W (t; s)):

For M;M

0

2 [M

in

i, if M 6=M

0

, there must be a non-isolated plae s 2 S suh that

M(s) 6= M

0

(s). Then learly r

s

is a non-trivial region that separates M from M

0

in NT(PN).

Finally, onsider (A4). Suppose M 2 [M

in

i and u 2 MS

�n

(T ), and for every

region r in NT(PN) it is the ase that r(M) �

P

t2T

u(t) �

r

t. Then we have to

show that there exists M

0

2 [M

in

i suh that (M;u;M

0

) 2 )

PN

.
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We know that for every s 2 S, r

s

(as de�ned above) is a region in NT(PN).

Sine r

s

(M) = M(s) and

r

s

t = W (s; t) it follows that for every s 2 S we have

M(s) �

P

t2T

u(t) � W (s; t). But then, we know that M [uiM

0

where, for eah

s 2 S, M

0

(s) = M(s) +

P

t2T

u(t) � (W (t; s) �W (s; t)). So, by the de�nition of

)

PN

, (M;u;M

0

) 2 )

PN

and we are done. 2

Proposition 18. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets and let

� be a morphism from PN

1

to PN

2

. Then NT(�) = f

�

is a transition system

morphism from NT(PN

1

) to NT(PN

2

).

Proof. Reall that 8t 2 T

1

: f

�

E

(t) = �

T

(t) and 8M 2 [M

1

in

i: f

�

Q

(M) = M

�

.

By Lemma 13, we know that for eah M 2 [M

1

in

i, M

�

2 [M

2

in

i, so f

�

Q

is a total

funtion from [M

1

in

i into [M

2

in

i as required. By de�nition, we know that f

�

E

is a

partial funtion from T

1

into T

2

.

We have to show that if (M;u;M

0

) 2 )

PN

1

then (f

�

Q

(M); f

�

E

(u); f

�

Q

(M

0

)) 2

)

PN

2

. This follows diretly from the seond part of Lemma 13 whih says that

(M;u;M

0

) 2 )

PN

1

implies that (M

�

; �

T

(u);M

0

�

) 2 )

PN

2

. 2

Theorem 19. NT : PNet ! PNts is a funtor.

Proof. We have already veri�ed that NT maps objets and arrows in PNet to

objets and arrows in PNts orretly. We only have to verify that NT preserves

the identity arrows and respets omposition.

For every net PN = (S; T;W;M

in

) 2 PNet , the identity arrow is given by

1

PN

= (id

S

; id

T

) where id

S

and id

T

are the (total) identity funtions. Clearly

f

1

PN

E

(t) = t for every t 2 T and f

1

PN

Q

(M) = M

id

S

= M for every M 2 [M

in

i and

so f

1

PN

is the identity arrow for NT(PN).

Let �

1

: PN

1

! PN

2

and �

2

: PN

2

! PN

3

be a pair of net morphisms.

Let f

i

= NT(�

i

), i = 1; 2, and let f

2Æ1

= NT(�

2

Æ �

1

). We have to show that

f

2

Æ f

1

= f

2Æ1

. Clearly, f

2Æ1

E

(t) = �

2

T

Æ �

1

T

(t) for all t 2 T

1

. But, (f

2

Æ f

1

)

E

(t) is

again equal to �

2

T

Æ �

1

T

(t) for all t 2 T

1

. Sine f

2Æ1

E

= (f

2

Æ f

1

)

E

, by Lemma 11 we

must have f

2Æ1

= f

2

Æ f

1

and we are done. 2

8. The adjuntion

Having onstruted the funtor NT from PNet to PNts , we want to show that it

has a left adjoint TN : PNts ! PNet . Aording to Ma Lane [8℄, it suÆes to

onstrut a map TN

O

mapping objets in PNts to objets in PNet so that the

diagram shown in Figure 7 ommutes. The objet map TN

O

an then be extended

uniquely to a funtor TN : PNts ! PNet whih is the left adjoint of NT.

In other words, we have to �rst onstrut a universal transition system morphism

� in PNts (whih will serve as the unit of the adjuntion). We then have to

prove that for any objet TS in PNts and any objet PN in PNet , if there is

a transition system morphism f : TS ! NT(PN) then there is a unique net

morphism � : TN

O

(TS)! PN suh that f = NT(�) Æ �

TS

.
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TS

NT(PN)

NT Æ TN

O

(TS)

P

P

P

P

P

P

Pq

�

�

�

�

�

�

�	

?

�

TS

f

NT(�)

TN

O

(TS)

PN

?

�

Figure 7: The adjuntion

We �rst desribe the objet map TN

O

. Let TS = (Q;E;!; q

in

) be a PN-

transition system. Then

TN

O

(TS) = (R

TS

; E;W

TS

;M

TS

in

)

where W

TS

(r; e) =

r

e and W

TS

(e; r) = e

r

for eah r 2 R

TS

and e 2 E and

M

TS

in

(r) = r(q

in

) for eah r 2 R

TS

.

Proposition 20. Let TS = (Q;E;!; q

in

) be a PN-transition system. Then

TN

O

(TS) = (R

TS

; E;W

TS

;M

TS

in

) is a Petri net. Moreover, TN

O

(TS) is simple

with respet to plaes and has no isolated plaes.

Proof. Cheking that TN

O

(TS) is a Petri net is straightforward. We know that E

is ountable, so the set of transitions of TN

O

(TS) is ountable. Notie that if E is

in�nite, R

TS

may well be unountable. In verifying that the plaes and transitions

of TN

O

(TS) are disjoint, a small problem arises in the (pathologial) ase where

R

TS

and E are not disjoint! We shall ignore this possiblity by noting that we an

always onstrut TN

O

(TS) with disjoint sets of plaes and transitions by using a

suitable oding tehnique.

The regions in R

TS

are \simple" by de�nition (any two distint regions either

di�er in their value at q

in

or in their value for some e 2 E). Sine we reate exatly

one plae in TN

O

(TS) for eah region from R

TS

, it is lear that the net TN

O

(TS)

is also simple with respet to plaes.

Finally, sineR

TS

has only non-trivial regions, TN

O

(TS) has no isolated plaes.

2

Next we desribe how to onstrut �, the unit of the adjuntion. We �rst need

the following lemma.

Lemma 21. Let TS = (Q;E;!; q

in

) be a PN-transition system and let TN

O

(TS) =

(R

TS

; E;W

TS

;M

TS

in

). Then we have:

461



(i) 8M 2 [M

TS

in

i: 9!q 2 Q suh that 8r 2 R

TS

: M(r) = r(q). We denote this

state by q

M

.

(ii) 8q 2 Q: 9!M 2 [M

TS

in

i suh that 8r 2 R

TS

: M(r) = r(q). We denote this

marking by M

q

.

(iii) )

TN

O

(TS)

= f(M

q

; u;M

0

q

) j (q; u; q

0

) 2 !g.

Proof.

(i) For eah M 2 M

TS

in

, we show that there is at least one q 2 Q suh that

8r 2 R

TS

: M(r) = r(q).

Let � be a step sequene u

1

u

2

: : : u

k

suh that (M

TS

in

; �;M) 2 )

�

PN

. We

proeed by indution on k = j�j.

k = 0: Then M =M

TS

in

and by the de�nition of M

TS

in

, q

in

satis�es the given

requirement.

k > 0: Then write � = �

0

u

k

where j�

0

j < k. We know that 9M

0

: (M

TS

in

; �

0

;M

0

) 2

)

�

PN

and M

0

[u

k

iM . By the indution hypothesis, there exists q

0

2 Q suh

that 8r 2 R

TS

: M

0

(r) = r(q

0

). Sine M

0

[u

k

iM , we know that r(q

0

) �

P

e2E

u(e)

r

e for all r 2 R

TS

. Therefore, by axiom (A4), 9q: q

0

u

k

�! q. It is

straightforward to ompute that 8r 2 R

TS

: M(r) = r(q).

Having established that there is at least one andidate for q

M

for every mark-

ing M , we now have to show that there is exatly one hoie for q

M

. Suppose

q and q

0

are both states in Q suh that 8r 2 R

TS

: M(r) = r(q) = r(q

0

).

Then, by axiom (A3), we know that q = q

0

sine they agree on all regions.

(ii) Similar to (i), by indution on q

in

�

!

�

q.

(iii) Follows in a straightforward way from (i) and (ii).

2

Lemma 22. Let TS = (Q;E;!; q

in

) be a PN-transition system and let TN

O

(TS) =

(R

TS

; E;W

TS

;M

TS

in

). Then the map �

TS

: TS ! NT Æ TN

O

(TS) given by

8q 2 Q: �

TS

(q) =M

q

and 8e 2 E: �

TS

(e) = e

is a transition system isomorphism.

Proof. From the previous lemma, it follows that �

TS

is a transition system

morphism. To hek that it is in fat an isomorphism, we show that we an onstrut

a transition system morphism �

0

TS

suh that �

TS

Æ �

0

TS

= 1

NTÆTN

O

(TS)

and �

0

TS

Æ

�

TS

= 1

TS

.

De�ne �

0

TS

: NT ÆTN

O

(TS)! TS as follows:

8M 2 [M

TS

in

i: �

0

TS

(M) = q

M

and 8e 2 E: �

0

TS

(e) = e

By the previous lemma, it is easy to verify that �

0

TS

is also a transition system

morphism. Sine q

M

q

= q for all q 2 Q and M

q

M

= M for all M 2 [M

TS

in

i, it

follows that �

0

TS

Æ �

TS

= 1

TS

and �

TS

Æ �

0

TS

= 1

NTÆTN

O

(TS)

. 2

We an now prove our main result.
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Theorem 23. There exists a funtor TN : PNts ! PNet suh that TN and NT

form an adjuntion (oreetion) with TN as the left adjoint and � as the unit.

Proof. We have to show that the diagram shown in Figure 7 ommutes.

Let TS = (Q;E;!; q

in

) and PN = (S; T;W;M

in

). Then TN

O

(TS) =

(R

TS

; E;W

TS

;M

TS

in

) and NT(PN) = ([M

in

i; T;)

PN

;M

in

). De�ne � as follows:

�

S

: S * R

TS

is given by

8s 2 S: �

S

(s) =

�

r

�1

s

if r

�1

s

2 R

TS

unde�ned otherwise

�

T

= f

E

,

where for eah s 2 S, r

s

2 R

NT(PN)

is the region de�ned in the proof of Proposi-

tion 17. In other words,

8M 2 [M

in

i: r

s

(M) =M(s) and 8t 2 T: r

s

(t) = (W (s; t);W (t; s)):

Also, reall that for r

s

2 R

NT(PN)

, r

�1

s

is the inverse of r

s

through f , as de�ned in

Setion 5.

Claim A. � is a net morphism.

Proof of laim.

Suppose that r = �

S

(s). We have to hek that M

TS

in

(r) = M

in

(s). We know

that M

TS

in

(r) = r(q

in

) and that M

in

(s) = r

s

(M

in

). Sine r = r

�1

s

, it follows that

r(q

in

) = r

s

(f(q

in

)) = r

s

(M

in

).

Suppose that e 2 E and �

T

(e) is unde�ned. We have to show that �

�1

S

(

�

e) =

�

�1

S

(e

�

) = ;. Consider any r 2

�

e suh that r = �

S

(s), for some s 2 S. Then

W

TS

(r; e) =

r

e. But, sine r = r

�1

s

and f(e) = �

T

(e) is unde�ned, we must

have r(e) = (0; 0), and therefore W

TS

(r; e) = 0, whih ontradits r 2

�

e. Thus,

�

�1

S

(

�

e) = ;. Similarly, we an show that �

�1

S

(e

�

) = ;.

On the other hand, suppose that e 2 E and �

T

(e) = t. Then, we have to show

that �

�1

S

(

�

e) =

�

t and �

�1

S

(e

�

) = t

�

. We also have to establish that for eah s 2

�

t,

W (s; t) =W

TS

(�

S

(s); e), and for eah s 2 t

�

, W (t; s) =W

TS

(e; �

S

(s)).

We �rst show that �

�1

S

(

�

e) �

�

t. Let r 2

�

e and let s 2 �

�1

S

(r). Sine r =

r

�1

s

and f(e) = �

T

(e) is de�ned, we must have r(e) = r

s

(f(e)) = r

s

(t) and so

W

TS

(r; e) =

r

e =

r

s

t =W (s; t). Thus, if r 2

�

e then s 2

�

t.

Conversely, we show that

�

t � �

�1

S

(

�

e). Suppose that s 2

�

t. Sine f(e) is

de�ned and r

s

(f(e)) 6= (0; 0), r

�1

s

is a non-trivial region r 2 R

TS

. Thus, �

S

(s) = r

and by the de�nition of r

�1

s

, r(e) = r

s

(t) and so W (s; t) =

r

s

t =

r

e = W

TS

(r; e).

Thus s 2

�

t implies �

S

(s) = r 2

�

e.

From this it follows that �

�1

S

(

�

e) =

�

t. Similarly, we an establish that �

�1

S

(e

�

) =

t

�

.

The fat that for eah s 2

�

t, W (s; t) = W

TS

(�

S

(s); e) and for eah s 2 t

�

,

W (t; s) =W

TS

(e; �

S

(s)) again follows easily from the de�nition of r

�1

s

.

Claim B. NT(�) Æ �

TS

= f .
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Proof of laim. Let f

0

= NT(�)Æ�

TS

. Then f

0

E

= NT(�)

E

Æid

E

= NT(�)

E

= �

T

.

But, �

T

= f

E

by de�nition. Hene f

0

E

= f

E

and so, by Lemma 11, f

0

= f and we

are done.

Claim C. � is unique.

Proof of laim. We have to show that if �

0

: TN

O

(TS) ! PN is any net

morphism suh that NT(�

0

) Æ �

TS

= f , then �

0

= �.

We know that f

E

= �

T

Æ �

TS

E

= �

0

T

Æ �

TS

E

. Sine �

TS

E

= id

E

, we have

f

E

= �

T

= �

0

T

. But, we know that TN

O

(TS) is simple with respet to plaes and

has no isolated plaes (by Proposition 20). So, by Lemma 16, we have �

S

= �

0

S

as

well.

Returning to the main proof, Claims A, B and C establish that the diagram shown

in Figure 7 ommutes. From [8℄, it then follows that TN

O

an be uniquely extended

to a funtor TN from PNts to PNet whih is the left adjoint of NT.

Sine �, the unit of the adjuntion, is an isomorphism, we have, in fat, a

oreetion between TN and NT. 2

If we work out the way TN maps morphisms, it turns out to be the following.

Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition systems and let f :

TS

1

! TS

2

be a transition system morphism. Then TN(f) is the map �

f

where

�

f

S

: R

TS

2

* R

TS

1

is given by

8r

2

2 R

TS

2

: �

f

S

(r

2

) =

�

r

�1

2

if r

�1

2

2 R

TS

1

unde�ned otherwise

�

f

T

: E

1

* E

2

= f

E

.

9. Universal Construtions

Having established the oreetion between the ategories PNts and PNet , we now

look at some universal onstrutions in these ategories.

It is easy to verify that the trivial transition system TS = (fq

in

g; ;;!; q

in

),

where != f(q

in

; O

;

; q

in

)g, is both an initial and a terminal objet in PNts . Simi-

larly, its image in PNet , the empty net PN = (;; ;; ;; O

;

), is the initial and terminal

objet in PNet .

The standard produt onstrution goes through for both PN-transition systems

and Petri nets. For Petri nets, the produt of two nets is the synhronized parallel

omposition of the two nets.

De�nition 24. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets. De�ne

the Petri net PN

1�2

= (S

1�2

; T

1�2

;W

1�2

;M

1�2

in

) as follows.

� S

1�2

= (S

1

� f�g) [ (f�g � S

2

), where � =2 S

1

[ S

2

.

� T

1�2

= (T

1

� T

2

) [ (T

1

� f�g) [ (f�g � T

2

), where � =2 T

1

[ T

2

.
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� 8s 2 S

1�2

: 8t 2 T

1�2

: W

1�2

(s; t) =

8

>

>

>

>

<

>

>

>

>

:

W

1

(s

1

; t

1

) if s = (s

1

; �) and

t = (t

1

; �) or t = (t

1

; t

2

)

W

2

(s

2

; t

2

) if s = (�; s

2

) and

t = (�; t

2

) or t = (t

1

; t

2

)

0 otherwise

� 8s 2 S

1�2

: 8t 2 T

1�2

: W

1�2

(t; s) =

8

>

>

>

>

<

>

>

>

>

:

W

1

(t

1

; s

1

) if s = (s

1

; �) and

t = (t

1

; �) or t = (t

1

; t

2

)

W

2

(t

2

; s

2

) if s = (�; s

2

) and

t = (�; t

2

) or t = (t

1

; t

2

)

0 otherwise

� 8s 2 S

1�2

: M

1�2

in

(s) =

�

M

1

in

(s

1

) if s = (s

1

; �)

M

2

in

(s

2

) if s = (�; s

2

)

De�ne morphisms �

i

: PN

1�2

! PN

i

, i = 1; 2, as follows:

� 8s 2 S

1

: �

1

S

(s) = (s; �):

8t 2 T

1�2

: �

1

T

(t) = t

1

if t = (t

1

; �) or t = (t

1

; t

2

):

� 8s 2 S

2

: �

2

S

(s) = (�; s):

8t 2 T

1�2

: �

2

T

(t) = t

2

if t = (�; t

2

) or t = (t

1

; t

2

):

Lemma 25. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets. The produt

of these two nets is the Petri net PN

1�2

= (S

1�2

; T

1�2

;W

1�2

;M

1�2

in

) equipped with

the projetions �

i

, i = 1; 2, de�ned above.

Proof. It is easy to verify that �

1

and �

2

are PN-morphisms from PN

1�2

to PN

1

and PN

2

respetively.

To prove that PN

1�2

together with �

1

and �

2

atually is the produt of PN

1

and PN

2

, we have to establish the following.

Claim. For any other net PN = (S; T;W;M

in

) suh that there exist morphisms

f

i

: PN ! PN

i

, i = 1; 2, there is a unique morphism g : PN ! PN

1�2

suh that

f

i

= �

i

Æ g, i = 1; 2.

Proof of laim.

It is onvenient to �rst de�ne total funtions

^

f

i

: T ! (T

i

[ f�g), i = 1; 2, as

follows.

8t 2 T:

^

f

i

(t) =

�

f

i

(t) if f

i

(t) de�ned

� otherwise

Now, de�ne g : PN ! PN

1�2

as follows.

8s 2 S

1�2

: g

S

(s) =

8

<

:

f

1

(s

1

)

f

2

(s

2

)

unde�ned

if s = (s

1

; �) and f

1

(s

1

) de�ned

if s = (�; s

2

) and f

2

(s

2

) de�ned

otherwise

8t 2 T: g

T

(t) =

�

unde�ned

(

^

f

1

(t);

^

f

2

(t))

if

^

f

1

(t) =

^

f

2

(t) = �

otherwise
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It is easy to verify that g is a PN-morphism and that f

i

= �

i

Æ g, i = 1; 2, and,

furthermore, that it is the unique map from PN to PN

1�2

with this property. 2

Sine the right adjoint preserves limits, and, further, every PN-transition system

in PNts is the image of some net in PNet , we know that PNts has produts as

well. It is straightforward to verify that the produt of two PN-transition systems

TS

1

and TS

2

is the transition system TS

1�2

equipped with projetions �

1

and �

2

as de�ned below.

De�nition 26. Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition systems.

Let the transition system TS

1�2

= (Q

1�2

; E

1�2

;!

1�2

; q

1�2

in

) be de�ned as follows:

� Q

1�2

= Q

1

�Q

2

.

� E

1�2

= (E

1

�E

2

) [ (E

1

� f�g) [ (f�g �E

2

).

� !

1�2

= f((q

1

; q

2

); u; (q

0

1

; q

0

2

)) j where u 2 MS

�n

(E

1�2

) and there exists

u

i

2 MS

�n

(E

i

), i = 1; 2, suh that:

� (q

i

; u

i

; q

0

i

) 2 !

i

.

� 8e

1

2 E

1

: u

1

(e

1

) = u((e

1

; �)) +

X

e

2

2E

2

u((e

1

; e

2

)).

� 8e

2

2 E

2

: u

2

(e

2

) = u((�; e

2

)) +

X

e

1

2E

1

u((e

1

; e

2

)).

g.

De�ne morphisms �

i

: TS

1�2

! TS

i

, i = 1; 2, as follows:

� �

1

Q

((q

1

; q

2

)) = q

1

:

�

1

E

((e

1

; �)) = �

1

E

((e

1

; e

2

)) = e

1

:

� �

2

Q

((q

1

; q

2

)) = q

2

:

�

2

E

((�; e

2

)) = �

2

E

((e

1

; e

2

)) = e

2

:

It turns out that PNet also has oproduts. If the initial markings of the

two nets are reasonably similar, then the sum of the two nets represents non-

deterministi hoie. If the initial markings are dissimilar, then the sum orresponds

to the asynhronous parallel omposition of the two nets.

De�nition 27. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets. De�ne

the Petri net PN

1+2

= (S

1+2

; T

1+2

;W

1+2

;M

1+2

in

) as follows.

� S

1+2

= (S

1

� f�g) [ (f�g � S

2

) [

f(s

1

; s

2

)js

1

2 S

1

; s

2

2 S

2

;M

1

in

(s

1

) =M

2

in

(s

2

)g; where � =2 S

1

[ S

2

.

� T

1+2

= (T

1

� f�g) [ (f�g � T

2

), where � =2 T

1

[ T

2

.

� 8s 2 S

1+2

: 8t 2 T

1+2

: W

1+2

(s; t) =

8

>

>

>

>

<

>

>

>

>

:

W

1

(s

1

; t

1

) if t = (t

1

; �) and

s = (s

1

; �) or s = (s

1

; s

2

)

W

2

(s

2

; t

2

) if t = (�; t

2

) and

s = (�; s

2

) or s = (s

1

; s

2

)

0 otherwise
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� 8s 2 S

1+2

: 8t 2 T

1+2

: W

1+2

(t; s) =

8

>

>

>

>

<

>

>

>

>

:

W

1

(t

1

; s

1

) if t = (t

1

; �) and

s = (s

1

; �) or s = (s

1

; s

2

)

W

2

(t

2

; s

2

) if t = (�; t

2

) and

s = (�; s

2

) or s = (s

1

; s

2

)

0 otherwise

� 8s 2 S

1+2

: M

1+2

in

(s) =

�

M

1

in

(s

1

) if s = (s

1

; �) or s = (s

1

; s

2

)

M

2

in

(s

2

) if s = (�; s

2

)

De�ne morphisms in

i

: PN

i

! PN

1+2

, i = 1; 2, as follows:

� 8s 2 S

1+2

: in

1

S

(s) = s

1

if s = (s

1

; �) or s = (s

1

; s

2

):

8t 2 T

1

: in

1

T

(t) = (t; �):

� 8s 2 S

1+2

: in

2

S

(s) = s

2

if s = (�; s

2

) or s = (s

1

; s

2

):

8t 2 T

2

: in

2

T

(t) = (�; t):

So, given transitions t

1

2 T

1

and t

2

2 T

2

that are enabled at the initial markings

M

1

in

and M

2

in

respetively, PN

1+2

will have a ommon input plae for t

1

and t

2

provided there is an s

1

2

�

t

1

and an s

2

2

�

t

2

suh that M

1

in

(s

1

) = M

2

in

(s

2

).

This represents a kind of non-deterministi hoie between (t

1

; �) and (�; t

2

) in the

omposite net PN

1+2

. On the other hand, if we annot �nd s

1

2

�

t

1

and s

2

2

�

t

2

suh that M

1

in

(s

1

) = M

2

in

(s

2

), then both (t

1

; �) and (�; t

2

) will be independently

enabled at the initial marking M

1+2

in

in PN

1+2

, orresponding to the asynhronous

parallel omposition of t

1

and t

2

.

Lemma 28. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets. The oprod-

ut of these two nets is the Petri net PN

1+2

= (S

1+2

; T

1+2

;W

1+2

;M

1+2

in

) equipped

with the injetions in

i

, i = 1; 2, de�ned above.

Proof. It is easy to verify that in

1

and in

2

are PN-morphisms from PN

1

to

PN

1+2

and PN

2

to PN

1+2

respetively.

To prove that PN

1+2

together with in

1

and in

2

atually is the oprodut of

PN

1

and PN

2

, we have to establish the following.

Claim. For any other net PN = (S; T;W;M

in

) suh that there exist morphisms

f

i

: PN

i

! PN , i = 1; 2, there is a unique morphism g : PN

1+2

! PN suh that

f

i

= g Æ in

i

, i = 1; 2.

Proof of Claim.

For onveniene, we �rst de�ne total funtions

^

f

i

: S ! (S

i

[ f�g), i = 1; 2, as

follows.

8s 2 S:

^

f

i

(s) =

�

f

i

(s) if f

i

(s) de�ned

� otherwise

Now, de�ne g : PN

1+2

! PN as follows.
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8s 2 S: g

S

(s) =

�

unde�ned

(

^

f

1

(s);

^

f

2

(s))

if

^

f

1

(s) =

^

f

2

(s) = �

otherwise

8t 2 T

1+2

: g

T

(t) =

8

<

:

f

1

(t

1

)

f

2

(t

2

)

unde�ned

if t = (t

1

; �) and f

1

(t

1

) de�ned

if t = (�; t

2

) and f

2

(t

2

) de�ned

otherwise

We �rst verify that g is a PN-morphism. It is straightforward to hek that

8s 2 S: 8s

0

2 S

1+2

: g(s) = s

0

implies M

in

(s) =M

1+2

in

(s

0

):

Next, suppose g(t

0

) is unde�ned for t

0

2 T

1+2

. We have to show that g

�1

(

�

t

0

) =

g

�1

(t

0

�

) = ;. Let s

0

2

�

t

0

. Without loss of generality, let t

0

= (t

1

; �). Then it

is lear that s

0

is of the form (s

1

; x), where s

1

2

�

t

1

in PN

1

and x 2 S

2

[ f�g.

If s

0

= g(s) for some s 2 S, then this implies that s

1

= f

1

(s). But we know

that f

1

(t

1

) is unde�ned as well and so f

�1

1

(

�

t

1

) = ;. In partiular, f

�1

1

(s

1

) = ;

and so g

�1

(s

0

) = ; as well. Sine s

0

was an arbitrary plae in

�

t

0

it follows that

g

�1

(

�

t

0

) = ;. By a similar argument, g

�1

(t

0

�

) = ; as well.

On the other hand suppose that g(t

0

) = t for t

0

2 T

1+2

and t 2 T . Then, we have

to show that g

�1

(

�

t

0

) =

�

t and g

�1

(t

0

�

) = t

�

. We also have to establish that for

eah s 2

�

t, W (s; t) =W

1+2

(g(s); t

0

) and for eah s 2 t

�

, W (t; s) =W

1+2

(t

0

; g(s)).

Without loss of generality, assume that t

0

is of the form (t

1

; �).

We �rst show that g

�1

(

�

t

0

) �

�

t. Let s

0

2

�

t

0

. Clearly s

0

must be of the

form (s

1

; x), where s

1

2

�

t

1

in PN

1

and x 2 S

2

[ f�g. Then, s 2 g

�1

(s

0

) implies

s 2 f

�1

1

(s

1

). But f

1

(t

1

) = t

0

and so f

�1

1

(

�

t

1

) =

�

t. Hene, it follows that if s

1

2

�

t

1

then s 2

�

t. So s 2 g

�1

(

�

t

0

) implies s 2

�

t.

Conversely, let s 2

�

t. Then, sine f

1

(t

1

) = t, we know that f

1

(s) = s

1

for

some s

1

2

�

t

1

in PN

1

. It follows that g(s) = (s

1

; x), where x =

^

f

2

(s) and (s

1

; x) 2

�

(t

1

; �). So

�

t � g

�1

(

�

t

0

).

So we have shown that g

�1

(

�

t

0

) =

�

t. A similar argument establishes that

g

�1

(t

0

�

) = t

�

.

The fat that for eah s 2

�

t, W (s; t) = W

1+2

(g(s); t

0

) and for eah s 2 t

�

,

W (t; s) =W

1+2

(t

0

; g(s)) follow easily from the de�nition of g and W

1+2

.

To show that g is the unique map from PN

1+2

! PN suh that f

i

=

g Æ in

i

, i = 1; 2, we establish that g

S

: S ! S

1+2

is the unique map suh that

f

i

S

= in

i

S

Æ g

S

, i = 1; 2, and g

T

: T

1+2

! T is the unique map suh that

f

i

T

= g

T

Æ in

i

T

, i = 1; 2.

First de�ne the maps

b

in

i

: S

1+2

! S

i

[ f�g, i = 1; 2, as follows.

8s 2 S

1+2

:

b

in

i

(s) =

�

in

i

(s) if in

i

(s) de�ned

� otherwise

Now de�ne the maps hin

1

S

; in

2

S

i : S

1+2

! (S

1

[f�g)�(S

2

[f�g) and hf

1

S

; f

2

S

i :

S ! (S

1

[ f�g)� (S

2

[ f�g) suh that

8s 2 S

1+2

: hin

1

S

; in

2

S

i(s) = (

b

in

1

(s);

b

in

2

(s)):

8s 2 S: hf

1

S

; f

2

S

i(s) = (

^

f

1

(s);

^

f

2

(s)):
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Figure 8: A Na��ve Coprodut Constrution in PNts

To establish that g

S

is the unique map suh that f

i

S

= in

i

S

Æ g

S

, i = 1; 2, it

suÆes to show that g

S

is the unique map suh that hf

1

S

; f

2

S

i = hin

1

S

; in

2

S

i Æ g

S

.

Suppose that there is some other g

0

S

suh that hf

1

S

; f

2

S

i = hin

1

S

; in

2

S

i Æ g

0

S

=

hin

1

S

; in

2

S

i Æ g

S

. Sine hin

1

S

; in

2

S

i is an injetive total funtion from S

1+2

to

(S

1

[ f�g)� (S

2

[ f�g) , it follows that g

0

S

= g

S

.

To show that g

T

is the unique map suh that f

i

T

= g

T

Æ in

i

T

, i = 1; 2, de�ne

maps hf

1

T

+ f

2

T

i : T

1

℄ T

2

! T and hin

1

T

+ in

2

T

i : T

1

℄ T

2

! T

1+2

as follows

8t 2 T

1

℄ T

2

: hf

1

T

+ f

2

T

i(t) =

�

f

1

(t)

f

2

(t)

if t 2 T

1

otherwise

8t 2 T

1

℄ T

2

: hin

1

T

+ in

2

T

i(t) =

�

in

1

(t)

in

2

(t)

if t 2 T

1

otherwise

It then suÆes to show that g

T

is the unique map suh that hf

1

T

+ f

2

T

i =

g

T

Æ hin

1

T

+ in

2

T

i. Suppose that there is some other g

0

T

suh that hf

1

T

+ f

2

T

i =

g

0

T

Æ hin

1

T

+ in

2

T

i = g

T

Æ hin

1

T

+ in

2

T

i. Sine hin

1

T

+ in

2

T

i is a surjetive funtion

from T

1

℄ T

2

to T

1+2

, it follows that g

0

T

= g

T

. 2

On the other hand, for PN-transition systems, the situation regarding the exis-

tene of oproduts is not so straightforward.

For transition systems in general, there is a anonial way to form the oprodut|

given TS

1

and TS

2

, the transition system TS

1

+TS

2

is obtained by identifying the

initial states of TS

1

and TS

2

.
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This operation is well behaved for various speial lasses of transition systems|

for instane, the sum of two elementary transition systems de�ned in this manner

is also an elementary transition system [14℄ and the sum of two asynhronous tran-

sition systems is also an asynhronous transition system [20℄.

Unfortunately, it turns out that for PN-transition systems, this is not the ase.

In other words, it is possible to de�ne two PN-transition systems TS

1

and TS

2

suh that the transition system obtained by identifying their initial states is not a

PN-transition system.

Consider the transition systems shown in Figure 8. TS

1

is generated by PN

1

and TS

2

is generated by PN

2

so both TS

1

and TS

2

are PN-transition systems.

On the other hand the transition system TS

1+2

, obtained by forming the normal

oprodut of TS

1

and TS

2

, is not a PN-transition system. To see this, observe that

for any region r in TS

1+2

, r(s

i+1

) � r(s

i

) for all i 2 N

0

.

For, suppose there is some r

0

suh that r

0

(s

i+1

) < r

0

(s

i

) for some i 2 N

0

.

Then it must be the ase that

r

0

e

2

> e

2

r

0

and in fat r

0

(s

i+1

) < r

0

(s

i

) for every

i 2 N

0

. Sine r

0

(s

0

) is �nite, there must be some j 2 N

0

where r

0

(s

j

) <

r

0

e

2

, whih

ontradits the fat that e

2

is enabled at all s

i

; i 2 N

0

.

As a result, it follows that for all regions r, for all i 2 N

0

, r(s

i

) � r(s

0

) �

r

e

1

,

sine e

1

is enabled at s

0

. In other words, the states s

i

; i 2 f1; 2; : : :g, do not satisfy

axiom (A4) of PN-transition systems, beause e

1

is enabled by all regions at these

states and there is no e

1

transition out of these states.

However, we an show, indiretly, that PNts does have oproduts.

Lemma 29. The ategory PNts has oproduts.

Proof. Let TS

1

and TS

2

be two PN-transition systems. We want to �nd a PN-

transition system TS

1+2

and two maps in

i

: TS

i

! TS

1+2

, i = 1; 2, suh that

TS

1+2

equipped with the injetion morphisms in

1

and in

2

is a oprodut of TS

1

and TS

2

.

Let PN

1

= TN(TS

1

) and PN

2

= TN(TS

2

). Sine PNet has oproduts, we

an de�ne a net PN

1+2

whih, when equipped with injetions in

0

i

: PN

i

! PN

1+2

,

i = 1; 2, onstitutes a oprodut of PN

1

and PN

2

.

The result we are after hinges on the following:

Claim. PN

1+2

' TN Æ NT(PN

1+2

).

Assuming the laim for the moment, let � : PN

1+2

! TNÆNT(PN

1+2

) denote one

diretion of the isomorphism. We an onlude that TN Æ NT(PN

1+2

) equipped

with injetions � Æ in

0

i

: PN

i

! TN Æ NT(PN

1+2

), i = 1; 2, is also a oprodut of

PN

1

and PN

2

.

It follows from the fat that we have a oreetion between TN and NT that the

left adjoint, TN, is full and faithful. So, we an �nd maps in

i

: TS

i

! NT(PN

1+2

)

suh that TN(in

i

) = � Æ in

0

i

for i = 1; 2.

It is straightforward to show that full and faithful funtors reet oprodut

diagrams. Sine the oprodut diagram onsisting of PN

1

, PN

2

, TN ÆNT(PN

1+2

)

and the two injetion maps � Æ in

0

i

, i = 1; 2, lies within the range of TN, it follows

that the orresponding diagram in PNts onsisting of TS

1

, TS

2

, NT(PN

1+2

) and

the maps in

i

, i = 1; 2, onstitutes a oprodut diagram as well, and we are done.
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' NT(PN
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Figure 9:

To omplete the proof, we have to establish the laim that PN

1+2

is isomorphi

to TN Æ NT(PN

1+2

).

Proof of laim.

By the oreetion between TN and NT, we know that TS

i

is isomorphi to

NT(PN

i

), i = 1; 2 (reall that PN

i

abbreviates TN(TS

i

), i = 1; 2).

Sine TN is full and faithful, it preserves isomorphisms and thus PN

i

' TN Æ

NT(PN

i

), i = 1; 2.

Combining this isomorphism with TN Æ NT(in

0

i

), we have maps from PN

i

to

TN Æ NT(PN

1+2

) (see Figure 9). Sine PN

1+2

equipped with the injetions in

0

1

and in

0

2

is a oprodut of PN

1

and PN

2

, we have a unique map � : PN

1+2

!

TN Æ NT(PN

1+2

) suh that � Æ in

0

i

= TN Æ NT(in

0

i

), i = 1; 2 (where we ignore the

isomorphism between PN

i

and TN Æ NT(PN

i

), i = 1; 2, from now on).

From the way the adjuntion is de�ned, it follows that the set of transitions of

PN

1+2

, T

PN

1+2

, is the same as the set of transitions of TNÆNT(PN

1+2

). Similarly,

T

PN

i

= T

TNÆNT(PN

i

)

, for i = 1; 2.

As in the proof of Lemma 28, we an de�ne maps hin

0

1

T

+ in

0

2

T

i and h(TN Æ

NT(in

0

1

))

T

+ (TN Æ NT(in

0

2

))

T

i from T

PN

1

℄ T

PN

2

! T

PN

1+2

. It follows from the

way the funtors NT and TN are de�ned that hin

0

1

T

+ in

0

2

T

i = h(TN ÆNT(in

0

1

))

T

+

(TN Æ NT(in

0

2

))

T

i.

We know that �

T

Æhin

0

1

T

+ in

0

2

T

i = h(TNÆNT(in

0

1

))

T

+(TNÆNT(in

0

2

))

T

i. Sine

hin

0

1

T

+ in

0

2

T

i is a surjetive map onto T

1+2

, it must be the ase that �

T

is the

identity map on T

PN

1+2

.

In the other diretion, the ounit of the adjuntion de�nes a map "

PN

1+2

from

TN ÆNT(PN

1+2

) to PN

1+2

. It follows from the way the adjuntion is de�ned that

471





m

  

   

- - - -

? ? ? ?

� � �

� � �

s

0

s

1

s

2

s

3

s

0

0

s

0

1

s

0

2

s

0

3

e

2

e

2

e

2

e

2

e

1

e

1

e

1

e

1

Figure 10: The oprodut of TS

1

and TS

2

(from Figure 8)

("

PN

1+2

)

T

is the identity map on T

PN

1+2

as well.

Thus, (� Æ "

PN

1+2

)

T

is the identity map on T

PN

1+2

. We know that TN Æ

NT(PN

1+2

) is simple with respet to plaes and has no isolated plaes. Hene,

from Lemma 16, we an onlude that that � Æ "

PN

1+2

= id

TNÆNT(PN

1+2

)

sine the

two morphisms agree on the way they map transitions.

Similarly, ("

PN

1+2

Æ �)

T

is the identity map on T

PN

1+2

. Sine PN

1

and PN

2

are both simple respet to plaes and have no isolated plaes, it is not diÆult to

show, from De�nition 27, that PN

1+2

is also simple with respet to plaes and has

no isolated plaes. Hene, we an appeal to Lemma 16 one again to onlude that

"

PN

1+2

Æ � = id

PN

1+2

.

Thus, we have established that � and "

PN

1+2

onstitute an isomorphism between

PN

1+2

and TN Æ NT(PN

1+2

) and we are done.

2

Using Lemma 29, we an show that the transition system shown in Figure 10,

together with the obvious injetion maps, is the oprodut of the transition systems

TS

1

and TS

2

shown in Figure 8.

10. Disussion

In this paper, we have established a oreetion between the ategory PNts of

PN-transition systems and the ategory PNet of Petri nets.

This oreetion essentially means that the ategory PNts an be embedded

in PNet|in other words, PN-transition systems an be viewed as a sub-model of

Petri nets. One ruial advantage of having oreetions between di�erent models

of onurreny is that we an automatially translate results from one model to

another. For instane, to obtain a non-interleaved model for a proess alulus

suh as CCS [9℄, it is intuitively easier to enrih the standard interleaved transition

system semantis to obtain a more faithful representation of onurreny, rather

than providing a semantis diretly in terms of nets [3, 15℄ or event strutures [19℄.

So, for example, we an use a very simple extension of the standard operational

semantis for CCS to provide a non-interleaved semantis for a rih sublass of the

language in terms of asynhronous transtition systems [13℄. These asynhronous

transition systems belong to the speial subategory shown to orrespond losely

to safe nets in [20℄. This implies that we obtain \for free" a net semantis for this

language.
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An advantage of working with ategories is that many interesting operations that

one de�nes on these models an be aptured as universal ategorial onstrutions.

For instane, parallel omposition orresponds to a notion of ategorial produt,

while nondeterministi hoie an be desribed in terms of oproduts. Thus, by

relating ategories of models, we an also ompare how these onstrutions behave

in di�erent models. This issue is disussed in some detail in [20℄, where a number

of relationships between models for onurreny are established in a ategorial

setting, spanning the spetrum of linear-time, branhing-time and partial-order

approahes to modelling the behaviour of onurrent systems.

In establishing our oreetion, we have plaed no restritions on the nets in

PNet . In partiular, we permit isolated transitions in our nets. Behaviourally,

isolated transitions have the unpleasant side-e�et of introduing unbounded on-

urreny into the system. Thus, a useful restrition to plae on nets is that every

transition has an input plae. The orresponding restrition on PN-transition sys-

tems is that the steps enabled at any state should be bounded. By introduing

these restritions, we obtain full subategories of PNts and PNet whih are also

related by a oreetion.

We have also removed the restrition imposed by Nielsen, Rozenberg and Thia-

garajan [14℄ in onstruting their ategory of elementary net systems that the nets

be simple. This restrition is ruially used by them to establish the equivalent of

Lemma 16 for elementary net systems. However, as we have observed here, it is

suÆient to ensure that in going from PN-transition systems (elementary transition

systems) to Petri nets (elementary net systems), the nets that one onstruts are

simple. So, the oreetion between elementary transition systems and elemen-

tary net systems established in [14℄ ontinues to hold even when their ategory of

elementary net systems is extended to permit non-simple nets.

Our onstrution of a Petri net from a PN-transition system always gives rise to

an in�nite net (exept in the ase of the trivial transition system). This is beause

any non-negative linear ombination of regions is also a region and we saturate

the net with all possible non-trivial regions. So, it would be interesting to try and

haraterize those PN-transition systems whih an be desribed in terms of a �nite

basis set of regions.

For elementary transition systems, it is straightforward to see that a given

transition system an be represented as a �nite elementary net system if and only

if the set of states and the set of events of the transition system are �nite.

However, sine Petri nets an have plaes whih are unbounded, a �nite Petri

net an give rise to an in�nite PN-transition system.

Sine we are dealing with unlabelled strutures, the set of events of a PN-

transition system is the same as the set of transitions of the Petri net whose be-

haviour it represents. Thus, for a PN-transition system to have a representation as

a �nite net, it is neessary for its set of events to be �nite.

Unfortunately, this ondition is not suÆient. In [11℄, we show an example

of a Petri net that has a �nite number of transitions but an in�nite number of

(unbounded) plaes whose behaviour annot be simulated by any �nite net.

However, it is the ase that if both the set of events and the set of states of

a PN-transition system are �nite, then we an onstrut a �nite Petri net whose

behaviour is the same as that of the original transition system.
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We turn now to other ategories of Petri nets that have been desribed in the

literature|notably those of Winskel [18℄ and Meseguer and Montanari [10℄.

Our de�nition of net morphisms is a strengthened version of the one used by

Winskel in [18℄. Winskel permits the map on plaes to be an arbitrary relation (a-

tually a multirelation) in the forward diretion whih preserves the initial marking

and neighbourhoods of transitions. The main reason for this is to permit morphisms

between the unfolding of a net and the original net (for 1-safe nets). However, as has

been pointed out in [14℄, this relaxation does not permit us to establish an adjun-

tion between transition systems and nets. The essential problem is that we an, in

general, �nd more than one of Winskel's morphisms between a pair of nets desrib-

ing the same behavioural morphism between the orresponding transition systems.

This destroys the bijetion between hom(TN(TS);PN ) and hom(TS;NT(PN ))

whih is required for an adjuntion. The observation in [14℄ is made with respet

to elementary transition systems, but it holds for PN-transition systems as well.

Meseguer and Montanari [10℄ de�ne a variety of ategories based on Petri nets.

They regard multisets of plaes and transitions as ommutative monoids and, in the

most general ase, de�ne their net morphisms to be monoid homomorphisms over

both plaes and transitions whih respet the neighbourhoods of the transitions.

Their ategory MPetri

0

, where maps on plaes are monoid homomorphisms and

maps on transitions are partial funtions, is losest in spirit to our ategory PNet .

One again, we annot obtain an adjuntion using their net morphisms beause

there an be more than one suh net morphism orresponding to the same transition

system morphism. Also, inMPetri

0

initial markings are restrited to sets of plaes

(rather than multisets) in order for oproduts to exist. Given this restrition,

oproduts in MPetri

0

orrespond to non-deterministi hoie. In PNet no suh

restrition is neessary to obtain oproduts, and, as we have noted in the previous

setion, for nets satisfying suh a restrition on the initial marking, our oproduts

would also always orrespond to non-deterministi hoie.

Admittedly, our net morphisms appear to be fairly restritive when ompared

to those of [18℄ or [10℄. However, the restritions we impose on net morphisms seem

essential for establishing the orrespondene we would like between nets and tran-

sition systems, given our \free" onstrution of a net TN(TS) from a PN-transition

system TS, where all non-trivial regions are inluded as plaes in TN(TS). One

possible way to relax the notion of a net morphism and still obtain a oreetion

between PN-transition systems and nets is to tighten up the onstrution of a net

PN from a PN-transition system TS to inlude, say, only a basis set of regions as

plaes in PN , rather than all non-trivial regions.

Despite the restrited nature of our net morphisms, our oreetion does o�er

a solution to a general problem with net morphisms. Ideally, a morphism should

exist between nets PN

1

and PN

2

i� PN

2

an simulate the behaviour of PN

1

.

However, the struture of PN

1

and PN

2

will often rule out suh a morphism, even

when the behaviours of the two nets an be related. This is true even in the more

generous setup of [18℄ or [10℄ and is a onsequene of the fat that nets are too

onrete a representation of system behaviour. Our oreetion gives us a way to

get around this diÆulty. Suppose we have two nets PN

1

and PN

2

suh that there

is a transition system morphism from NT(PN

1

) to NT(PN

2

), but there is no net

morphism from PN

1

to PN

2

. We an onstrut the net TN Æ NT(PN

1

), whih is
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the \anonial" representation of PN

1

. The oreetion then guarantees that a

net morphism exists between TN Æ NT(PN

1

) and PN

2

. In fat, we do not even

need the entire net TN Æ NT(PN

1

) to obtain a morphism to PN

2

. If f is the map

between NT(PN

1

) and NT(PN

2

), it is suÆient to onstrut a net PN

0

1

from PN

1

by adding to PN

1

those plaes whih are inverse images via f of the speial regions

r

s

in NT(PN

2

) (reall that for eah plae s in PN

2

, we an assoiate a region r

s

in

NT(PN

2

)).

Another way that Meseguer and Montanari [10℄ generalize their net morphisms

is by permitting a single event in the soure net to map to a \omputation" of

the target net. In fat, in [18℄, Winskel also generalizes his morphisms to permit

an event to be mapped to a multiset of events rather than a single event. This

orresponds to a sort of re�nement operation. It would be interesting to see if suh

an idea ould be transported to our setup|this would also require us to de�ne a

more sophistiated notion of transition system morphism.

As we had mentioned in the introdution, our work is a generalization of the

results desribed in [14℄ dealing with elementary net systems. In addition, Winskel

and Nielsen [20℄ have established a similar result relating a sublass of asynhronous

transition systems to 1-safe Petri nets.

By tuning our regions appropriately, we an �t the results of [14℄ and [20℄ neatly

into our framework [12℄. To begin with, for a region r, we an restrit the range

of r

Q

to f0; 1g and the range of r

E

to f(0; 0); (0; 1); (1; 0); (1; 1)g. If we enfore

the regional axioms (A3) and (A4) for step transition systems in terms of this

restrited lass of regions, we obtain a full subategory of PNts onsisting of safe

PN-transition systems, whih orresponds to 1-safe Petri nets. For all transition

systems in this subategory, it turns out that the steps in the transition relation

onsist of only sets of events and not multisets beause autoonurreny is ruled

out.

Winskel and Nielsen have established a oreetion between a subategory of

asynhronous transition systems and safe nets [20℄. In an asynhronous transition

system, information about onurreny is inorporated in terms of a binary inde-

pendene relation on the events, rather than by adding struture to the labels of the

transitions as we have done here. At �rst sight, it appears that the ategory of safe

PN-transition systems should oinide with the subategory of asynhronous transi-

tion systems studied in [20℄. However, we an show that there is only a oreetion

between these two ategories [12℄, indiating that asynhronous transition systems

are a slightly more \onrete" model than safe PN-transition systems (though still a

more abstrat model than safe nets). This \onreteness" arises from the fat that

the independene relation an speify that two events are onurrent in an asyn-

hronous transition system even when there is no state at whih the onurreny

is atually exhibited in the behaviour of the system.

By further restriting the range of r

E

to exlude (1; 1), we obtain a full sub-

ategory of PNts alled elementary PN-transition systems, orresponding to ele-

mentary net systems. In [12℄, we establish an equivalene between our ategory

of elementary PN-transition systems and the ategory of elementary net systems

of Nielsen, Rozenberg and Thiagarajan [14℄. Sine elementary transition systems

are a sublass of onventional sequential transition systems, this ategorial equiv-

alene o�ers an alternative proof of the result of Hoogeboom and Rozenberg [6℄
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Figure 11: Relating various models for onurreny

that for elementary transition systems, no information about onurreny is lost

by restriting one's attention to sequential transition systems.

The relationship between these di�erent models is summarized in Figure 11.

The vertial arrows (*) indiate oreetions; the arrow indiates the diretion of

the left adjoint.

It also turns out that if we are interested only in the sequential behaviour of Petri

nets, we an haraterize Petri nets using onventional transition systems. Suppose

we onsider purely sequential transition systems (thereby restriting our attention

to the sequential �ring sequenes of Petri nets). We then get an obvious sequential

de�nition of a region and we an impose the orresponding regional axioms to

obtain a ategory of sequential PN-transition systems. Somewhat surprisingly, it

turns out that we an establish a oreetion between this ategory of sequential

PN-transition systems and the ategory PNet [12℄. In this setup, every net PN will

have a anonial representation TN Æ NT(N) whih is purely sequential|i.e. there

will be a plae s in TN Æ NT(N) suh that for every transition t in TN Æ NT(N),

W (s; t) =W (t; s) = 1.

The observation that we an use both sequential and step transition systems to

haraterize Petri nets seems to indiate that we an use objets like PN-transition

systems to bridge the gap between interleaving and non-interleaving models of

onurreny in a smooth way.

We onlude by pointing out a major issue whih we have ignored in our study|

that of labelling. In the theory of Petri nets, abstration is ahieved by adding a

set of labels whih an be assoiated with the underlying events of the system.

This is ruial for using nets to provide, say, a semantis for CCS-like langages.

In [20℄, labelling is introdued into the ategorial treatment of di�erent models of

onurreny by means of �brations and o�brations. Though they point out some

problems in de�ning these onstrutions over ategories of nets, it does not seem
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to prevent the oreetion between unlabelled transition systems and unlabelled

nets from being extended to the orresponding labelled ategories. So, while we

have not expliitly handled labelling in our framework, we are on�dent that we

an follow the route set out in [20℄ without too muh diÆulty.
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