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ABSTRACT

Labelled transition systems are a simple yet powerful formalism for des
ribing the operational

behaviour of 
omputing systems. They 
an be extended to model 
on
urren
y faithfully by

permitting transitions between states to be labelled by a 
olle
tion of a
tions, denoting a


on
urrent step.

Petri nets (or Pla
e/Transition nets) give rise to su
h step transition systems in a natural

way|the marking diagram of a Petri net is the 
anoni
al transition system asso
iated with it.

In this paper, we 
hara
terize the 
lass of PN-transition systems, whi
h are pre
isely those

step transition systems generated by Petri nets.

We express the 
orresponden
e between PN-transition systems and Petri nets in terms

of an adjun
tion between a 
ategory of PN-transition systems and a 
ategory of Petri nets

in whi
h the asso
iated morphisms are behaviour-preserving in a strong and natural sense.

Keywords: Petri nets, models for 
on
urren
y, 
ategory theory

1. Introdu
tion

Transition systems are an appealingly simple yet powerful formalism for des
rib-

ing the operational behaviour of models of 
on
urren
y. They provide a 
ommon

framework for investigating the relationships between di�erent models of distributed

systems.

Nielsen, Rozenberg and Thiagarajan [14℄ have established a 
lose 
orrespon-

den
e between a 
lass of transition systems 
alled elementary transition systems

and a basi
 model of net theory 
alled elementary net systems. They des
ribe

this 
orresponden
e in terms of a 
ore
e
tion between a 
ategory of elementary

transition systems and a 
ategory of elementary net systems.

Here, we extend the results of [14℄ to a mu
h ri
her model of net theory 
alled

Petri nets (also known as Pla
e/Transition nets). Petri nets give rise to transition

systems in a natural way|the rea
hability graph of a Petri net de�nes a 
anoni
al

transition system asso
iated with it. In this paper, we 
hara
terize a sub
lass of

transition systems 
alled PN-transition systems, whi
h are pre
isely those transition

systems generated by (unlabelled) Petri nets.

The results of [14℄ are established within the framework of 
onventional sequen-

tial transition systems, where the transitions are labelled by single events. Be
ause

of the relatively un
ompli
ated stru
ture of elementary net systems, information

443



about 
on
urren
y 
an be re
overed from the sequential transition relation of an

elementary transition system by 
he
king lo
al \diamond" properties.

However, when we move over to Petri nets, we need to introdu
e expli
it in-

formation about 
on
urren
y into our transition systems. For instan
e, 
onsider

the two nets in Figure 1. Both give rise to the same sequential transition system,

shown on the right. However, in the �rst net a and b 
an o

ur 
on
urrently, while

in the se
ond net a and b 
an o

ur only sequentially (though in any order).

Thus, to represent 
on
urren
y faithfully, we shall enri
h the transition relation

by permitting one state to be transformed to another in a single step 
onsisting of

a �nite multiset of a
tions. (We have to permit multisets and not just sets be
ause

of auto
on
urren
y.)

We 
all this new 
lass of transition systems step transition systems. PN-

transition systems are de�ned as a sub
lass of step transition systems whi
h satisfy


ertain restri
tions that ensure that the steps are \
onsistent".

As in [14℄, we des
ribe the 
onne
tion between Petri nets and PN-transition

systems using the language of 
ategory theory. We �rst de�ne a 
ategory PNts

whose obje
ts are PN-transition systems and whose arrows are standard transition

system morphisms, extended to respe
t steps. We then 
onstru
t a 
ategory PNet

of Petri nets. The morphisms we de�ne between nets are a smooth generalization of

the morphisms de�ned between elementary net systems in [14℄. These morphisms

are strengthened versions of the morphisms de�ned by Winskel [18℄. They preserve

the dynami
 behaviour of nets in a strong way.

There is a natural fun
tor NT : PNet ! PNts whi
h maps ea
h Petri net to

the transition system asso
iated with its marking diagram. Our main result is the


onstru
tion of a fun
tor TN : PNts ! PNet whi
h is left adjoint to NT. In

fa
t, the unit of the adjun
tion is a natural isomorphism, so we a
tually have a


ore
e
tion between this pair of fun
tors.

To 
onstru
t a Petri net 
orresponding to a PN-transition system, we have to


onstru
t pla
es whi
h appropriately 
onstrain the behaviour of the net. To do

this, we generalize the notion of a region.

Regions are used by Nielsen, Rozenberg and Thiagarajan in [14℄ to de�ne the


onditions of an elementary net system 
orresponding to a given elementary transi-

tion system. Their notion 
an be generalized in several ways to 
hara
terize 
lasses
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of transition systems 
orresponding to di�erent models of 
on
urren
y. For in-

stan
e, Winskel and Nielsen [20℄ use a version of regions to establish a 
ore
e
tion

between a spe
ial 
lass of asyn
hronous transition systems [1, 17℄ and 1-safe Petri

nets. On a slightly di�erent tra
k, Hoogers, Kleijn and Thiagarajan [5℄ use regions

to obtain a language-theoreti
 
hara
terization of the non-sequential behaviour of

Petri nets in terms of a generalized version of Mazurkiewi
z tra
e languages. We

shall dis
uss the relationship between our regions and these other notions in the


on
luding se
tion.

The paper is organized as follows. We begin with the de�nition of step transition

systems, followed by a brief introdu
tion to Petri nets. In Se
tion 4, we des
ribe

the 
lass of PN-transition systems and 
onstru
t the 
ategory PNts in Se
tion 5.

Next, we show how to de�ne a 
ategory PNet of Petri nets. In Se
tion 7, we


onstru
t the fun
tor NT : PNet ! PNts whi
h serves as the right adjoint of the

adjun
tion des
ribed in Se
tion 8. In se
tion 9, we dis
uss the existen
e of universal


onstru
tions su
h as produ
ts and 
oprodu
ts in the 
ategoriesPNts and PNet . In

the 
on
luding se
tion, we tie up some loose ends and dis
uss possible extensions of

our work. We also 
ompare our 
ategories PNts and PNet with related formalisms

des
ribed in the literature.

2. Step Transition Systems

A transition system is usually de�ned as a quadruple TS = (Q;�;!; q

in

), where

Q is a set of states and ! � Q���Q is a (sequential) transition relation whi
h

des
ribes how the system evolves from state to state by performing a
tions from �,

beginning with the initial state q

in

.

We enri
h the transition relation by permitting one state to be transformed to

another in a single step 
onsisting of a �nite multiset of a
tions. Later, we shall

de�ne the 
lass of PN-transition systems as a sub
lass of this new 
lass of transition

systems whi
h satis�es some simple axioms ensuring that all the steps in the system

are \
onsistent".

We �rst �x some terminology and notation regarding multisets.

De�nition 1. Let A be a set.

� A multiset u over A is a fun
tion u : A! N

0

, where N

0

is the set of natural

numbers f0; 1; 2; : : :g. The set of all multisets over A is denoted by MS (A).

� For u 2 MS (A), let juj, the size of u, be given by

P

a2A

u(a). u is �nite i�

juj is �nite. The set of all �nite multisets over A is denoted by MS

�n

(A).

� The empty multiset over A is the unique fun
tion O

A

: A ! N

0

su
h that

8a 2 A: O

A

(a) = 0. If A is 
lear from the 
ontext, we shall often use just O

to mean O

A

.

� Let u; v 2 MS (A). Then u is a submultiset of v, written u �

MS

v, in 
ase

8a 2 A: u(a) � v(a).

Thus, if u is a multiset over A, for ea
h a 2 A, u(a) is the number of o

urren
es of a

in u. Abusing notation, we shall write a 2 u to signify that u(a) � 1. For simpli
ity,
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we shall usually write out multisets as sets with multipli
ities|for instan
e, if

a; b 2 A, then fa; a; bg denotes the multiset u over A whi
h assigns u(a) = 2,

u(b) = 1 and u(
) = 0 for all 
 2 A su
h that 
 6= a and 
 6= b.

Multisets 
an be added and subtra
ted pointwise | if u and v are two multisets

over A, then u+ v and u� v are de�ned as follows:

8a 2 A: (u+ v)(a) = u(a) + v(a).

If v �

MS

u then 8a 2 A: (u� v)(a) = u(a)� v(a).

Given a partial fun
tion f : A * B between sets, f 
an be extended in a natural

way to a (total) fun
tion

^

f : MS

�n

(A)! MS

�n

(B) as follows:

8u 2 MS

�n

(A): 8b 2 B:

^

f(u)(b) =

X

fa2Ajf(a)=bg

u(a):

By 
onvention,

^

f(u) = O

B

in 
ase f(a) is unde�ned for all a 2 u.

For 
onvenien
e, we shall denote both f and its extension

^

f to multisets by f .

De�nition 2. A step transition system is a stru
ture TS = (Q;E;!; q

in

), where

� Q is a 
ountable set of states, with q

in

2 Q as the initial state.

� E is a 
ountable set of events.

� ! � Q�MS

�n

(E)�Q is the transition relation.

We shall often write q

u

! q

0

instead of (q; u; q

0

) 2 !. We also write q

u

! to denote

that u is enabled at q|i.e. 9q

0

2 Q: (q; u; q

0

) 2 !.

We 
an extend ! to a relation !

�

over step sequen
es in the usual way. Let

� = u

1

u

2

: : : u

n

2 (MS

�n

(E))

�

be a sequen
e of steps. Then (q; �; q

0

) 2 !

�

i�

9q

0

; q

1

; : : : ; q

n

: q

0

= q; q

n

= q

0

and q

i�1

u

i

! q

i

for 1 � i � n.

We put two basi
 restri
tions on transition systems. We �rst introdu
e idling

transitions, represented by the empty multiset, as self loops at ea
h state and

demand that these spe
ial transitions o

ur only as self loops. We also ensure that

all states in a transition system are rea
hable from the initial state. Formally, we

have the following basi
 axioms.

(A1) 8q; q

0

2 Q: q

O

E

�! q

0

i� q = q

0

.

(A2) 8q 2 Q: 9� 2 (MS

�n

(E))

�

: (q

in

; �; q) 2 !

�

.

Hen
eforth, we shall assume that every step transition system we 
onsider satis�es

axioms (A1) and (A2).

Noti
e that (A1) does not rule out the presen
e of non-trivial self-loops of the

form q

u

! q.

Axioms (A1) and (A2) are fairly weak. In parti
ular, we have not introdu
ed

any \step axioms" to ensure that the multisets whi
h label the transitions a
tually

represent 
on
urrent steps. Later, when we introdu
e additional axioms for PN-

transition systems, we shall see how the steps are 
onstrained.
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Figure 2: A step transition system

Figure 2 is an example of a step transition system. As usual we graphi
ally

represent a transition system by a dire
ted graph whose nodes are the states and

whose arrows, labelled by multisets over E, denote the relation!. The initial state

is marked out spe
ially. The trivial self-loops at ea
h state are not expli
itly drawn,

to avoid 
luttering up the pi
ture.

Before introdu
ing the 
hara
teristi
 axioms for PN-transition systems, let us

take a look at Petri nets.

3. Petri Nets

We give a brief introdu
tion to Pla
e/Transition nets, whi
h are often simply 
alled

Petri nets. A more detailed dis
ussion of this 
lass of nets 
an be found in [16℄.

De�nition 3. A Petri net is a quadruple PN = (S; T;W;M

in

), where:

� S is set of pla
es, T is a set of transitions and S \ T = ;. T is assumed to

be 
ountable.

� W : (S � T ) [ (T � S)! N

0

is the weight fun
tion.

� M

in

: S ! N

0

is the initial marking.

For t 2 T , let

�

t = fs 2 S j W (s; t) > 0g and t

�

= fs 2 S jW (t; s) > 0g. Similarly,

for s 2 S, let

�

s = ft 2 T jW (t; s) > 0g and s

�

= ft 2 T jW (s; t) > 0g.

Figure 3 is an example of a Petri net. We follow the usual graphi
al notation

for nets|pla
es are denoted by 
ir
les, transitions are denoted by boxes. An arrow

is drawn from a pla
e s to a transition t (from t to s) i� W (s; t) > 0 (W (t; s) > 0)

and is labelled by the value ofW (s; t) (W (t; s)). By 
onvention, an arrow without a

label 
orresponds to the 
ase where W (s; t) = 1 (W (t; s) = 1). The initial marking

is denoted by drawing dots in the pla
es. Thus if M

in

(s) = n, we draw n dots (or

tokens) in the 
ir
le 
orresponding to s.

The pla
es of a Petri net intuitively 
orrespond to lo
al states of the system. A

global state, 
alled a marking, is a multiset M : S ! N

0

. If M(s) = n, then s is

said to be assigned n tokens by M .

A transition t 
an o

ur at a marking M if for all s 2 S, M(s) � W (s; t). We

say that t is enabled at M and denote this by M [ti.
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When a transition t o

urs at a marking M , a new marking M

0

is generated

a

ording to the following rule:

8s 2 S: M

0

(s) =M(s)�W (s; t) +W (t; s):

We denote the fa
t that M evolves to M

0

via t by M [tiM

0

.

Suppose t

1

and t

2

are two transitions and M is a marking su
h that 8s 2

S: M(s) �W (s; t

1

) +W (s; t

2

). Then t

1

and t

2


an both o

ur independently at M

and are thus 
on
urrently enabled. In su
h a situation, M 
an evolve in a single

step by the o

urren
e of both t

1

and t

2

to a marking M

0

where

8s 2 S: M

0

(s) =M(s)�W (s; t

1

)�W (s; t

2

) +W (t

1

; s) +W (t

2

; s):

We 
an thus extend the transition relation asso
iated with a Petri net to permit

steps of a
tions between a pair of markings. In general, su
h a step will be a

multiset over T rather than a subset of T be
ause a transition may be 
on
urrent

with itself (a phenomenon 
alled auto
on
urren
y). For instan
e, in Figure 3, two


opies of the transition a are enabled at the initial marking.

Let u 2 MS

�n

(T ). u is enabled at a marking M , denoted M [ui, if for all s 2 S,

M(s) �

P

t2T

u(t) �W (s; t). (Re
all that u(t) denotes the number of o

urren
es

of t in u). When u o

urs, M is transformed to M

0

(denoted M [uiM

0

) where

8s 2 S: M

0

(s) =M(s) +

X

t2T

u(t) � (W (t; s)�W (s; t)):

The set of all markings rea
hable from a marking M is denoted by [Mi. [Mi is

the smallest set of markings su
h that:

� M 2 [Mi.

� If M

0

2 [Mi and 9u 2 MS

�n

(T ): M

0

[uiM

00

then M

00

2 [Mi.

Noti
e that if M

0

2 [Mi, we 
an always �nd a step sequen
e leading from

M to M

0

where ea
h step in the sequen
e is a singleton step|i.e. the multiset of

transitions 
onstituting ea
h step is a
tually a singleton set.

Given a Petri net PN = (S; T;W;M

in

), we 
an asso
iate a transition relation

)

PN

� [M

in

i �MS

�n

(T )� [M

in

i with PN as follows.
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)

PN

= f(M;u;M

0

) jM 2 [M

in

i and M [uiM

0

g:

Just as we extended ! to !

�

for transition systems, we extend )

PN

to a

relation)

�

PN

over step sequen
es. Let � = u

1

u

2

: : : u

n

2 (MS

�n

(T ))

�

be a sequen
e

of steps. Then (M;�;M

0

) 2 )

�

PN

i� M 2 [M

in

i and 9M

0

;M

1

; : : : ;M

n

: M

0

=

M;M

n

=M

0

and M

i�1

[u

i

iM

i

for 1 � i � n.

Thus, given a Petri net PN = (S; T;W;M

in

), we 
an asso
iate a step transition

system TS

PN

= ([M

in

i; T;)

PN

;M

in

) whi
h des
ribes the operational behaviour

of the net PN . For example, it is easy to see that the transition system of Figure 2

is the step transition system asso
iated with the Petri net of Figure 3. It is straight-

forward to verify that for any Petri net PN = (S; T;W;M

in

), TS

PN

satis�es the

two axioms we have introdu
ed for step transition systems in the previous se
tion.

The main aim of this paper is to 
hara
terize those step transition systems

whi
h arise out of des
ribing the behaviour of Petri nets. As mentioned in the

introdu
tion, this 
hara
terization will be des
ribed using the language of 
ategory

theory in terms of an adjun
tion between the 
ategory of Petri nets and the 
ategory

of a sub
lass of step transition systems 
alled PN-transition systems.

Before 
onstru
ting these two 
ategories, we must �rst de�ne PN-transition

systems.

4. PN-transition systems

To des
ribe PN-transition systems, we need to introdu
e the notion of a region.

Regions have originally been de�ned in the 
ontext of sequential transition systems

by Ehrenfeu
ht and Rozenberg [4℄ as a transition system 
ounterpart of the notion

of a 
ondition in an elementary net system. Using regions, they 
hara
terize the


lass of elementary transition systems whi
h represent the behaviour of elementary

net systems. This 
hara
terization is extended to a 
ore
e
tion between elementary

transition systems and elementary net systems in [14℄.

Here we generalize regions to 
apture the notion of a pla
e of a Petri net.

De�nition 4. Let TS = (Q;E;!; q

in

) be a step transition system. A region is a

pair of fun
tions r = (r

Q

; r

E

) su
h that:

(i) r

Q

: Q! N

0

.

(ii) r

E

: E ! N

0

�N

0

.

For 
onvenien
e, we denote the �rst 
omponent of r

E

(e) as

r

e and the se
ond


omponent of r

E

(e) as e

r

. In other words, if r

E

(e) = (n

1

; n

2

), then

r

e = n

1

and e

r

= n

2

.

(iii) 8(q; u; q

0

) 2 ! : r

Q

(q) �

X

e2E

u(e) �

r

e and

r

Q

(q

0

) = r

Q

(q) +

X

e2E

u(e) � (e

r

�

r

e).
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We shall denote both r

Q

and r

E

by r, unless it is un
lear from the 
ontext whi
h


omponent we are referring to. Thus, normally we shall write r(q) for r

Q

(q) and

r(e) for r

E

(e),

So, a region r 
orresponds to a pla
e of the Petri net whi
h we would like to

asso
iate with a given step transition system. Re
all that for a Petri net PN , the

asso
iated transition system TS

PN

has as its states the rea
hable markings of PN

and as its events the transitions of PN . We spe
ify the number of tokens on the

\pla
e" r at the \marking" q by r(q). For ea
h e 2 E, r(e) spe
i�es the \weights"

W (r; e) and W (e; r). The last 
ondition in the de�nition of a region ensures that

r

Q

is 
onsistent with the overall behaviour of the net|for every transition q

u

! q

0

present in the system, r(q) must have enough \tokens" to permit u to o

ur and

r(q

0

) must 
ontain the 
orre
t number of \tokens" as spe
i�ed by the normal �ring

rule of a Petri net.

We disregard regions r whi
h are \dis
onne
ted" from all the events|i.e. r su
h

that r(e) = (0; 0) for all e 2 E. These trivial regions 
orrespond to isolated pla
es

in a Petri net and do not 
ontribute in any way to 
hara
terizing the behaviour of

the system.

De�nition 5. Let TS = (Q;E;!; q

in

) be a step transition system. A region r is

non-trivial i� for some e 2 E, r(e) 6= (0; 0). We denote the set of non-trivial

regions of TS by R

TS

.

Hen
eforth, whenever we make a statement referring to all regions, we assume

that we are only 
onsidering non-trivial regions (unless expli
itly stated otherwise).

PN-transition systems are 
hara
terized by two \regional" axioms in addition

to the basi
 axioms (A1) and (A2):

(A3) Let q; q

0

2 Q. If 8r 2 R

TS

: r(q) = r(q

0

) then q = q

0

. (Separation)

(A4) 8q 2 Q: 8u 2 MS

�n

(E):

If 8r 2 R

TS

: r(q) �

X

e2E

u(e) �

r

e then 9q

0

2 Q: q

u

! q

0

. (Forward 
losure)

Axiom (A3) says that any pair of distin
t states inQ will be distinguished by at least

one (non-trivial) region. Axiom (A4) 
aptures the fundamental idea underlying the

dynami
 behaviour of a Petri net. It says that whenever a multiset of a
tions u is

enabled at a state q of the system by all regions, it must be possible to perform u

and rea
h some state q

0

in the system. In other words, if the system 
annot perform

a step labelled by u at the state q then there must be some region r whi
h does not

have enough \tokens" at q to permit u to o

ur.

De�nition 6. A PN-transition system is a step transition system TS =

(Q;E;!; q

in

) whi
h satis�es axioms (A1) to (A4).

Figure 4 shows two step transition systems that are not PN-transition systems.

The transition system on the left violates (A3)|it is easy to see that for any region

r,

r(q

2

) = r(q

in

)�

r

a+ a

r

�

r

b+ b

r

= r(q

0

2

);
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Figure 4: Step transition systems whi
h are not PN-transition systems

and so q

2

really denotes the same state as q

0

2

from a \regional" point of view.

The transition system on the right violates (A4). At q

in

, the step fa; bg is

enabled. This means that every region must also allow the step 
onsisting of just

fbg at q

in

, but there is no transition 
orresponding to this step present in !.

A 
ru
ial observation about PN-transition systems is that they are deterministi
.

TS = (Q;E;!; q

in

) is said to be a deterministi
 step transition system in 
ase the

following is true:

8q 2 Q: 8u 2 MS

�n

(E): (q; u; q

0

) 2 ! and (q; u; q

00

) 2 ! implies q

0

= q

00

:

Proposition 7. Every PN-transition system is deterministi
.

Proof. Let TS = (Q;E;!; q

in

) be a PN-transition system. Suppose that there

exists q 2 Q and u 2 MS

�n

(E) su
h that q

u

! q

0

and q

u

! q

00

. Then, for every

region r, we know that

r(q

0

) = r(q) +

X

e2E

u(e)(e

r

�

r

e) = r(q

00

):

Thus, by axiom (A3), q

0

= q

00

. 2

As we had mentioned earlier, we have to ensure that the steps in a step transition

system a
tually represent 
on
urrent a
tions. For instan
e, Lodaya, Ramanujam

and Thiagarajan [7℄ de�ne distributed transition systems , whi
h are basi
ally step

transition systems with a \step axiom" whi
h insists that for every step, all substeps

must be present and 
ombine together in a 
onsistent way.

For PN-transition systems, the required step axiom is a straightforward 
onse-

quen
e of (A3) and (A4).

Proposition 8. Let TS = (Q;E;!; q

in

) be a PN-transition system and let

(q; u; q

0

) 2 !. Then, for every v �

MS

u, there exists q

00

2 Q su
h that (q; v; q

00

) 2 !

and (q

00

; u� v; q

0

) 2 !.

Proof. From (A4) it follows that if a step u is permitted by all regions, so is every

substep v of u. So we know that 9q

00

: q

v

! q

00

. It is easy to 
ompute that u � v
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must still be enabled at q

00

, so there exists a q

000

su
h that q

00

u�v

�! q

000

. So, all we

have to show is that q

000

is the same as q

0

.

Consider any region r. We know that

r(q

000

) = r(q

00

) +

X

e2E

(u� v)(e)(e

r

�

r

e),

and that

r(q

00

) = r(q) +

X

e2E

v(e)(e

r

�

r

e).

From this it follows that

r(q

000

) = r(q) +

X

e2E

v(e)(e

r

�

r

e) +

X

e2E

(u� v)(e)(e

r

�

r

e),

and therefore

r(q

000

) = r(q) +

X

e2E

u(e)(e

r

�

r

e) = r(q

0

).

Sin
e q

000

and q

0

agree on all regions, it follows from (A3) that q

000

= q

0

and we are

done. 2

The step axiom formulated in [7℄ is a
tually mu
h more subtle than the one de-

s
ribed by Proposition 8 be
ause distributed transition systems are, in general,

non-deterministi
. In the presen
e of determina
y, however, their step axiom re-

du
es to the simple 
ondition stated in Proposition 8.

5. PNts|A Category of PN-transition Systems

To 
onstru
t a 
ategory of PN-transition systems, we now de�ne morphisms be-

tween PN-transition systems. These morphisms are essentially the G-morphisms of

[14℄. They 
apture a notion of simulation whi
h preserves 
on
urren
y.

De�nition 9. Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition systems.

A transition systemmorphism f from TS

1

to TS

2

is a pair of fun
tions f = (f

Q

; f

E

)

where:

(i) f

Q

: Q

1

! Q

2

is a total fun
tion su
h that f

Q

(q

1

in

) = q

2

in

.

(ii) f

E

: E

1

* E

2

is a partial fun
tion.

(iii) If (q; u; q

0

) 2 !

1

then (f

Q

(q); f

E

(u); f

Q

(q

0

)) 2 !

2

.

As with regions, we shall denote both f

Q

and f

E

by f , unless it is un
lear from the


ontext whi
h 
omponent we are referring to. Thus, normally we shall write f(q)

for f

Q

(q) and f(e) for f

E

(e).

Noti
e that the last 
lause ensures that if a step u is hidden by f then ev-

ery transition (q; u; q

0

) 2 !

1

results in q and q

0

being mapped to the same

state in Q

2

; i.e. if for all e 2 u, f(e) is unde�ned, then (q; u; q

0

) 2 !

1

implies

(f(q); O

E

2

; f(q

0

)) 2 !

2

, whi
h by axiom (A1) for
es f(q) = f(q

0

).

Figure 5 shows two examples of transition system morphisms. It is important

to noti
e that 
lause (iii) in De�nition 9 des
ribes a simulation requirement for all
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Figure 5: Some examples of transition system morphisms

multisets between pairs of states mapped by the morphism. Thus, for the last pair

of systems shown in Figure 5, there 
an be no morphism going in the opposite

dire
tion that is de�ned for both a

0

and b

0

be
ause there is no mat
hing step in the

�rst system 
orresponding to the step q

0

0

fa

0

;b

0

g

�! q

0

3

in the se
ond system.

Given a PN-transition system TS = (Q;E;!; q

in

), let 1

TS

= (id

Q

; id

E

) denote

the identity morphism where id

Q

: Q! Q and id

E

: E ! E are the (total) identity

fun
tions. Let f

1

= (f

1

Q

; f

1

E

) : TS

1

! TS

2

and f

2

= (f

2

Q

; f

2

E

) : TS

2

! TS

3

be two

transition system morphisms. The 
omposition f

2

Æ f

1

: TS

1

! TS

3

is de�ned as

the pair (f

2

Q

Æf

1

Q

; f

2

E

Æf

1

E

) (where the 
omposition on the �rst 
omponent is normal

fun
tional 
omposition and 
omposition on the se
ond 
omponent is the obvious


omposition operation on partial fun
tions).

It is easy to see that PN-transition systems with transition system morphisms

form a 
ategory. Let us 
all this 
ategory PNts.

The rest of the se
tion is devoted to establishing some results 
on
erning tran-

sition system morphisms.

Our �rst observation is that these morphisms preserve regions in the reverse

dire
tion.

Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition systems, f : TS

1

!

TS

2

be a morphism and r be a region in TS

2

. De�ne r

�1

as follows:

8q 2 Q

1

: r

�1

(q) = r(f(q)) and

8e 2 E

1

: r

�1

(e) =

�

r(f(e)) if f(e) is de�ned

(0; 0) otherwise
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Proposition 10. Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition sys-

tems, f : TS

1

! TS

2

a morphism and r 2 R

TS

2

. Then r

�1

is a (possibly trivial)

region in TS

1

.

Proof. We only have to 
he
k that:

8(q; u; q

0

) 2 !

1

: r

�1

(q) �

X

e

1

2E

1

u(e

1

) �

r

�1

e

1

and

r

�1

(q

0

) = r

�1

(q) +

X

e

1

2E

1

u(e

1

) � (e

1

r

�1

�

r

�1

e

1

)

Let E

0

1

� E

1

be the set of events over whi
h f has a de�ned value. We know by

de�nition that r

�1

(e) = (0; 0) for e 2 (E

1

nE

0

1

), so what we a
tually have to 
he
k

is that:

8(q; u; q

0

) 2 !

1

: r

�1

(q) �

X

e

0

1

2E

0

1

u(e

0

1

) �

r

�1

e

0

1

and

r

�1

(q

0

) = r

�1

(q) +

X

e

0

1

2E

0

1

u(e) � (e

0

1

r

�1

�

r

�1

e

0

1

)

Rewriting r

�1

in terms of r we must show that:

8(q; u; q

0

) 2 !

1

: r(f(q)) �

X

e

0

1

2E

0

1

u(e

0

1

) �

r

f(e

0

1

)

and

r(f(q

0

)) = r(f(q)) +

X

e

0

1

2E

0

1

u(e

0

1

) � (f(e

0

1

)

r

�

r

f(e

0

1

))

Sin
e f is a morphism, (q; u; q

0

) 2 !

1

implies that (f(q); f(u); f(q

0

)) 2 !

2

. r is a

region in TS

2

, so we know that the following holds:

8(q; u; q

0

) 2 !

1

: r(f(q)) �

X

e

2

2E

2

f(u)(e

2

) �

r

e

2

and

r(f(q

0

)) = r(f(q)) +

X

e

2

2E

2

f(u)(e

2

) � (e

2

r

�

r

e

2

)

Sin
e f(u)(e

2

) =

X

fe

0

1

2E

0

1

jf(e

0

1

)=e

2

g

u(e

0

1

) for every e

2

2 E

2

, it is straightforward to

verify that the result follows.

2

Noti
e that r

�1

will be trivial in 
ase r(e

2

) = (0; 0) for every e

2

in the range of f .

Otherwise r

�1

2 R

TS

1

.
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Our next observation about transition system morphisms exploits determina
y.

For PN-transition systems, it turns out that morphisms are 
ompletely 
hara
ter-

ized by the way they map events.

Lemma 11. Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition systems

and let f

1

and f

2

be two morphisms from TS

1

to TS

2

. If f

1

E

= f

2

E

then f

1

= f

2

.

Proof. We have to show that f

1

(q) = f

2

(q) for every q 2 Q

1

. We know that q

is rea
hable by a �nite step sequen
e from q

1

in

. Let � = u

1

u

2

: : : u

k

be a sequen
e

of steps su
h that q

1

in

�

!

�

1

q. We pro
eed by indu
tion on k = j�j (where by j�j we

mean the number of steps in the sequen
e �).

k = 0: Then q = q

1

in

and so f

1

(q) = q

2

in

= f

2

(q).

k > 0: Then we 
an write � as �

0

u

k

where j�

0

j = k�1. We thus have q

1

in

�

0

!

�

1

q

1

u

k

!

1

q.

By the indu
tion hypothesis, we know that f

1

(q

1

) = f

2

(q

1

).

By the de�nition of a morphism, we must have (f

1

(q

1

); f

1

(u

k

); f

1

(q)) 2 !

2

and (f

2

(q

1

); f

2

(u

k

); f

2

(q)) 2 !

2

. Sin
e f

1

E

= f

2

E

, we have f

1

(u

k

) = f

2

(u

k

). We

already know that f

1

(q

1

) = f

2

(q

1

). Sin
e TS

2

is a PN-transition system, it must

be deterministi
. So it follows that f

1

(q) = f

2

(q) and we are done. 2

6. PNet|A Category of Petri Nets

Next, we 
onstru
t a 
ategory of Petri nets. To do so, we have to de�ne a suitable

notion of morphism.

De�nition 12. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets. A net

morphism from PN

1

to PN

2

is a pair � = (�

S

; �

T

) where:

(i) �

S

: S

2

* S

1

is a partial fun
tion. (Noti
e that �

S

is a map from S

2

to S

1

and not from S

1

to S

2

. Thus, in the \forward" dire
tion, �

�1

S

� S

1

� S

2

is a

relation. For X � S

1

, �

�1

S

(X) denotes the set fy 2 S

2

j �

S

(y) 2 Xg.)

(ii) �

T

: T

1

* T

2

is a partial fun
tion.

(iii) 8s

1

2 S

1

: 8s

2

2 S

2

: If s

1

= �

S

(s

2

) then M

1

in

(s

1

) =M

2

in

(s

2

).

(iv) 8t

1

2 T

1

: If �

T

(t

1

) is unde�ned then �

�1

S

(

�

t

1

) = �

�1

S

(t

1

�

) = ;.

(v) 8t

1

2 T

1

: If �

T

(t

1

) = t

2

then:

{ �

�1

S

(

�

t

1

) =

�

t

2

and �

�1

S

(t

1

�

) = t

2

�

.

{ 8s 2

�

t

2

: W

1

(�

S

(s); t

1

) =W

2

(s; t

2

).

{ 8s 2 t

2

�

: W

1

(t

1

; �

S

(s)) =W

2

(t

2

; s).

Following [2℄, we have dire
tly de�ned the map on pla
es as a partial fun
tion in the

reverse dire
tion, rather than as a relation in the forward dire
tion whose inverse

is a partial fun
tion (as in [14℄).
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Figure 6: Some examples of net morphisms

As with transition system morphisms, we shall denote both �

S

and �

T

by �,

unless it is un
lear from the 
ontext whi
h 
omponent we are referring to. Thus,

normally we shall write �(s) for �

S

(s) and �(t) for �

T

(t).

Figure 6 shows two examples of net morphisms. Noti
e that in the �rst example,

if we omit the pla
e s

1

we 
an no longer 
onstru
t a morphism mapping t

1

to t

0

1

,

though the behaviour of the �rst net remains un
hanged. This is a problem with

all stru
turally de�ned notions of net morphisms|they are very sensitive to the


hoi
e of Petri net for \implementing" a given behaviour.

Quite a few di�erent types of morphisms on Petri nets have been de�ned in

the literature. Our morphisms are 
losest in spirit to the morphisms de�ned by

Winskel [18℄. The main di�eren
e is that, following [14℄, we insist that the map

on the pla
es be a partial fun
tion in the reverse dire
tion, whereas Winskel only

requires the forward map to be a relation (a
tually, a multirelation) whi
h preserves

the initial marking and the neighbourhoods of de�ned events. We shall dis
uss the


onne
tion between our net morphisms and those studied by others in greater detail

in the 
on
luding se
tion.

For ea
h obje
t PN = (S; T;W;M

in

), let 1

PN

= (id

S

; id

T

) be the identity mor-

phism where id

S

: S ! S and id

T

: T ! T are the (total) identity fun
tions. Let

(�

1

S

; �

1

T

) : PN

1

! PN

2

and (�

2

S

; �

2

T

) : PN

2

! PN

3

be two net morphisms. De�ne

the 
omposition (�

2

S

; �

2

T

) Æ (�

1

S

; �

1

T

) of these two morphisms as (�

1

S

Æ �

2

S

; �

2

T

Æ �

1

T

).
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It follows easily that Petri nets equipped with net morphisms form a 
ategory.

Let us 
all this 
ategory PNet .

In the rest of this se
tion, we shall prove some useful properties of net mor-

phisms. We �rst show that net morphisms preserve 
on
urrent behaviour in a

strong way. This follows from the following result.

Lemma 13. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets and let � be

a net morphism from PN

1

to PN

2

. For ea
h M 2 [M

1

in

i, de�ne M

�

: S

2

! N

0

as

follows:

8s 2 S

2

: M

�

(s) =

�

M(�(s)) if �(s) exists

M

2

in

(s) otherwise

We then have the following:

(i) 8M 2 [M

1

in

i: M

�

2 [M

2

in

i.

(ii) Suppose that (M;u;M

0

) 2 )

PN

1

. Then (M

�

; �(u);M

0

�

) 2 )

PN

2

.

Proof.

(i) Sin
e M 2 [M

1

in

i, we know that there is a step sequen
e � = u

1

u

2

: : : u

n

su
h

that (M

1

in

; �;M) 2 )

�

PN

1

. Without loss of generality, we 
an assume that

ju

i

j = 1 for 0 � i � n|i.e. � is a
tually a sequen
e of singleton steps. We

pro
eed by indu
tion on k = j�j.

k = 0: Then M = M

1

in

and by 
ondition (iii) of net morphisms, (M

1

in

)

�

=

M

2

in

2 [M

2

in

i.

k > 0: We 
an write � as �

0

t where j�

0

j = k � 1. Then there exists a

markingM

0

su
h that (M

1

in

; �

0

;M

0

) 2 )

�

PN

1

and M

0

[ti

1

M . By the indu
tion

hypothesis, M

0

�

2 [M

2

in

i.

Suppose that �(t) is unde�ned. Then �

�1

(

�

t) = �

�1

(t

�

) = ; so the pla
es in

S

1

whose marking 
hanges in going from M

0

to M do not have �

�1

images

in S

2

. As a result, M

�

=M

0

�

2 [M

2

in

i.

On the other hand, if �(t) = t

0

then �

�1

(

�

t) =

�

t

0

and �

�1

(t

�

) = t

0

�

. Consider

any s 2

�

t

0

. We know that M

0

�

(s) = M

0

(�(s)). Furthermore, W

2

(s; t

0

) =

W

1

(�(s); t) by the de�nition of net morphisms. Sin
e M

0

[ti we know that

M

0

(�(s)) � W

1

(�(s); t) and so M

0

�

(s) � W

2

(s; t

0

). This holds for all s 2

�

t

0

, so we have M

0

�

[t

0

i as well. Let M

0

�

[t

0

i

2

M

00

. Using the de�nition of net

morphisms, it is straightforward to 
he
k that M

00

=M

�

.

(ii) Suppose thatM 2 [M

1

in

i andM [ui

1

. By part (i) of this lemma, we know that

M

�

2 [M

2

in

i. By the de�nition of M

�

and the de�nition of a net morphism it

is straightforward to 
ompute that M

�

[�(u)i

2

and that (M;u;M

0

) 2 )

PN

1

and (M

�

; �(u);M

00

) 2 )

PN

2

implies that M

00

=M

0

�

.

2
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Corollary 14. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets and let

� be a net morphism from PN

1

to PN

2

. Then (M

1

in

; �;M) 2 )

�

PN

1

implies

(M

2

in

; �(�);M

�

) 2 )

�

PN

2

, where � is a step sequen
e over T

1

and M

�

is de�ned

as in the previous lemma. (By abuse of notation, we have denoted the obvious

extension of �

T

to step sequen
es also as �.)

In 
ertain restri
ted 
ases, it turns out that net morphisms, like transition sys-

tem morphisms, are 
hara
terized by the way they map transitions.

To establish this result, we need to restri
t our attention to morphisms whose

sour
e nets are simple with respe
t to pla
es.

De�nition 15. Let PN = (S; T;W;M

in

) be a Petri net. PN is simple with respe
t

to S in 
ase

8s

1

; s

2

2 S: If M

in

(s

1

) =M

in

(s

2

) and

8t 2 T: W (s

1

; t) =W (s

2

; t) and W (t; s

1

) =W (t; s

2

)

then s

1

= s

2

:

Lemma 16. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets, su
h that

PN

1

is simple with respe
t to S

1

and has no isolated pla
es (i.e. 8s

1

2 S

1

: 9t

1

2

T

1

: s

1

2

�

t

1

[ t

1

�

). Let �

1

= (�

1

S

; �

1

T

) and �

2

= (�

2

S

; �

2

T

) be two net morphisms

from PN

1

to PN

2

. If �

1

T

= �

2

T

then �

1

= �

2

.

Proof. We have to establish that �

1

S

= �

2

S

. We �rst show that if s

1

= �

1

S

(s

2

)

then s

1

= �

2

S

(s

2

) as well.

Suppose s

1

= �

1

S

(s

2

). Sin
e PN

1

has no isolated pla
es, there exists t

1

2 T

1

su
h

that s

1

2

�

t

1

or s

1

2 t

1

�

. Then �

1

T

(t

1

) must be de�ned|suppose that �

1

T

(t

1

) = t

2

.

Assume, without loss of generality, that s

1

2 t

1

�

. Then, sin
e (�

1

S

)

�1

(t

1

�

) = t

2

�

,

we must have s

2

2 t

2

�

. Sin
e �

1

T

= �

2

T

, we have s

2

2 �

2

T

(t

1

)

�

as well, whi
h implies

that �

2

S

(s

2

) exists and furthermore �

2

S

(s

2

) = s

0

1

2 t

1

�

. To establish that s

0

1

= s

1

it

suÆ
es to establish the following:

Claim. M

1

in

(s

1

) = M

1

in

(s

0

1

) and 8t 2 T

1

: W

1

(s

1

; t) = W

1

(s

0

1

; t) and W

1

(t; s

1

) =

W

1

(t; s

0

1

).

Proof of Claim.

We know that M

1

in

(s

1

) = M

2

in

(s

2

) sin
e s

1

= �

1

S

(s

2

). M

1

in

(s

0

1

) = M

2

in

(s

2

) as

well sin
e s

0

1

= �

2

S

(s

2

). So M

1

in

(s

1

) =M

1

in

(s

0

1

).

Suppose t 2

�

s

1

. Then, sin
e s

1

= �

1

S

(s

2

), �

1

T

(t) is de�ned. Further,W

1

(t; s

1

) =

W

2

(�

1

T

(t); s

2

). Sin
e �

2

T

= �

1

T

and s

0

1

= �

2

S

(s

2

), W

1

(t; s

0

1

) = W

2

(�

2

T

(t); s

2

) =

W

2

(�

1

T

(t); s

2

). Thus W

1

(t; s

1

) =W

1

(t; s

0

1

).

A symmetri
 argument 
an be used to show that for ea
h t 2

�

s

0

1

, W

1

(t; s

0

1

) =

W

1

(t; s

1

).

Similarly, we 
an establish that for ea
h t 2 T

1

, W

1

(s

1

; t) = W

1

(s

0

1

; t), thus

establishing the 
laim.

Returning to the main proof, sin
e PN

1

was assumed to be simple with respe
t to

pla
es, we 
an 
on
lude that s

1

= s

0

1

. Hen
e s

1

= �

1

S

(s

2

) implies that s

1

= �

2

S

(s

2

)

as well.
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By a symmetri
 argument we 
an show that s

1

= �

2

S

(s

2

) implies that s

1

=

�

1

S

(s

2

). Thus �

1

S

= �

2

S

and so �

1

= �

2

. 2

7. From Petri nets to PN-transition systems

We now 
onstru
t a fun
tor NT from the 
ategoryPNet of Petri nets to the 
ategory

PNts of PN-transition systems.

NT maps obje
ts in the obvious way|ea
h Petri net PN is mapped to its

asso
iated transition system TS

PN

. Let PN = (S; T;W;M

in

) be a Petri net. Then

NT(PN) = ([M

in

i; T;)

PN

;M

in

)

where, as usual, [M

in

i is the set of markings rea
hable from M

in

in PN , T is the

set of transitions of PN , )

PN

is the step transition relation for Petri nets de�ned

in Se
tion 3 and M

in

is the initial marking of PN .

Next we de�ne how NT maps arrows. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be

two Petri nets and let � = (�

S

; �

T

) be a net morphism from PN

1

to PN

2

. Then,

NT(�) = f

�

is de�ned as follows:

� 8t 2 T

1

: f

�

E

(t) = �

T

(t).

� 8M 2 [M

1

in

i: f

�

Q

(M) =M

�

.

(Re
all that 8s 2 S

2

: M

�

(s) =

�

M(�

S

(s)) if �

S

(s) exists

M

2

in

(s) otherwise

)

Proposition 17. Let PN = (S; T;W;M

in

) be a Petri net. Then NT(PN) =

([M

in

i; T;)

PN

;M

in

) is a PN-transition system.

Proof. T is 
ountable by assumption. To establish that [M

in

i is 
ountable,

we �rst observe that the free monoid T

�

is 
ountable. Ea
h marking M 2 [M

in

i

is rea
hable by some sequen
e of transitions t

1

t

2

: : : t

n

2 T

�

. Further, TS

PN

is

deterministi
|a given sequen
e of transitions 
an lead to only one marking. From

this, it follows that the 
ardinality of [M

in

i is less than or equal to the 
ardinality

of T

�

and so [M

in

i must be 
ountable.

Sin
e M [O

T

iM

0

in PN i� M =M

0

, 
learly NT(PN) satis�es axiom (A1). The

fa
t that NT(PN) satis�es (A2) follows dire
tly from the de�nition of [M

in

i.

To verify (A3) we have to show that distin
t states in NT(PN) 
an be separated

by non-trivial regions. For ea
h s 2 S, it is easy to 
he
k that r

s

is a region where

8M 2 [M

in

i: r

s

(M) =M(s) and 8t 2 T: r

s

(t) = (W (s; t);W (t; s)):

For M;M

0

2 [M

in

i, if M 6=M

0

, there must be a non-isolated pla
e s 2 S su
h that

M(s) 6= M

0

(s). Then 
learly r

s

is a non-trivial region that separates M from M

0

in NT(PN).

Finally, 
onsider (A4). Suppose M 2 [M

in

i and u 2 MS

�n

(T ), and for every

region r in NT(PN) it is the 
ase that r(M) �

P

t2T

u(t) �

r

t. Then we have to

show that there exists M

0

2 [M

in

i su
h that (M;u;M

0

) 2 )

PN

.
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We know that for every s 2 S, r

s

(as de�ned above) is a region in NT(PN).

Sin
e r

s

(M) = M(s) and

r

s

t = W (s; t) it follows that for every s 2 S we have

M(s) �

P

t2T

u(t) � W (s; t). But then, we know that M [uiM

0

where, for ea
h

s 2 S, M

0

(s) = M(s) +

P

t2T

u(t) � (W (t; s) �W (s; t)). So, by the de�nition of

)

PN

, (M;u;M

0

) 2 )

PN

and we are done. 2

Proposition 18. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets and let

� be a morphism from PN

1

to PN

2

. Then NT(�) = f

�

is a transition system

morphism from NT(PN

1

) to NT(PN

2

).

Proof. Re
all that 8t 2 T

1

: f

�

E

(t) = �

T

(t) and 8M 2 [M

1

in

i: f

�

Q

(M) = M

�

.

By Lemma 13, we know that for ea
h M 2 [M

1

in

i, M

�

2 [M

2

in

i, so f

�

Q

is a total

fun
tion from [M

1

in

i into [M

2

in

i as required. By de�nition, we know that f

�

E

is a

partial fun
tion from T

1

into T

2

.

We have to show that if (M;u;M

0

) 2 )

PN

1

then (f

�

Q

(M); f

�

E

(u); f

�

Q

(M

0

)) 2

)

PN

2

. This follows dire
tly from the se
ond part of Lemma 13 whi
h says that

(M;u;M

0

) 2 )

PN

1

implies that (M

�

; �

T

(u);M

0

�

) 2 )

PN

2

. 2

Theorem 19. NT : PNet ! PNts is a fun
tor.

Proof. We have already veri�ed that NT maps obje
ts and arrows in PNet to

obje
ts and arrows in PNts 
orre
tly. We only have to verify that NT preserves

the identity arrows and respe
ts 
omposition.

For every net PN = (S; T;W;M

in

) 2 PNet , the identity arrow is given by

1

PN

= (id

S

; id

T

) where id

S

and id

T

are the (total) identity fun
tions. Clearly

f

1

PN

E

(t) = t for every t 2 T and f

1

PN

Q

(M) = M

id

S

= M for every M 2 [M

in

i and

so f

1

PN

is the identity arrow for NT(PN).

Let �

1

: PN

1

! PN

2

and �

2

: PN

2

! PN

3

be a pair of net morphisms.

Let f

i

= NT(�

i

), i = 1; 2, and let f

2Æ1

= NT(�

2

Æ �

1

). We have to show that

f

2

Æ f

1

= f

2Æ1

. Clearly, f

2Æ1

E

(t) = �

2

T

Æ �

1

T

(t) for all t 2 T

1

. But, (f

2

Æ f

1

)

E

(t) is

again equal to �

2

T

Æ �

1

T

(t) for all t 2 T

1

. Sin
e f

2Æ1

E

= (f

2

Æ f

1

)

E

, by Lemma 11 we

must have f

2Æ1

= f

2

Æ f

1

and we are done. 2

8. The adjun
tion

Having 
onstru
ted the fun
tor NT from PNet to PNts , we want to show that it

has a left adjoint TN : PNts ! PNet . A

ording to Ma
 Lane [8℄, it suÆ
es to


onstru
t a map TN

O

mapping obje
ts in PNts to obje
ts in PNet so that the

diagram shown in Figure 7 
ommutes. The obje
t map TN

O


an then be extended

uniquely to a fun
tor TN : PNts ! PNet whi
h is the left adjoint of NT.

In other words, we have to �rst 
onstru
t a universal transition system morphism

� in PNts (whi
h will serve as the unit of the adjun
tion). We then have to

prove that for any obje
t TS in PNts and any obje
t PN in PNet , if there is

a transition system morphism f : TS ! NT(PN) then there is a unique net

morphism � : TN

O

(TS)! PN su
h that f = NT(�) Æ �

TS

.
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TS

NT(PN)

NT Æ TN

O

(TS)

P

P

P

P

P

P

Pq

�

�

�

�

�

�

�	

?

�

TS

f

NT(�)

TN

O

(TS)

PN

?

�

Figure 7: The adjun
tion

We �rst des
ribe the obje
t map TN

O

. Let TS = (Q;E;!; q

in

) be a PN-

transition system. Then

TN

O

(TS) = (R

TS

; E;W

TS

;M

TS

in

)

where W

TS

(r; e) =

r

e and W

TS

(e; r) = e

r

for ea
h r 2 R

TS

and e 2 E and

M

TS

in

(r) = r(q

in

) for ea
h r 2 R

TS

.

Proposition 20. Let TS = (Q;E;!; q

in

) be a PN-transition system. Then

TN

O

(TS) = (R

TS

; E;W

TS

;M

TS

in

) is a Petri net. Moreover, TN

O

(TS) is simple

with respe
t to pla
es and has no isolated pla
es.

Proof. Che
king that TN

O

(TS) is a Petri net is straightforward. We know that E

is 
ountable, so the set of transitions of TN

O

(TS) is 
ountable. Noti
e that if E is

in�nite, R

TS

may well be un
ountable. In verifying that the pla
es and transitions

of TN

O

(TS) are disjoint, a small problem arises in the (pathologi
al) 
ase where

R

TS

and E are not disjoint! We shall ignore this possiblity by noting that we 
an

always 
onstru
t TN

O

(TS) with disjoint sets of pla
es and transitions by using a

suitable 
oding te
hnique.

The regions in R

TS

are \simple" by de�nition (any two distin
t regions either

di�er in their value at q

in

or in their value for some e 2 E). Sin
e we 
reate exa
tly

one pla
e in TN

O

(TS) for ea
h region from R

TS

, it is 
lear that the net TN

O

(TS)

is also simple with respe
t to pla
es.

Finally, sin
eR

TS

has only non-trivial regions, TN

O

(TS) has no isolated pla
es.

2

Next we des
ribe how to 
onstru
t �, the unit of the adjun
tion. We �rst need

the following lemma.

Lemma 21. Let TS = (Q;E;!; q

in

) be a PN-transition system and let TN

O

(TS) =

(R

TS

; E;W

TS

;M

TS

in

). Then we have:
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(i) 8M 2 [M

TS

in

i: 9!q 2 Q su
h that 8r 2 R

TS

: M(r) = r(q). We denote this

state by q

M

.

(ii) 8q 2 Q: 9!M 2 [M

TS

in

i su
h that 8r 2 R

TS

: M(r) = r(q). We denote this

marking by M

q

.

(iii) )

TN

O

(TS)

= f(M

q

; u;M

0

q

) j (q; u; q

0

) 2 !g.

Proof.

(i) For ea
h M 2 M

TS

in

, we show that there is at least one q 2 Q su
h that

8r 2 R

TS

: M(r) = r(q).

Let � be a step sequen
e u

1

u

2

: : : u

k

su
h that (M

TS

in

; �;M) 2 )

�

PN

. We

pro
eed by indu
tion on k = j�j.

k = 0: Then M =M

TS

in

and by the de�nition of M

TS

in

, q

in

satis�es the given

requirement.

k > 0: Then write � = �

0

u

k

where j�

0

j < k. We know that 9M

0

: (M

TS

in

; �

0

;M

0

) 2

)

�

PN

and M

0

[u

k

iM . By the indu
tion hypothesis, there exists q

0

2 Q su
h

that 8r 2 R

TS

: M

0

(r) = r(q

0

). Sin
e M

0

[u

k

iM , we know that r(q

0

) �

P

e2E

u(e)

r

e for all r 2 R

TS

. Therefore, by axiom (A4), 9q: q

0

u

k

�! q. It is

straightforward to 
ompute that 8r 2 R

TS

: M(r) = r(q).

Having established that there is at least one 
andidate for q

M

for every mark-

ing M , we now have to show that there is exa
tly one 
hoi
e for q

M

. Suppose

q and q

0

are both states in Q su
h that 8r 2 R

TS

: M(r) = r(q) = r(q

0

).

Then, by axiom (A3), we know that q = q

0

sin
e they agree on all regions.

(ii) Similar to (i), by indu
tion on q

in

�

!

�

q.

(iii) Follows in a straightforward way from (i) and (ii).

2

Lemma 22. Let TS = (Q;E;!; q

in

) be a PN-transition system and let TN

O

(TS) =

(R

TS

; E;W

TS

;M

TS

in

). Then the map �

TS

: TS ! NT Æ TN

O

(TS) given by

8q 2 Q: �

TS

(q) =M

q

and 8e 2 E: �

TS

(e) = e

is a transition system isomorphism.

Proof. From the previous lemma, it follows that �

TS

is a transition system

morphism. To 
he
k that it is in fa
t an isomorphism, we show that we 
an 
onstru
t

a transition system morphism �

0

TS

su
h that �

TS

Æ �

0

TS

= 1

NTÆTN

O

(TS)

and �

0

TS

Æ

�

TS

= 1

TS

.

De�ne �

0

TS

: NT ÆTN

O

(TS)! TS as follows:

8M 2 [M

TS

in

i: �

0

TS

(M) = q

M

and 8e 2 E: �

0

TS

(e) = e

By the previous lemma, it is easy to verify that �

0

TS

is also a transition system

morphism. Sin
e q

M

q

= q for all q 2 Q and M

q

M

= M for all M 2 [M

TS

in

i, it

follows that �

0

TS

Æ �

TS

= 1

TS

and �

TS

Æ �

0

TS

= 1

NTÆTN

O

(TS)

. 2

We 
an now prove our main result.
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Theorem 23. There exists a fun
tor TN : PNts ! PNet su
h that TN and NT

form an adjun
tion (
ore
e
tion) with TN as the left adjoint and � as the unit.

Proof. We have to show that the diagram shown in Figure 7 
ommutes.

Let TS = (Q;E;!; q

in

) and PN = (S; T;W;M

in

). Then TN

O

(TS) =

(R

TS

; E;W

TS

;M

TS

in

) and NT(PN) = ([M

in

i; T;)

PN

;M

in

). De�ne � as follows:

�

S

: S * R

TS

is given by

8s 2 S: �

S

(s) =

�

r

�1

s

if r

�1

s

2 R

TS

unde�ned otherwise

�

T

= f

E

,

where for ea
h s 2 S, r

s

2 R

NT(PN)

is the region de�ned in the proof of Proposi-

tion 17. In other words,

8M 2 [M

in

i: r

s

(M) =M(s) and 8t 2 T: r

s

(t) = (W (s; t);W (t; s)):

Also, re
all that for r

s

2 R

NT(PN)

, r

�1

s

is the inverse of r

s

through f , as de�ned in

Se
tion 5.

Claim A. � is a net morphism.

Proof of 
laim.

Suppose that r = �

S

(s). We have to 
he
k that M

TS

in

(r) = M

in

(s). We know

that M

TS

in

(r) = r(q

in

) and that M

in

(s) = r

s

(M

in

). Sin
e r = r

�1

s

, it follows that

r(q

in

) = r

s

(f(q

in

)) = r

s

(M

in

).

Suppose that e 2 E and �

T

(e) is unde�ned. We have to show that �

�1

S

(

�

e) =

�

�1

S

(e

�

) = ;. Consider any r 2

�

e su
h that r = �

S

(s), for some s 2 S. Then

W

TS

(r; e) =

r

e. But, sin
e r = r

�1

s

and f(e) = �

T

(e) is unde�ned, we must

have r(e) = (0; 0), and therefore W

TS

(r; e) = 0, whi
h 
ontradi
ts r 2

�

e. Thus,

�

�1

S

(

�

e) = ;. Similarly, we 
an show that �

�1

S

(e

�

) = ;.

On the other hand, suppose that e 2 E and �

T

(e) = t. Then, we have to show

that �

�1

S

(

�

e) =

�

t and �

�1

S

(e

�

) = t

�

. We also have to establish that for ea
h s 2

�

t,

W (s; t) =W

TS

(�

S

(s); e), and for ea
h s 2 t

�

, W (t; s) =W

TS

(e; �

S

(s)).

We �rst show that �

�1

S

(

�

e) �

�

t. Let r 2

�

e and let s 2 �

�1

S

(r). Sin
e r =

r

�1

s

and f(e) = �

T

(e) is de�ned, we must have r(e) = r

s

(f(e)) = r

s

(t) and so

W

TS

(r; e) =

r

e =

r

s

t =W (s; t). Thus, if r 2

�

e then s 2

�

t.

Conversely, we show that

�

t � �

�1

S

(

�

e). Suppose that s 2

�

t. Sin
e f(e) is

de�ned and r

s

(f(e)) 6= (0; 0), r

�1

s

is a non-trivial region r 2 R

TS

. Thus, �

S

(s) = r

and by the de�nition of r

�1

s

, r(e) = r

s

(t) and so W (s; t) =

r

s

t =

r

e = W

TS

(r; e).

Thus s 2

�

t implies �

S

(s) = r 2

�

e.

From this it follows that �

�1

S

(

�

e) =

�

t. Similarly, we 
an establish that �

�1

S

(e

�

) =

t

�

.

The fa
t that for ea
h s 2

�

t, W (s; t) = W

TS

(�

S

(s); e) and for ea
h s 2 t

�

,

W (t; s) =W

TS

(e; �

S

(s)) again follows easily from the de�nition of r

�1

s

.

Claim B. NT(�) Æ �

TS

= f .
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Proof of 
laim. Let f

0

= NT(�)Æ�

TS

. Then f

0

E

= NT(�)

E

Æid

E

= NT(�)

E

= �

T

.

But, �

T

= f

E

by de�nition. Hen
e f

0

E

= f

E

and so, by Lemma 11, f

0

= f and we

are done.

Claim C. � is unique.

Proof of 
laim. We have to show that if �

0

: TN

O

(TS) ! PN is any net

morphism su
h that NT(�

0

) Æ �

TS

= f , then �

0

= �.

We know that f

E

= �

T

Æ �

TS

E

= �

0

T

Æ �

TS

E

. Sin
e �

TS

E

= id

E

, we have

f

E

= �

T

= �

0

T

. But, we know that TN

O

(TS) is simple with respe
t to pla
es and

has no isolated pla
es (by Proposition 20). So, by Lemma 16, we have �

S

= �

0

S

as

well.

Returning to the main proof, Claims A, B and C establish that the diagram shown

in Figure 7 
ommutes. From [8℄, it then follows that TN

O


an be uniquely extended

to a fun
tor TN from PNts to PNet whi
h is the left adjoint of NT.

Sin
e �, the unit of the adjun
tion, is an isomorphism, we have, in fa
t, a


ore
e
tion between TN and NT. 2

If we work out the way TN maps morphisms, it turns out to be the following.

Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition systems and let f :

TS

1

! TS

2

be a transition system morphism. Then TN(f) is the map �

f

where

�

f

S

: R

TS

2

* R

TS

1

is given by

8r

2

2 R

TS

2

: �

f

S

(r

2

) =

�

r

�1

2

if r

�1

2

2 R

TS

1

unde�ned otherwise

�

f

T

: E

1

* E

2

= f

E

.

9. Universal Constru
tions

Having established the 
ore
e
tion between the 
ategories PNts and PNet , we now

look at some universal 
onstru
tions in these 
ategories.

It is easy to verify that the trivial transition system TS = (fq

in

g; ;;!; q

in

),

where != f(q

in

; O

;

; q

in

)g, is both an initial and a terminal obje
t in PNts . Simi-

larly, its image in PNet , the empty net PN = (;; ;; ;; O

;

), is the initial and terminal

obje
t in PNet .

The standard produ
t 
onstru
tion goes through for both PN-transition systems

and Petri nets. For Petri nets, the produ
t of two nets is the syn
hronized parallel


omposition of the two nets.

De�nition 24. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets. De�ne

the Petri net PN

1�2

= (S

1�2

; T

1�2

;W

1�2

;M

1�2

in

) as follows.

� S

1�2

= (S

1

� f�g) [ (f�g � S

2

), where � =2 S

1

[ S

2

.

� T

1�2

= (T

1

� T

2

) [ (T

1

� f�g) [ (f�g � T

2

), where � =2 T

1

[ T

2

.
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� 8s 2 S

1�2

: 8t 2 T

1�2

: W

1�2

(s; t) =

8

>

>

>

>

<

>

>

>

>

:

W

1

(s

1

; t

1

) if s = (s

1

; �) and

t = (t

1

; �) or t = (t

1

; t

2

)

W

2

(s

2

; t

2

) if s = (�; s

2

) and

t = (�; t

2

) or t = (t

1

; t

2

)

0 otherwise

� 8s 2 S

1�2

: 8t 2 T

1�2

: W

1�2

(t; s) =

8

>

>

>

>

<

>

>

>

>

:

W

1

(t

1

; s

1

) if s = (s

1

; �) and

t = (t

1

; �) or t = (t

1

; t

2

)

W

2

(t

2

; s

2

) if s = (�; s

2

) and

t = (�; t

2

) or t = (t

1

; t

2

)

0 otherwise

� 8s 2 S

1�2

: M

1�2

in

(s) =

�

M

1

in

(s

1

) if s = (s

1

; �)

M

2

in

(s

2

) if s = (�; s

2

)

De�ne morphisms �

i

: PN

1�2

! PN

i

, i = 1; 2, as follows:

� 8s 2 S

1

: �

1

S

(s) = (s; �):

8t 2 T

1�2

: �

1

T

(t) = t

1

if t = (t

1

; �) or t = (t

1

; t

2

):

� 8s 2 S

2

: �

2

S

(s) = (�; s):

8t 2 T

1�2

: �

2

T

(t) = t

2

if t = (�; t

2

) or t = (t

1

; t

2

):

Lemma 25. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets. The produ
t

of these two nets is the Petri net PN

1�2

= (S

1�2

; T

1�2

;W

1�2

;M

1�2

in

) equipped with

the proje
tions �

i

, i = 1; 2, de�ned above.

Proof. It is easy to verify that �

1

and �

2

are PN-morphisms from PN

1�2

to PN

1

and PN

2

respe
tively.

To prove that PN

1�2

together with �

1

and �

2

a
tually is the produ
t of PN

1

and PN

2

, we have to establish the following.

Claim. For any other net PN = (S; T;W;M

in

) su
h that there exist morphisms

f

i

: PN ! PN

i

, i = 1; 2, there is a unique morphism g : PN ! PN

1�2

su
h that

f

i

= �

i

Æ g, i = 1; 2.

Proof of 
laim.

It is 
onvenient to �rst de�ne total fun
tions

^

f

i

: T ! (T

i

[ f�g), i = 1; 2, as

follows.

8t 2 T:

^

f

i

(t) =

�

f

i

(t) if f

i

(t) de�ned

� otherwise

Now, de�ne g : PN ! PN

1�2

as follows.

8s 2 S

1�2

: g

S

(s) =

8

<

:

f

1

(s

1

)

f

2

(s

2

)

unde�ned

if s = (s

1

; �) and f

1

(s

1

) de�ned

if s = (�; s

2

) and f

2

(s

2

) de�ned

otherwise

8t 2 T: g

T

(t) =

�

unde�ned

(

^

f

1

(t);

^

f

2

(t))

if

^

f

1

(t) =

^

f

2

(t) = �

otherwise
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It is easy to verify that g is a PN-morphism and that f

i

= �

i

Æ g, i = 1; 2, and,

furthermore, that it is the unique map from PN to PN

1�2

with this property. 2

Sin
e the right adjoint preserves limits, and, further, every PN-transition system

in PNts is the image of some net in PNet , we know that PNts has produ
ts as

well. It is straightforward to verify that the produ
t of two PN-transition systems

TS

1

and TS

2

is the transition system TS

1�2

equipped with proje
tions �

1

and �

2

as de�ned below.

De�nition 26. Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition systems.

Let the transition system TS

1�2

= (Q

1�2

; E

1�2

;!

1�2

; q

1�2

in

) be de�ned as follows:

� Q

1�2

= Q

1

�Q

2

.

� E

1�2

= (E

1

�E

2

) [ (E

1

� f�g) [ (f�g �E

2

).

� !

1�2

= f((q

1

; q

2

); u; (q

0

1

; q

0

2

)) j where u 2 MS

�n

(E

1�2

) and there exists

u

i

2 MS

�n

(E

i

), i = 1; 2, su
h that:

� (q

i

; u

i

; q

0

i

) 2 !

i

.

� 8e

1

2 E

1

: u

1

(e

1

) = u((e

1

; �)) +

X

e

2

2E

2

u((e

1

; e

2

)).

� 8e

2

2 E

2

: u

2

(e

2

) = u((�; e

2

)) +

X

e

1

2E

1

u((e

1

; e

2

)).

g.

De�ne morphisms �

i

: TS

1�2

! TS

i

, i = 1; 2, as follows:

� �

1

Q

((q

1

; q

2

)) = q

1

:

�

1

E

((e

1

; �)) = �

1

E

((e

1

; e

2

)) = e

1

:

� �

2

Q

((q

1

; q

2

)) = q

2

:

�

2

E

((�; e

2

)) = �

2

E

((e

1

; e

2

)) = e

2

:

It turns out that PNet also has 
oprodu
ts. If the initial markings of the

two nets are reasonably similar, then the sum of the two nets represents non-

deterministi
 
hoi
e. If the initial markings are dissimilar, then the sum 
orresponds

to the asyn
hronous parallel 
omposition of the two nets.

De�nition 27. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets. De�ne

the Petri net PN

1+2

= (S

1+2

; T

1+2

;W

1+2

;M

1+2

in

) as follows.

� S

1+2

= (S

1

� f�g) [ (f�g � S

2

) [

f(s

1

; s

2

)js

1

2 S

1

; s

2

2 S

2

;M

1

in

(s

1

) =M

2

in

(s

2

)g; where � =2 S

1

[ S

2

.

� T

1+2

= (T

1

� f�g) [ (f�g � T

2

), where � =2 T

1

[ T

2

.

� 8s 2 S

1+2

: 8t 2 T

1+2

: W

1+2

(s; t) =

8

>

>

>

>

<

>

>

>

>

:

W

1

(s

1

; t

1

) if t = (t

1

; �) and

s = (s

1

; �) or s = (s

1

; s

2

)

W

2

(s

2

; t

2

) if t = (�; t

2

) and

s = (�; s

2

) or s = (s

1

; s

2

)

0 otherwise
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� 8s 2 S

1+2

: 8t 2 T

1+2

: W

1+2

(t; s) =

8

>

>

>

>

<

>

>

>

>

:

W

1

(t

1

; s

1

) if t = (t

1

; �) and

s = (s

1

; �) or s = (s

1

; s

2

)

W

2

(t

2

; s

2

) if t = (�; t

2

) and

s = (�; s

2

) or s = (s

1

; s

2

)

0 otherwise

� 8s 2 S

1+2

: M

1+2

in

(s) =

�

M

1

in

(s

1

) if s = (s

1

; �) or s = (s

1

; s

2

)

M

2

in

(s

2

) if s = (�; s

2

)

De�ne morphisms in

i

: PN

i

! PN

1+2

, i = 1; 2, as follows:

� 8s 2 S

1+2

: in

1

S

(s) = s

1

if s = (s

1

; �) or s = (s

1

; s

2

):

8t 2 T

1

: in

1

T

(t) = (t; �):

� 8s 2 S

1+2

: in

2

S

(s) = s

2

if s = (�; s

2

) or s = (s

1

; s

2

):

8t 2 T

2

: in

2

T

(t) = (�; t):

So, given transitions t

1

2 T

1

and t

2

2 T

2

that are enabled at the initial markings

M

1

in

and M

2

in

respe
tively, PN

1+2

will have a 
ommon input pla
e for t

1

and t

2

provided there is an s

1

2

�

t

1

and an s

2

2

�

t

2

su
h that M

1

in

(s

1

) = M

2

in

(s

2

).

This represents a kind of non-deterministi
 
hoi
e between (t

1

; �) and (�; t

2

) in the


omposite net PN

1+2

. On the other hand, if we 
annot �nd s

1

2

�

t

1

and s

2

2

�

t

2

su
h that M

1

in

(s

1

) = M

2

in

(s

2

), then both (t

1

; �) and (�; t

2

) will be independently

enabled at the initial marking M

1+2

in

in PN

1+2

, 
orresponding to the asyn
hronous

parallel 
omposition of t

1

and t

2

.

Lemma 28. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two Petri nets. The 
oprod-

u
t of these two nets is the Petri net PN

1+2

= (S

1+2

; T

1+2

;W

1+2

;M

1+2

in

) equipped

with the inje
tions in

i

, i = 1; 2, de�ned above.

Proof. It is easy to verify that in

1

and in

2

are PN-morphisms from PN

1

to

PN

1+2

and PN

2

to PN

1+2

respe
tively.

To prove that PN

1+2

together with in

1

and in

2

a
tually is the 
oprodu
t of

PN

1

and PN

2

, we have to establish the following.

Claim. For any other net PN = (S; T;W;M

in

) su
h that there exist morphisms

f

i

: PN

i

! PN , i = 1; 2, there is a unique morphism g : PN

1+2

! PN su
h that

f

i

= g Æ in

i

, i = 1; 2.

Proof of Claim.

For 
onvenien
e, we �rst de�ne total fun
tions

^

f

i

: S ! (S

i

[ f�g), i = 1; 2, as

follows.

8s 2 S:

^

f

i

(s) =

�

f

i

(s) if f

i

(s) de�ned

� otherwise

Now, de�ne g : PN

1+2

! PN as follows.
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8s 2 S: g

S

(s) =

�

unde�ned

(

^

f

1

(s);

^

f

2

(s))

if

^

f

1

(s) =

^

f

2

(s) = �

otherwise

8t 2 T

1+2

: g

T

(t) =

8

<

:

f

1

(t

1

)

f

2

(t

2

)

unde�ned

if t = (t

1

; �) and f

1

(t

1

) de�ned

if t = (�; t

2

) and f

2

(t

2

) de�ned

otherwise

We �rst verify that g is a PN-morphism. It is straightforward to 
he
k that

8s 2 S: 8s

0

2 S

1+2

: g(s) = s

0

implies M

in

(s) =M

1+2

in

(s

0

):

Next, suppose g(t

0

) is unde�ned for t

0

2 T

1+2

. We have to show that g

�1

(

�

t

0

) =

g

�1

(t

0

�

) = ;. Let s

0

2

�

t

0

. Without loss of generality, let t

0

= (t

1

; �). Then it

is 
lear that s

0

is of the form (s

1

; x), where s

1

2

�

t

1

in PN

1

and x 2 S

2

[ f�g.

If s

0

= g(s) for some s 2 S, then this implies that s

1

= f

1

(s). But we know

that f

1

(t

1

) is unde�ned as well and so f

�1

1

(

�

t

1

) = ;. In parti
ular, f

�1

1

(s

1

) = ;

and so g

�1

(s

0

) = ; as well. Sin
e s

0

was an arbitrary pla
e in

�

t

0

it follows that

g

�1

(

�

t

0

) = ;. By a similar argument, g

�1

(t

0

�

) = ; as well.

On the other hand suppose that g(t

0

) = t for t

0

2 T

1+2

and t 2 T . Then, we have

to show that g

�1

(

�

t

0

) =

�

t and g

�1

(t

0

�

) = t

�

. We also have to establish that for

ea
h s 2

�

t, W (s; t) =W

1+2

(g(s); t

0

) and for ea
h s 2 t

�

, W (t; s) =W

1+2

(t

0

; g(s)).

Without loss of generality, assume that t

0

is of the form (t

1

; �).

We �rst show that g

�1

(

�

t

0

) �

�

t. Let s

0

2

�

t

0

. Clearly s

0

must be of the

form (s

1

; x), where s

1

2

�

t

1

in PN

1

and x 2 S

2

[ f�g. Then, s 2 g

�1

(s

0

) implies

s 2 f

�1

1

(s

1

). But f

1

(t

1

) = t

0

and so f

�1

1

(

�

t

1

) =

�

t. Hen
e, it follows that if s

1

2

�

t

1

then s 2

�

t. So s 2 g

�1

(

�

t

0

) implies s 2

�

t.

Conversely, let s 2

�

t. Then, sin
e f

1

(t

1

) = t, we know that f

1

(s) = s

1

for

some s

1

2

�

t

1

in PN

1

. It follows that g(s) = (s

1

; x), where x =

^

f

2

(s) and (s

1

; x) 2

�

(t

1

; �). So

�

t � g

�1

(

�

t

0

).

So we have shown that g

�1

(

�

t

0

) =

�

t. A similar argument establishes that

g

�1

(t

0

�

) = t

�

.

The fa
t that for ea
h s 2

�

t, W (s; t) = W

1+2

(g(s); t

0

) and for ea
h s 2 t

�

,

W (t; s) =W

1+2

(t

0

; g(s)) follow easily from the de�nition of g and W

1+2

.

To show that g is the unique map from PN

1+2

! PN su
h that f

i

=

g Æ in

i

, i = 1; 2, we establish that g

S

: S ! S

1+2

is the unique map su
h that

f

i

S

= in

i

S

Æ g

S

, i = 1; 2, and g

T

: T

1+2

! T is the unique map su
h that

f

i

T

= g

T

Æ in

i

T

, i = 1; 2.

First de�ne the maps

b

in

i

: S

1+2

! S

i

[ f�g, i = 1; 2, as follows.

8s 2 S

1+2

:

b

in

i

(s) =

�

in

i

(s) if in

i

(s) de�ned

� otherwise

Now de�ne the maps hin

1

S

; in

2

S

i : S

1+2

! (S

1

[f�g)�(S

2

[f�g) and hf

1

S

; f

2

S

i :

S ! (S

1

[ f�g)� (S

2

[ f�g) su
h that

8s 2 S

1+2

: hin

1

S

; in

2

S

i(s) = (

b

in

1

(s);

b

in

2

(s)):

8s 2 S: hf

1

S

; f

2

S

i(s) = (

^

f

1

(s);

^

f

2

(s)):
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Figure 8: A Na��ve Coprodu
t Constru
tion in PNts

To establish that g

S

is the unique map su
h that f

i

S

= in

i

S

Æ g

S

, i = 1; 2, it

suÆ
es to show that g

S

is the unique map su
h that hf

1

S

; f

2

S

i = hin

1

S

; in

2

S

i Æ g

S

.

Suppose that there is some other g

0

S

su
h that hf

1

S

; f

2

S

i = hin

1

S

; in

2

S

i Æ g

0

S

=

hin

1

S

; in

2

S

i Æ g

S

. Sin
e hin

1

S

; in

2

S

i is an inje
tive total fun
tion from S

1+2

to

(S

1

[ f�g)� (S

2

[ f�g) , it follows that g

0

S

= g

S

.

To show that g

T

is the unique map su
h that f

i

T

= g

T

Æ in

i

T

, i = 1; 2, de�ne

maps hf

1

T

+ f

2

T

i : T

1

℄ T

2

! T and hin

1

T

+ in

2

T

i : T

1

℄ T

2

! T

1+2

as follows

8t 2 T

1

℄ T

2

: hf

1

T

+ f

2

T

i(t) =

�

f

1

(t)

f

2

(t)

if t 2 T

1

otherwise

8t 2 T

1

℄ T

2

: hin

1

T

+ in

2

T

i(t) =

�

in

1

(t)

in

2

(t)

if t 2 T

1

otherwise

It then suÆ
es to show that g

T

is the unique map su
h that hf

1

T

+ f

2

T

i =

g

T

Æ hin

1

T

+ in

2

T

i. Suppose that there is some other g

0

T

su
h that hf

1

T

+ f

2

T

i =

g

0

T

Æ hin

1

T

+ in

2

T

i = g

T

Æ hin

1

T

+ in

2

T

i. Sin
e hin

1

T

+ in

2

T

i is a surje
tive fun
tion

from T

1

℄ T

2

to T

1+2

, it follows that g

0

T

= g

T

. 2

On the other hand, for PN-transition systems, the situation regarding the exis-

ten
e of 
oprodu
ts is not so straightforward.

For transition systems in general, there is a 
anoni
al way to form the 
oprodu
t|

given TS

1

and TS

2

, the transition system TS

1

+TS

2

is obtained by identifying the

initial states of TS

1

and TS

2

.

469



This operation is well behaved for various spe
ial 
lasses of transition systems|

for instan
e, the sum of two elementary transition systems de�ned in this manner

is also an elementary transition system [14℄ and the sum of two asyn
hronous tran-

sition systems is also an asyn
hronous transition system [20℄.

Unfortunately, it turns out that for PN-transition systems, this is not the 
ase.

In other words, it is possible to de�ne two PN-transition systems TS

1

and TS

2

su
h that the transition system obtained by identifying their initial states is not a

PN-transition system.

Consider the transition systems shown in Figure 8. TS

1

is generated by PN

1

and TS

2

is generated by PN

2

so both TS

1

and TS

2

are PN-transition systems.

On the other hand the transition system TS

1+2

, obtained by forming the normal


oprodu
t of TS

1

and TS

2

, is not a PN-transition system. To see this, observe that

for any region r in TS

1+2

, r(s

i+1

) � r(s

i

) for all i 2 N

0

.

For, suppose there is some r

0

su
h that r

0

(s

i+1

) < r

0

(s

i

) for some i 2 N

0

.

Then it must be the 
ase that

r

0

e

2

> e

2

r

0

and in fa
t r

0

(s

i+1

) < r

0

(s

i

) for every

i 2 N

0

. Sin
e r

0

(s

0

) is �nite, there must be some j 2 N

0

where r

0

(s

j

) <

r

0

e

2

, whi
h


ontradi
ts the fa
t that e

2

is enabled at all s

i

; i 2 N

0

.

As a result, it follows that for all regions r, for all i 2 N

0

, r(s

i

) � r(s

0

) �

r

e

1

,

sin
e e

1

is enabled at s

0

. In other words, the states s

i

; i 2 f1; 2; : : :g, do not satisfy

axiom (A4) of PN-transition systems, be
ause e

1

is enabled by all regions at these

states and there is no e

1

transition out of these states.

However, we 
an show, indire
tly, that PNts does have 
oprodu
ts.

Lemma 29. The 
ategory PNts has 
oprodu
ts.

Proof. Let TS

1

and TS

2

be two PN-transition systems. We want to �nd a PN-

transition system TS

1+2

and two maps in

i

: TS

i

! TS

1+2

, i = 1; 2, su
h that

TS

1+2

equipped with the inje
tion morphisms in

1

and in

2

is a 
oprodu
t of TS

1

and TS

2

.

Let PN

1

= TN(TS

1

) and PN

2

= TN(TS

2

). Sin
e PNet has 
oprodu
ts, we


an de�ne a net PN

1+2

whi
h, when equipped with inje
tions in

0

i

: PN

i

! PN

1+2

,

i = 1; 2, 
onstitutes a 
oprodu
t of PN

1

and PN

2

.

The result we are after hinges on the following:

Claim. PN

1+2

' TN Æ NT(PN

1+2

).

Assuming the 
laim for the moment, let � : PN

1+2

! TNÆNT(PN

1+2

) denote one

dire
tion of the isomorphism. We 
an 
on
lude that TN Æ NT(PN

1+2

) equipped

with inje
tions � Æ in

0

i

: PN

i

! TN Æ NT(PN

1+2

), i = 1; 2, is also a 
oprodu
t of

PN

1

and PN

2

.

It follows from the fa
t that we have a 
ore
e
tion between TN and NT that the

left adjoint, TN, is full and faithful. So, we 
an �nd maps in

i

: TS

i

! NT(PN

1+2

)

su
h that TN(in

i

) = � Æ in

0

i

for i = 1; 2.

It is straightforward to show that full and faithful fun
tors re
e
t 
oprodu
t

diagrams. Sin
e the 
oprodu
t diagram 
onsisting of PN

1

, PN

2

, TN ÆNT(PN

1+2

)

and the two inje
tion maps � Æ in

0

i

, i = 1; 2, lies within the range of TN, it follows

that the 
orresponding diagram in PNts 
onsisting of TS

1

, TS

2

, NT(PN

1+2

) and

the maps in

i

, i = 1; 2, 
onstitutes a 
oprodu
t diagram as well, and we are done.
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Figure 9:

To 
omplete the proof, we have to establish the 
laim that PN

1+2

is isomorphi


to TN Æ NT(PN

1+2

).

Proof of 
laim.

By the 
ore
e
tion between TN and NT, we know that TS

i

is isomorphi
 to

NT(PN

i

), i = 1; 2 (re
all that PN

i

abbreviates TN(TS

i

), i = 1; 2).

Sin
e TN is full and faithful, it preserves isomorphisms and thus PN

i

' TN Æ

NT(PN

i

), i = 1; 2.

Combining this isomorphism with TN Æ NT(in

0

i

), we have maps from PN

i

to

TN Æ NT(PN

1+2

) (see Figure 9). Sin
e PN

1+2

equipped with the inje
tions in

0

1

and in

0

2

is a 
oprodu
t of PN

1

and PN

2

, we have a unique map � : PN

1+2

!

TN Æ NT(PN

1+2

) su
h that � Æ in

0

i

= TN Æ NT(in

0

i

), i = 1; 2 (where we ignore the

isomorphism between PN

i

and TN Æ NT(PN

i

), i = 1; 2, from now on).

From the way the adjun
tion is de�ned, it follows that the set of transitions of

PN

1+2

, T

PN

1+2

, is the same as the set of transitions of TNÆNT(PN

1+2

). Similarly,

T

PN

i

= T

TNÆNT(PN

i

)

, for i = 1; 2.

As in the proof of Lemma 28, we 
an de�ne maps hin

0

1

T

+ in

0

2

T

i and h(TN Æ

NT(in

0

1

))

T

+ (TN Æ NT(in

0

2

))

T

i from T

PN

1

℄ T

PN

2

! T

PN

1+2

. It follows from the

way the fun
tors NT and TN are de�ned that hin

0

1

T

+ in

0

2

T

i = h(TN ÆNT(in

0

1

))

T

+

(TN Æ NT(in

0

2

))

T

i.

We know that �

T

Æhin

0

1

T

+ in

0

2

T

i = h(TNÆNT(in

0

1

))

T

+(TNÆNT(in

0

2

))

T

i. Sin
e

hin

0

1

T

+ in

0

2

T

i is a surje
tive map onto T

1+2

, it must be the 
ase that �

T

is the

identity map on T

PN

1+2

.

In the other dire
tion, the 
ounit of the adjun
tion de�nes a map "

PN

1+2

from

TN ÆNT(PN

1+2

) to PN

1+2

. It follows from the way the adjun
tion is de�ned that
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Figure 10: The 
oprodu
t of TS

1

and TS

2

(from Figure 8)

("

PN

1+2

)

T

is the identity map on T

PN

1+2

as well.

Thus, (� Æ "

PN

1+2

)

T

is the identity map on T

PN

1+2

. We know that TN Æ

NT(PN

1+2

) is simple with respe
t to pla
es and has no isolated pla
es. Hen
e,

from Lemma 16, we 
an 
on
lude that that � Æ "

PN

1+2

= id

TNÆNT(PN

1+2

)

sin
e the

two morphisms agree on the way they map transitions.

Similarly, ("

PN

1+2

Æ �)

T

is the identity map on T

PN

1+2

. Sin
e PN

1

and PN

2

are both simple respe
t to pla
es and have no isolated pla
es, it is not diÆ
ult to

show, from De�nition 27, that PN

1+2

is also simple with respe
t to pla
es and has

no isolated pla
es. Hen
e, we 
an appeal to Lemma 16 on
e again to 
on
lude that

"

PN

1+2

Æ � = id

PN

1+2

.

Thus, we have established that � and "

PN

1+2


onstitute an isomorphism between

PN

1+2

and TN Æ NT(PN

1+2

) and we are done.

2

Using Lemma 29, we 
an show that the transition system shown in Figure 10,

together with the obvious inje
tion maps, is the 
oprodu
t of the transition systems

TS

1

and TS

2

shown in Figure 8.

10. Dis
ussion

In this paper, we have established a 
ore
e
tion between the 
ategory PNts of

PN-transition systems and the 
ategory PNet of Petri nets.

This 
ore
e
tion essentially means that the 
ategory PNts 
an be embedded

in PNet|in other words, PN-transition systems 
an be viewed as a sub-model of

Petri nets. One 
ru
ial advantage of having 
ore
e
tions between di�erent models

of 
on
urren
y is that we 
an automati
ally translate results from one model to

another. For instan
e, to obtain a non-interleaved model for a pro
ess 
al
ulus

su
h as CCS [9℄, it is intuitively easier to enri
h the standard interleaved transition

system semanti
s to obtain a more faithful representation of 
on
urren
y, rather

than providing a semanti
s dire
tly in terms of nets [3, 15℄ or event stru
tures [19℄.

So, for example, we 
an use a very simple extension of the standard operational

semanti
s for CCS to provide a non-interleaved semanti
s for a ri
h sub
lass of the

language in terms of asyn
hronous transtition systems [13℄. These asyn
hronous

transition systems belong to the spe
ial sub
ategory shown to 
orrespond 
losely

to safe nets in [20℄. This implies that we obtain \for free" a net semanti
s for this

language.
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An advantage of working with 
ategories is that many interesting operations that

one de�nes on these models 
an be 
aptured as universal 
ategori
al 
onstru
tions.

For instan
e, parallel 
omposition 
orresponds to a notion of 
ategori
al produ
t,

while nondeterministi
 
hoi
e 
an be des
ribed in terms of 
oprodu
ts. Thus, by

relating 
ategories of models, we 
an also 
ompare how these 
onstru
tions behave

in di�erent models. This issue is dis
ussed in some detail in [20℄, where a number

of relationships between models for 
on
urren
y are established in a 
ategori
al

setting, spanning the spe
trum of linear-time, bran
hing-time and partial-order

approa
hes to modelling the behaviour of 
on
urrent systems.

In establishing our 
ore
e
tion, we have pla
ed no restri
tions on the nets in

PNet . In parti
ular, we permit isolated transitions in our nets. Behaviourally,

isolated transitions have the unpleasant side-e�e
t of introdu
ing unbounded 
on-


urren
y into the system. Thus, a useful restri
tion to pla
e on nets is that every

transition has an input pla
e. The 
orresponding restri
tion on PN-transition sys-

tems is that the steps enabled at any state should be bounded. By introdu
ing

these restri
tions, we obtain full sub
ategories of PNts and PNet whi
h are also

related by a 
ore
e
tion.

We have also removed the restri
tion imposed by Nielsen, Rozenberg and Thia-

garajan [14℄ in 
onstru
ting their 
ategory of elementary net systems that the nets

be simple. This restri
tion is 
ru
ially used by them to establish the equivalent of

Lemma 16 for elementary net systems. However, as we have observed here, it is

suÆ
ient to ensure that in going from PN-transition systems (elementary transition

systems) to Petri nets (elementary net systems), the nets that one 
onstru
ts are

simple. So, the 
ore
e
tion between elementary transition systems and elemen-

tary net systems established in [14℄ 
ontinues to hold even when their 
ategory of

elementary net systems is extended to permit non-simple nets.

Our 
onstru
tion of a Petri net from a PN-transition system always gives rise to

an in�nite net (ex
ept in the 
ase of the trivial transition system). This is be
ause

any non-negative linear 
ombination of regions is also a region and we saturate

the net with all possible non-trivial regions. So, it would be interesting to try and


hara
terize those PN-transition systems whi
h 
an be des
ribed in terms of a �nite

basis set of regions.

For elementary transition systems, it is straightforward to see that a given

transition system 
an be represented as a �nite elementary net system if and only

if the set of states and the set of events of the transition system are �nite.

However, sin
e Petri nets 
an have pla
es whi
h are unbounded, a �nite Petri

net 
an give rise to an in�nite PN-transition system.

Sin
e we are dealing with unlabelled stru
tures, the set of events of a PN-

transition system is the same as the set of transitions of the Petri net whose be-

haviour it represents. Thus, for a PN-transition system to have a representation as

a �nite net, it is ne
essary for its set of events to be �nite.

Unfortunately, this 
ondition is not suÆ
ient. In [11℄, we show an example

of a Petri net that has a �nite number of transitions but an in�nite number of

(unbounded) pla
es whose behaviour 
annot be simulated by any �nite net.

However, it is the 
ase that if both the set of events and the set of states of

a PN-transition system are �nite, then we 
an 
onstru
t a �nite Petri net whose

behaviour is the same as that of the original transition system.
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We turn now to other 
ategories of Petri nets that have been des
ribed in the

literature|notably those of Winskel [18℄ and Meseguer and Montanari [10℄.

Our de�nition of net morphisms is a strengthened version of the one used by

Winskel in [18℄. Winskel permits the map on pla
es to be an arbitrary relation (a
-

tually a multirelation) in the forward dire
tion whi
h preserves the initial marking

and neighbourhoods of transitions. The main reason for this is to permit morphisms

between the unfolding of a net and the original net (for 1-safe nets). However, as has

been pointed out in [14℄, this relaxation does not permit us to establish an adjun
-

tion between transition systems and nets. The essential problem is that we 
an, in

general, �nd more than one of Winskel's morphisms between a pair of nets des
rib-

ing the same behavioural morphism between the 
orresponding transition systems.

This destroys the bije
tion between hom(TN(TS);PN ) and hom(TS;NT(PN ))

whi
h is required for an adjun
tion. The observation in [14℄ is made with respe
t

to elementary transition systems, but it holds for PN-transition systems as well.

Meseguer and Montanari [10℄ de�ne a variety of 
ategories based on Petri nets.

They regard multisets of pla
es and transitions as 
ommutative monoids and, in the

most general 
ase, de�ne their net morphisms to be monoid homomorphisms over

both pla
es and transitions whi
h respe
t the neighbourhoods of the transitions.

Their 
ategory MPetri

0

, where maps on pla
es are monoid homomorphisms and

maps on transitions are partial fun
tions, is 
losest in spirit to our 
ategory PNet .

On
e again, we 
annot obtain an adjun
tion using their net morphisms be
ause

there 
an be more than one su
h net morphism 
orresponding to the same transition

system morphism. Also, inMPetri

0

initial markings are restri
ted to sets of pla
es

(rather than multisets) in order for 
oprodu
ts to exist. Given this restri
tion,


oprodu
ts in MPetri

0


orrespond to non-deterministi
 
hoi
e. In PNet no su
h

restri
tion is ne
essary to obtain 
oprodu
ts, and, as we have noted in the previous

se
tion, for nets satisfying su
h a restri
tion on the initial marking, our 
oprodu
ts

would also always 
orrespond to non-deterministi
 
hoi
e.

Admittedly, our net morphisms appear to be fairly restri
tive when 
ompared

to those of [18℄ or [10℄. However, the restri
tions we impose on net morphisms seem

essential for establishing the 
orresponden
e we would like between nets and tran-

sition systems, given our \free" 
onstru
tion of a net TN(TS) from a PN-transition

system TS, where all non-trivial regions are in
luded as pla
es in TN(TS). One

possible way to relax the notion of a net morphism and still obtain a 
ore
e
tion

between PN-transition systems and nets is to tighten up the 
onstru
tion of a net

PN from a PN-transition system TS to in
lude, say, only a basis set of regions as

pla
es in PN , rather than all non-trivial regions.

Despite the restri
ted nature of our net morphisms, our 
ore
e
tion does o�er

a solution to a general problem with net morphisms. Ideally, a morphism should

exist between nets PN

1

and PN

2

i� PN

2


an simulate the behaviour of PN

1

.

However, the stru
ture of PN

1

and PN

2

will often rule out su
h a morphism, even

when the behaviours of the two nets 
an be related. This is true even in the more

generous setup of [18℄ or [10℄ and is a 
onsequen
e of the fa
t that nets are too


on
rete a representation of system behaviour. Our 
ore
e
tion gives us a way to

get around this diÆ
ulty. Suppose we have two nets PN

1

and PN

2

su
h that there

is a transition system morphism from NT(PN

1

) to NT(PN

2

), but there is no net

morphism from PN

1

to PN

2

. We 
an 
onstru
t the net TN Æ NT(PN

1

), whi
h is
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the \
anoni
al" representation of PN

1

. The 
ore
e
tion then guarantees that a

net morphism exists between TN Æ NT(PN

1

) and PN

2

. In fa
t, we do not even

need the entire net TN Æ NT(PN

1

) to obtain a morphism to PN

2

. If f is the map

between NT(PN

1

) and NT(PN

2

), it is suÆ
ient to 
onstru
t a net PN

0

1

from PN

1

by adding to PN

1

those pla
es whi
h are inverse images via f of the spe
ial regions

r

s

in NT(PN

2

) (re
all that for ea
h pla
e s in PN

2

, we 
an asso
iate a region r

s

in

NT(PN

2

)).

Another way that Meseguer and Montanari [10℄ generalize their net morphisms

is by permitting a single event in the sour
e net to map to a \
omputation" of

the target net. In fa
t, in [18℄, Winskel also generalizes his morphisms to permit

an event to be mapped to a multiset of events rather than a single event. This


orresponds to a sort of re�nement operation. It would be interesting to see if su
h

an idea 
ould be transported to our setup|this would also require us to de�ne a

more sophisti
ated notion of transition system morphism.

As we had mentioned in the introdu
tion, our work is a generalization of the

results des
ribed in [14℄ dealing with elementary net systems. In addition, Winskel

and Nielsen [20℄ have established a similar result relating a sub
lass of asyn
hronous

transition systems to 1-safe Petri nets.

By tuning our regions appropriately, we 
an �t the results of [14℄ and [20℄ neatly

into our framework [12℄. To begin with, for a region r, we 
an restri
t the range

of r

Q

to f0; 1g and the range of r

E

to f(0; 0); (0; 1); (1; 0); (1; 1)g. If we enfor
e

the regional axioms (A3) and (A4) for step transition systems in terms of this

restri
ted 
lass of regions, we obtain a full sub
ategory of PNts 
onsisting of safe

PN-transition systems, whi
h 
orresponds to 1-safe Petri nets. For all transition

systems in this sub
ategory, it turns out that the steps in the transition relation


onsist of only sets of events and not multisets be
ause auto
on
urren
y is ruled

out.

Winskel and Nielsen have established a 
ore
e
tion between a sub
ategory of

asyn
hronous transition systems and safe nets [20℄. In an asyn
hronous transition

system, information about 
on
urren
y is in
orporated in terms of a binary inde-

penden
e relation on the events, rather than by adding stru
ture to the labels of the

transitions as we have done here. At �rst sight, it appears that the 
ategory of safe

PN-transition systems should 
oin
ide with the sub
ategory of asyn
hronous transi-

tion systems studied in [20℄. However, we 
an show that there is only a 
ore
e
tion

between these two 
ategories [12℄, indi
ating that asyn
hronous transition systems

are a slightly more \
on
rete" model than safe PN-transition systems (though still a

more abstra
t model than safe nets). This \
on
reteness" arises from the fa
t that

the independen
e relation 
an spe
ify that two events are 
on
urrent in an asyn-


hronous transition system even when there is no state at whi
h the 
on
urren
y

is a
tually exhibited in the behaviour of the system.

By further restri
ting the range of r

E

to ex
lude (1; 1), we obtain a full sub-


ategory of PNts 
alled elementary PN-transition systems, 
orresponding to ele-

mentary net systems. In [12℄, we establish an equivalen
e between our 
ategory

of elementary PN-transition systems and the 
ategory of elementary net systems

of Nielsen, Rozenberg and Thiagarajan [14℄. Sin
e elementary transition systems

are a sub
lass of 
onventional sequential transition systems, this 
ategori
al equiv-

alen
e o�ers an alternative proof of the result of Hoogeboom and Rozenberg [6℄
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Elementary

net systems

Safe nets ,! Petri nets

*

*

Asyn
hronous transition

systems

(Winskel, Nielsen)

*

*

Elementary

PN-transition

systems

,!

Safe

PN-transition

systems

,!

PN-transition

systems

�

=

Elementary transition

systems (Nielsen,

Rozenberg, Thiagarajan)

Figure 11: Relating various models for 
on
urren
y

that for elementary transition systems, no information about 
on
urren
y is lost

by restri
ting one's attention to sequential transition systems.

The relationship between these di�erent models is summarized in Figure 11.

The verti
al arrows (*) indi
ate 
ore
e
tions; the arrow indi
ates the dire
tion of

the left adjoint.

It also turns out that if we are interested only in the sequential behaviour of Petri

nets, we 
an 
hara
terize Petri nets using 
onventional transition systems. Suppose

we 
onsider purely sequential transition systems (thereby restri
ting our attention

to the sequential �ring sequen
es of Petri nets). We then get an obvious sequential

de�nition of a region and we 
an impose the 
orresponding regional axioms to

obtain a 
ategory of sequential PN-transition systems. Somewhat surprisingly, it

turns out that we 
an establish a 
ore
e
tion between this 
ategory of sequential

PN-transition systems and the 
ategory PNet [12℄. In this setup, every net PN will

have a 
anoni
al representation TN Æ NT(N) whi
h is purely sequential|i.e. there

will be a pla
e s in TN Æ NT(N) su
h that for every transition t in TN Æ NT(N),

W (s; t) =W (t; s) = 1.

The observation that we 
an use both sequential and step transition systems to


hara
terize Petri nets seems to indi
ate that we 
an use obje
ts like PN-transition

systems to bridge the gap between interleaving and non-interleaving models of


on
urren
y in a smooth way.

We 
on
lude by pointing out a major issue whi
h we have ignored in our study|

that of labelling. In the theory of Petri nets, abstra
tion is a
hieved by adding a

set of labels whi
h 
an be asso
iated with the underlying events of the system.

This is 
ru
ial for using nets to provide, say, a semanti
s for CCS-like langages.

In [20℄, labelling is introdu
ed into the 
ategori
al treatment of di�erent models of


on
urren
y by means of �brations and 
o�brations. Though they point out some

problems in de�ning these 
onstru
tions over 
ategories of nets, it does not seem
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to prevent the 
ore
e
tion between unlabelled transition systems and unlabelled

nets from being extended to the 
orresponding labelled 
ategories. So, while we

have not expli
itly handled labelling in our framework, we are 
on�dent that we


an follow the route set out in [20℄ without too mu
h diÆ
ulty.
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