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ABSTRACT

Labelled transition systems are a simple yet powerful formalism for describing the operational
behaviour of computing systems. They can be extended to model concurrency faithfully by
permitting transitions between states to be labelled by a collection of actions, denoting a
concurrent step.

Petri nets (or Place/Transition nets) give rise to such step transition systems in a natural
way—the marking diagram of a Petri net is the canonical transition system associated with it.
In this paper, we characterize the class of PN-transition systems, which are precisely those
step transition systems generated by Petri nets.

We express the correspondence between PN-transition systems and Petri nets in terms
of an adjunction between a category of PN-transition systems and a category of Petri nets
in which the associated morphisms are behaviour-preserving in a strong and natural sense.

Keywords: Petri nets, models for concurrency, category theory

1. Introduction

Transition systems are an appealingly simple yet powerful formalism for describ-
ing the operational behaviour of models of concurrency. They provide a common
framework for investigating the relationships between different models of distributed
systems.

Nielsen, Rozenberg and Thiagarajan [14] have established a close correspon-
dence between a class of transition systems called elementary transition systems
and a basic model of net theory called elementary net systems. They describe
this correspondence in terms of a coreflection between a category of elementary
transition systems and a category of elementary net systems.

Here, we extend the results of [14] to a much richer model of net theory called
Petri nets (also known as Place/Transition nets). Petri nets give rise to transition
systems in a natural way—the reachability graph of a Petri net defines a canonical
transition system associated with it. In this paper, we characterize a subclass of
transition systems called PN-transition systems, which are precisely those transition
systems generated by (unlabelled) Petri nets.

The results of [14] are established within the framework of conventional sequen-
tial transition systems, where the transitions are labelled by single events. Because
of the relatively uncomplicated structure of elementary net systems, information
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about concurrency can be recovered from the sequential transition relation of an
elementary transition system by checking local “diamond” properties.

However, when we move over to Petri nets, we need to introduce explicit in-
formation about concurrency into our transition systems. For instance, consider
the two nets in Figure 1. Both give rise to the same sequential transition system,
shown on the right. However, in the first net a and b can occur concurrently, while
in the second net a and b can occur only sequentially (though in any order).

Thus, to represent concurrency faithfully, we shall enrich the transition relation
by permitting one state to be transformed to another in a single step consisting of
a finite multiset of actions. (We have to permit multisets and not just sets because
of autoconcurrency.)

We call this new class of transition systems step transition systems. PN-
transition systems are defined as a subclass of step transition systems which satisfy
certain restrictions that ensure that the steps are “consistent”.

As in [14], we describe the connection between Petri nets and PN-transition
systems using the language of category theory. We first define a category PNts
whose objects are PN-transition systems and whose arrows are standard transition
system morphisms, extended to respect steps. We then construct a category PNet
of Petri nets. The morphisms we define between nets are a smooth generalization of
the morphisms defined between elementary net systems in [14]. These morphisms
are strengthened versions of the morphisms defined by Winskel [18]. They preserve
the dynamic behaviour of nets in a strong way.

There is a natural functor NT : PNet — PANts which maps each Petri net to
the transition system associated with its marking diagram. Our main result is the
construction of a functor TN : PNts — PNet which is left adjoint to NT. In
fact, the unit of the adjunction is a natural isomorphism, so we actually have a
coreflection between this pair of functors.

To construct a Petri net corresponding to a PN-transition system, we have to
construct places which appropriately constrain the behaviour of the net. To do
this, we generalize the notion of a region.

Regions are used by Nielsen, Rozenberg and Thiagarajan in [14] to define the
conditions of an elementary net system corresponding to a given elementary transi-
tion system. Their notion can be generalized in several ways to characterize classes
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of transition systems corresponding to different models of concurrency. For in-
stance, Winskel and Nielsen [20] use a version of regions to establish a coreflection
between a special class of asynchronous transition systems [1, 17] and 1-safe Petri
nets. On a slightly different track, Hoogers, Kleijn and Thiagarajan [5] use regions
to obtain a language-theoretic characterization of the non-sequential behaviour of
Petri nets in terms of a generalized version of Mazurkiewicz trace languages. We
shall discuss the relationship between our regions and these other notions in the
concluding section.

The paper is organized as follows. We begin with the definition of step transition
systems, followed by a brief introduction to Petri nets. In Section 4, we describe
the class of PN-transition systems and construct the category PNts in Section 5.
Next, we show how to define a category PANet of Petri nets. In Section 7, we
construct the functor NT : PNet — PNts which serves as the right adjoint of the
adjunction described in Section 8. In section 9, we discuss the existence of universal
constructions such as products and coproducts in the categories PNts and PNet. In
the concluding section, we tie up some loose ends and discuss possible extensions of
our work. We also compare our categories PNts and PNet with related formalisms
described in the literature.

2. Step Transition Systems

A transition system is usually defined as a quadruple T'S = (Q, X, —, ¢in ), where
Q is a set of states and -+ C @ x ¥ x @ is a (sequential) transition relation which
describes how the system evolves from state to state by performing actions from ¥,
beginning with the initial state g;,.

We enrich the transition relation by permitting one state to be transformed to
another in a single step consisting of a finite multiset of actions. Later, we shall
define the class of PN-transition systems as a subclass of this new class of transition
systems which satisfies some simple axioms ensuring that all the steps in the system
are “consistent”.

We first fix some terminology and notation regarding multisets.

Definition 1. Let A be a set.

e A multiset u over A is a function u : A — Ng, where Ny is the set of natural
numbers {0,1,2,...}. The set of all multisets over A is denoted by MS(A).

o Foru € MS(A), let |u|, the size of u, be given by 3,4 u(a). u is finite iff
|u| is finite. The set of all finite multisets over A is denoted by MS g, (A).

e The empty multiset over A is the unique function 04 : A — No such that
Va € A. 04(a) = 0. If A is clear from the context, we shall often use just 0
to mean 04.

o Let u,v € MS(A). Then u is a submultiset of v, written u Cys v, in case
Va € A. u(a) <wv(a).

Thus, if u is a multiset over A, for each a € A, u(a) is the number of occurrences of a
in u. Abusing notation, we shall write a € u to signify that u(a) > 1. For simplicity,
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we shall usually write out multisets as sets with multiplicities—for instance, if
a,b € A, then {a,a,b} denotes the multiset u over A which assigns u(a) = 2,
u(b) =1 and u(c) = 0 for all ¢ € A such that ¢ # a and ¢ # b.

Multisets can be added and subtracted pointwise — if u and v are two multisets
over A, then u + v and u — v are defined as follows:

Va € A. (u + v)(a) = u(a) + v(a).

If v Cys u then Va € A. (u —v)(a) = u(a) — v(a).

Given a partial function f : A — B between sets, f can be extended in a natural
way to a (total) function f: MSs,(A) = MSg,(B) as follows:

Vu € MSpn(A). Vo€ B. fw)(b) = > ufa).
{a€A|f(a)=b}

By convention, f(u) = 0p in case f(a) is undefined for all a € w.
For convenience, we shall denote both f and its extension f to multisets by f.

Definition 2. A step transition system is a structure TS = (Q, E, —, qin), where
e (Q is a countable set of states, with ¢;, € ) as the initial state.
e FE is a countable set of events.

¢ - C @ xMSg(E) xQ is the transition relation.

We shall often write ¢ — ¢ instead of (q,u,q') € —. We also write ¢ — to denote
that u is enabled at ¢—i.e. ¢’ € Q. (q,u,q’) € —.

We can extend — to a relation —* over step sequences in the usual way. Let
p = wuy... up € (MSg,(E))* be a sequence of steps. Then (g,p,q") € —* iff
390, ¢1,-- -1 qn- G0 = q,qn = ¢ and g;—1 =5 q; for 1 < i < n.

We put two basic restrictions on transition systems. We first introduce idling
transitions, represented by the empty multiset, as self loops at each state and
demand that these special transitions occur only as self loops. We also ensure that
all states in a transition system are reachable from the initial state. Formally, we
have the following basic axioms.

(A1) Vg,¢' €Q. q Os ¢ iff g =4¢".
(A2) Vg€ Q. Fp € (MSpn(E))*. (qin,p,q) € =%

Henceforth, we shall assume that every step transition system we consider satisfies
axioms (A1) and (A2).

Notice that (A1) does not rule out the presence of non-trivial self-loops of the
form ¢ = q.

Axioms (A1) and (A2) are fairly weak. In particular, we have not introduced
any “step axioms” to ensure that the multisets which label the transitions actually
represent concurrent steps. Later, when we introduce additional axioms for PN-
transition systems, we shall see how the steps are constrained.
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Figure 2: A step transition system

Figure 2 is an example of a step transition system. As usual we graphically
represent a transition system by a directed graph whose nodes are the states and
whose arrows, labelled by multisets over E, denote the relation —. The initial state
is marked out specially. The trivial self-loops at each state are not explicitly drawn,
to avoid cluttering up the picture.

Before introducing the characteristic axioms for PN-transition systems, let us
take a look at Petri nets.

3. Petri Nets

We give a brief introduction to Place/Transition nets, which are often simply called
Petri nets. A more detailed discussion of this class of nets can be found in [16].

Definition 3. A Petri net is a quadruple PN = (S,T,W, M), where:

e S is set of places, T is a set of transitions and SNT = 0. T is assumed to
be countable.

e W:(SxT)U(T xS)— Ny is the weight function.
o M;, : S — Ny is the initial marking.

ForteT,let*t={se€ S| W(s,t)>0}and t* ={se€S|W(ts) >0} Similarly,
forse S,let *s={teT |W(t,s) >0} and s* ={t €T | W(s,t) > 0}.

Figure 3 is an example of a Petri net. We follow the usual graphical notation
for nets—places are denoted by circles, transitions are denoted by boxes. An arrow
is drawn from a place s to a transition ¢ (from ¢ to s) iff W(s,t) > 0 (W(¢,s) > 0)
and is labelled by the value of W (s, t) (W (¢, s)). By convention, an arrow without a
label corresponds to the case where W(s,t) =1 (W (¢, s) = 1). The initial marking
is denoted by drawing dots in the places. Thus if M;,(s) = n, we draw n dots (or
tokens) in the circle corresponding to s.

The places of a Petri net intuitively correspond to local states of the system. A
global state, called a marking, is a multiset M : S — Ny. If M(s) = n, then s is
said to be assigned n tokens by M.

A transition ¢ can occur at a marking M if for all s € S, M(s) > W (s,t). We
say that ¢ is enabled at M and denote this by M][t).
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Figure 3: A Petri net

When a transition ¢ occurs at a marking M, a new marking M’ is generated
according to the following rule:

Vs € S. M'(s) = M(s) — W(s,t) + W(t,s).

We denote the fact that M evolves to M’ via ¢t by M[t)M’'.

Suppose t; and ts are two transitions and M is a marking such that Vs €
S. M(s) > W(s,t1) + W (s,t2). Then t; and ¢t can both occur independently at M
and are thus concurrently enabled. In such a situation, M can evolve in a single
step by the occurrence of both #; and t5 to a marking M’ where

Vs € S. M'(s) = M(s) — W (s, t1) — W(s,ta) + W(t1,s) + W(ts, s).

We can thus extend the transition relation associated with a Petri net to permit
steps of actions between a pair of markings. In general, such a step will be a
multiset over T" rather than a subset of T" because a transition may be concurrent
with itself (a phenomenon called autoconcurrency). For instance, in Figure 3, two
copies of the transition a are enabled at the initial marking.

Let u € MSg, (T). w is enabled at a marking M, denoted M[u), if for all s € S,
M(s) > >, cpul(t) - W(s,t). (Recall that u(t) denotes the number of occurrences
of t in u). When u occurs, M is transformed to M’ (denoted M[u)M') where

Vs € S. M'(s) = M(s) + Y u(t) - (W(t,s) — W(s, 1)

teT
The set of all markings reachable from a marking M is denoted by [M). [M) is
the smallest set of markings such that:
e Me [M )
o If M' € [M) and Ju € MSg, (T). M'[u)M" then M" € [M).

Notice that if M' € [M), we can always find a step sequence leading from
M to M' where each step in the sequence is a singleton step—i.e. the multiset of
transitions constituting each step is actually a singleton set.

Given a Petri net PN = (S,T,W, M;,), we can associate a transition relation
=>pN C [Min) X MSpn(T) x [M;n) with PN as follows.
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=>pN = {(M,U,M') | M € [M;,) and M[u)M'}

Just as we extended — to —* for transition systems, we extend =pn to a
relation =} over step sequences. Let p = uqus ... up € (MS5,(T))* be asequence
of steps. Then (M,p,M'") € =%y if M € [M;,) and IMy, My, ..., M,. My =
M, M, = M'" and M;_1[u;}M; for 1 <i < n.

Thus, given a Petri net PN = (S, T, W, M;,), we can associate a step transition
system TSpn = ([M;n), T, =pnN, M) which describes the operational behaviour
of the net PN. For example, it is easy to see that the transition system of Figure 2
is the step transition system associated with the Petri net of Figure 3. It is straight-
forward to verify that for any Petri net PN = (S,T,W, M;,), TSpx satisfies the
two axioms we have introduced for step transition systems in the previous section.

The main aim of this paper is to characterize those step transition systems
which arise out of describing the behaviour of Petri nets. As mentioned in the
introduction, this characterization will be described using the language of category
theory in terms of an adjunction between the category of Petri nets and the category
of a subclass of step transition systems called PN-transition systems.

Before constructing these two categories, we must first define PN-transition
systems.

4., PN-transition systems

To describe PN-transition systems, we need to introduce the notion of a region.
Regions have originally been defined in the context of sequential transition systems
by Ehrenfeucht and Rozenberg [4] as a transition system counterpart of the notion
of a condition in an elementary net system. Using regions, they characterize the
class of elementary transition systems which represent the behaviour of elementary
net systems. This characterization is extended to a coreflection between elementary
transition systems and elementary net systems in [14].
Here we generalize regions to capture the notion of a place of a Petri net.

Definition 4. Let TS = (Q, E, —, qin) be a step transition system. A region is a
pair of functions r = (rq,rg) such that:

(Z) ’I‘QCQ—)N().
(ZZ) rg : E — Ng x Np.

For convenience, we denote the first component of rg(e) as "e and the second
component of rg(e) as e”. In other words, if rg(e) = (n1,ns), then e = ny
and e” = ns.

(iii) ¥(g,u,q¢') € = . ro(q) > Y ule)-"e and
e€FE

ro(d) =rq(a) + Y ule) - (¢ —"e).

ecE
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We shall denote both rg and rg by r, unless it is unclear from the context which
component we are referring to. Thus, normally we shall write r(g) for rg(g) and
r(e) for rg(e),

So, a region r corresponds to a place of the Petri net which we would like to
associate with a given step transition system. Recall that for a Petri net PN, the
associated transition system T'Spx has as its states the reachable markings of PN
and as its events the transitions of PN. We specify the number of tokens on the
“place” r at the “marking” ¢ by r(q). For each e € E, r(e) specifies the “weights”
W(r,e) and W (e,r). The last condition in the definition of a region ensures that
rg is consistent with the overall behaviour of the net—for every transition ¢ 5q
present in the system, r(¢) must have enough “tokens” to permit u to occur and
r(¢") must contain the correct number of “tokens” as specified by the normal firing
rule of a Petri net.

We disregard regions r which are “disconnected” from all the events—i.e. r such
that r(e) = (0,0) for all e € E. These trivial regions correspond to isolated places
in a Petri net and do not contribute in any way to characterizing the behaviour of
the system.

Definition 5. Let TS = (Q, E,—, qin) be a step transition system. A region v is
non-trivial iff for some e € E, r(e) # (0,0). We denote the set of non-trivial
regions of T'S by Rrs.

Henceforth, whenever we make a statement referring to all regions, we assume
that we are only considering non-trivial regions (unless explicitly stated otherwise).

PN-transition systems are characterized by two “regional” axioms in addition
to the basic axioms (Al) and (A2):

(A3) Let ¢,¢' € Q. If Vr € Rys. r(q) = r(¢') then ¢ = ¢'. (Separation)
(A4) Vg€ Q. Vu € MSp,(E).

IfVr € Res. r(q) > Z u(e)-"e then 3¢’ € Q. ¢ 5 ¢'.  (Forward closure)
ec

Axiom (A3) says that any pair of distinct states in ) will be distinguished by at least
one (non-trivial) region. Axiom (A4) captures the fundamental idea underlying the
dynamic behaviour of a Petri net. It says that whenever a multiset of actions u is
enabled at a state ¢ of the system by all regions, it must be possible to perform u
and reach some state ¢’ in the system. In other words, if the system cannot perform
a step labelled by u at the state g then there must be some region r which does not
have enough “tokens” at ¢ to permit u to occur.

Definition 6. A PN-transition system is a step transition system TS =
(Q,E, -, qin) which satisfies azxioms (A1) to (A4).

Figure 4 shows two step transition systems that are not PN-transition systems.
The transition system on the left violates (A3)—it is easy to see that for any region

T,

r(q2) = r(qin) —"a+a" —"b+b" =1r(qgh),
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Figure 4: Step transition systems which are not PN-transition systems

and so ¢ really denotes the same state as ¢ from a “regional” point of view.

The transition system on the right violates (A4). At g;,, the step {a,b} is
enabled. This means that every region must also allow the step consisting of just
{b} at gin, but there is no transition corresponding to this step present in —.

A crucial observation about PN-transition systems is that they are deterministic.
TS = (Q, E,—,qin) is said to be a deterministic step transition system in case the
following is true:

Vg € Q. Vu € MSgu(E). (¢,u,q') € — and (q,u,q") € — implies ¢ =q".
Proposition 7. Every PN-transition system is deterministic.

Proof. Let TS = (Q, E,—,q) be a PN-transition system. Suppose that there
exists ¢ € Q and u € MSg,(E) such that ¢ = ¢’ and ¢ =% ¢". Then, for every
region 7, we know that

r(q') = r(g) + ) ule)(er —"e) =r(q").

ecE
Thus, by axiom (A3), ¢' = ¢". O

As we had mentioned earlier, we have to ensure that the steps in a step transition
system actually represent concurrent actions. For instance, Lodaya, Ramanujam
and Thiagarajan [7] define distributed transition systems, which are basically step
transition systems with a “step axiom” which insists that for every step, all substeps
must be present and combine together in a consistent way.

For PN-transition systems, the required step axiom is a straightforward conse-
quence of (A3) and (A4).

Proposition 8. Let TS = (Q,E,—,qin) be a PN-transition system and let
(q,u,q') € —. Then, for every v C s u, there exists ¢ € Q such that (¢,v,q") € —
and (¢",u —v,q') € —.

Proof. From (A4) it follows that if a step w is permitted by all regions, so is every
substep v of u. So we know that 3¢". ¢ = ¢". It is easy to compute that u — v
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must still be enabled at ¢”, so there exists a ¢’ such that ¢ “=5 ¢"". So, all we

have to show is that ¢'"" is the same as ¢'.
Consider any region . We know that

r(q") =r(@") + ) (u—0v)(e)(e" =),

ecE
and that
r(q") =r(g) + Y v(e)(e” —e).
ecFE

From this it follows that

r(q") =r() + Y _v(e)(e" ="e) + Y (u—wv)(e)(e" ),

ecF ecE
and therefore

r(q") =r(@) + ) ule)(e" —"e) =r(q).
ecl
Since ¢'"" and ¢’ agree on all regions, it follows from (A3) that ¢" = ¢’ and we are

done. O

The step axiom formulated in [7] is actually much more subtle than the one de-
scribed by Proposition 8 because distributed transition systems are, in general,
non-deterministic. In the presence of determinacy, however, their step axiom re-
duces to the simple condition stated in Proposition 8.

5. PNits—A Category of PN-transition Systems

To construct a category of PN-transition systems, we now define morphisms be-
tween PN-transition systems. These morphisms are essentially the G-morphisms of
[14]. They capture a notion of simulation which preserves concurrency.

Definition 9. Let T'S; = (Q:, Ei, —i,q.,), i = 1,2, be two PN-transition systems.
A transition system morphism f from T'Sy to T'Ss is a pair of functions f = (fo, fr)
where:

(i) fo: Q1 — Q> is a total function such that fo(ql,) = ¢z, -
(i) fr:Ey — Ey is a partial function.
(iii) If (¢,u,q') € —1 then (fq(q), fe(u), fo(d')) € —o.

As with regions, we shall denote both fg and fg by f, unless it is unclear from the
context which component we are referring to. Thus, normally we shall write f(q)
for fo(q) and f(e) for fr(e).

Notice that the last clause ensures that if a step u is hidden by f then ev-
ery transition (q,u,q') € —1 results in ¢ and ¢’ being mapped to the same
state in @o; i.e. if for all e € u, f(e) is undefined, then (q,u,q') € —; implies
(f(9), 08, f()) € —»2, which by axiom (A1) forces f(g) = £(q').

Figure 5 shows two examples of transition system morphisms. It is important
to notice that clause (iii) in Definition 9 describes a simulation requirement for all
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{a’,0'}

Figure 5: Some examples of transition system morphisms

multisets between pairs of states mapped by the morphism. Thus, for the last pair
of systems shown in Figure 5, there can be no morphism going in the opposite
direction that is defined for both a’ and b’ because there is no matching step in the
first system corresponding to the step gf {ﬂ} ¢4 in the second system.

Given a PN-transition system T'S = (Q, E, =, ¢in), let 17s = (idg, idg) denote
the identity morphism where idg : Q — Q and idg : E — E are the (total) identity
functions. Let f! = (fclg,f};) :TS; -+ TSy and f2 = (fé,f]%;) : TSy — TS5 be two
transition system morphisms. The composition f2 o f! : T'S; — TS5 is defined as
the pair (f3 o f4, fi o fi) (where the composition on the first component is normal
functional composition and composition on the second component is the obvious
composition operation on partial functions).

It is easy to see that PN-transition systems with transition system morphisms
form a category. Let us call this category PNts.

The rest of the section is devoted to establishing some results concerning tran-
sition system morphisms.

Our first observation is that these morphisms preserve regions in the reverse
direction.

Let T'S; = (Qi, Ei,—i,¢%,), i = 1,2, be two PN-transition systems, f : T'S; —
TS5 be a morphism and 7 be a region in T'S,. Define r~! as follows:

Vg e Qi.r7'(q) =r(f(g)) and

_ [ r(f(e)) if fle) is defined
Ve € By. v (e) = { (0,0) otherwise
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Proposition 10. Let T'S; = (Qi, Ei, —i,q%,), i = 1,2, be two PN-transition sys-
tems, f : TS; — TSy a morphism and r € Rrs,. Then r=! is a (possibly trivial)
region in TSy .

Proof. We only have to check that:

Yigu,dY € —1. r7'(q) > Z u(er) ey
e1€E;
r ) =T )+ Y ule) (e =7 )

e1€F:

Let E{ C E; be the set of events over which f has a defined value. We know by
definition that r=!(e) = (0,0) for e € (E; \ E}), so what we actually have to check
is that:

Vigu,d) € —1. v g > Y ulel)-" e

el €E]

1

Rewriting »~' in terms of » we must show that:

V(g,u,q') € =1 . r(f@) > D uley)-"f(e})

el €FY

r(£(a) =r(f(@) + Y uleh) - (f(eh)" —"f(e)

e\ EE]

Since f is a morphism, (q,u,q") € —1 implies that (f(q), f(u), f(¢')) € —2. ris a
region in T'S5, so we know that the following holds:

V(g,u,q) € =1 r(f(a) > Y flu)(ez)-"es

nd eas€EF2
r(f(@)) =r(f@) + Y fu)(es) - (ex" = es)
ex€F>
Since f(u)(e2) = Z u(e}) for every es € Es, it is straightforward to

{ei €ELIf(e))=ea}
verify that the result follows.
O

Notice that 7~! will be trivial in case r(es) = (0,0) for every es in the range of f.
Otherwise r=' € Rrg, .

454



Our next observation about transition system morphisms exploits determinacy.
For PN-transition systems, it turns out that morphisms are completely character-
ized by the way they map events.

Lemma 11. Let T'S; = (Q;, Ei,—i,q%,), i = 1,2, be two PN-transition systems
and let f' and f? be two morphisms from T'Sy to T'S>. If fi, = fz then f' = f2.

Proof. We have to show that f'(q) = f2(q) for every ¢ € Q1. We know that ¢
is reachable by a finite step sequence from ¢},. Let p = ujus ... u;, be a sequence

of steps such that ¢l 5% ¢g. We proceed by induction on k = |p| (where by |p| we
mean the number of steps in the sequence p).

k = 0: Then ¢ = ¢}, and so f1(q) = ¢2, = f*(q).

k > 0: Then we can write p as p'uj, where |p'| = k—1. We thus have ¢}, %% ¢1 %3, q.
By the induction hypothesis, we know that f!(g1) = f2(q1).

By the definition of a morphism, we must have (f'(q1), f'(uw), f1(q)) € —»
and (f2(q1), 2(ux), f2(a)) € —. Since fb = 3, we have f'(u) = f2(u). We
already know that f1(q) = f2(q1). Since T'Ss is a PN-transition system, it must
be deterministic. So it follows that f!(g) = f?>(¢) and we are done. ]

6. PNet—A Category of Petri Nets

Next, we construct a category of Petri nets. To do so, we have to define a suitable
notion of morphism.

Definition 12. Let PN; = (S;,T;, W;, M} ), i = 1,2, be two Petri nets. A net
morphism from PNy to PNy is a pair ¢ = (¢s, ¢r) where:

(i) ¢s : Sa — S is a partial function. (Notice that ¢s is a map from Sa to Sy
and not from Sy to Ss. Thus, in the “forward” direction, ¢§1 CS xSyisa
relation. For X C Sy, ¢g'(X) denotes the set {y € S» | ¢s(y) € X}.)

(ii) ¢ : Ty — Ty is a partial function.
(iii) Vs1 € Sy. Vso € Sy. If 51 = ps(s2) then ML (s1) = M2 (s5).
(iv) Vt1 € Ty. If ¢7(t1) is undefined then ¢g' (*t1) = ¢5'(t1*) = 0.
(v) YVt € Ty. If r(t) = ts then:

— g5 (*ty) = *ty and ' (t,°) = to°.

— Vs € *ts. W1(¢S(S),t1) )
— Vs € t2®. Wi(t1,¢s5(s)) )-
Following [2], we have directly defined the map on places as a partial function in the

reverse direction, rather than as a relation in the forward direction whose inverse
is a partial function (as in [14]).

= Wa(s,t2
= WQ(tQ, S
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Figure 6: Some examples of net morphisms

As with transition system morphisms, we shall denote both ¢g and ¢ by ¢,
unless it is unclear from the context which component we are referring to. Thus,
normally we shall write ¢(s) for ¢g(s) and ¢(t) for ¢r(t).

Figure 6 shows two examples of net morphisms. Notice that in the first example,
if we omit the place s; we can no longer construct a morphism mapping ¢; to ],
though the behaviour of the first net remains unchanged. This is a problem with
all structurally defined notions of net morphisms—they are very sensitive to the
choice of Petri net for “implementing” a given behaviour.

Quite a few different types of morphisms on Petri nets have been defined in
the literature. Our morphisms are closest in spirit to the morphisms defined by
Winskel [18]. The main difference is that, following [14], we insist that the map
on the places be a partial function in the reverse direction, whereas Winskel only
requires the forward map to be a relation (actually, a multirelation) which preserves
the initial marking and the neighbourhoods of defined events. We shall discuss the
connection between our net morphisms and those studied by others in greater detail
in the concluding section.

For each object PN = (S, T, W, M), let 1pn = (idg, idr) be the identity mor-
phism where idg : S — S and idp : T — T are the (total) identity functions. Let
(5, ¢%) : PNy = PN and (¢%, ¢%) : PNa — PN3 be two net morphisms. Define
the composition (¢%, ¢%) o (¢L, ¢4) of these two morphisms as (¢pk o ¢%, d2 o PL.).
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It follows easily that Petri nets equipped with net morphisms form a category.
Let us call this category PNet.

In the rest of this section, we shall prove some useful properties of net mor-
phisms. We first show that net morphisms preserve concurrent behaviour in a
strong way. This follows from the following result.

Lemma 13. Let PN; = (S;,T;, W;, M})), i = 1,2, be two Petri nets and let ¢ be
a net morphism from PNy to PNs. For each M € [M},), define My : So — Ny as
follows:

Vs € So. My(s) = { M(¢(s)) if ¢(s) ewists

M2, (s) otherwise

We then have the following:

(i1) Suppose that (M,u, M') € =pn,. Then (My,d(u), M;) € =pn,.

Proof.

(i)

(i)

Since M € [M},), we know that there is a step sequence p = ujus ... u, such
that (M,,,p, M) € =}y, . Without loss of generality, we can assume that
lu;]l =1 for 0 < i < n—i.e. p is actually a sequence of singleton steps. We

proceed by induction on k = |p|.

k = 0: Then M = M}, and by condition (iii) of net morphisms, (M},), =
M, € [M3,).

k > 0: We can write p as p't where |p'| = k — 1. Then there exists a
marking M’ such that (M},,p’, M') € =%, and M'[t); M. By the induction
hypothesis, M}, € [M},).

Suppose that ¢(t) is undefined. Then ¢~1(*t) = ¢~1(¢*) = 0 so the places in
S1 whose marking changes in going from M' to M do not have ¢! images
in Sp. As aresult, My = M € [M2,).

On the other hand, if ¢(¢) = ¢’ then ¢~ (°t) = *t' and ¢~ (¢*) = #'*. Consider
any s € *t'. We know that Mj(s) = M'(¢(s)). Furthermore, Wa(s,t') =
Wi (é(s),t) by the definition of net morphisms. Since M’[t) we know that
M'(¢(s)) > Wi(d(s),t) and so Mj(s) > Wa(s,t'). This holds for all s €
*t', so we have Mj[t') as well. Let M{[t'),M". Using the definition of net
morphisms, it is straightforward to check that M" = M.

Suppose that M € [M},) and M[u),. By part (i) of this lemma, we know that
My € [M2,). By the definition of M, and the definition of a net morphism it
is straightforward to compute that My[¢(u)), and that (M,u, M') € =pn,
and (M, ¢(u), M") € = pn, implies that M" = M.
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Corollary 14. Let PN; = (S;,T;, W;, M{.), i = 1,2, be two Petri nets and let
¢ be a net morphism from PNy to PNs. Then (M},,p,M) € =%y, implies
(M2, d(p), My) € =Ppn,» Where p is a step sequence over T1 and My is defined
as in the previous lemma. (By abuse of notation, we have denoted the obvious

extension of ¢ to step sequences also as ¢.)

In certain restricted cases, it turns out that net morphisms, like transition sys-
tem morphisms, are characterized by the way they map transitions.

To establish this result, we need to restrict our attention to morphisms whose
source nets are simple with respect to places.

Definition 15. Let PN = (S, T, W, M;,) be a Petri net. PN is simple with respect
to S in case

Vs1,80 € S. If My,(s1) = Mip(s2) and
VteT. W(si,t) =W(sa,t) and W(t,s1) = W(t, s2)
then s; = ss.

Lemma 16. Let PN; = (S;,T;, W;, M}), i = 1,2, be two Petri nets, such that
PN, is simple with respect to S1 and has no isolated places (i.e. Vs; € Sy. Ity €
Ti. s1 € *t1 Ut1®). Let ¢' = (¢k, o) and ¢* = (¢%,¢%) be two net morphisms
from PNy to PNs. If ¢t = ¢% then ¢' = ¢°.

Proof. We have to establish that ¢f = ¢%. We first show that if s; = ¢L(s2)
then s; = ¢%(s2) as well.

Suppose s; = ¢5(s2). Since PNj has no isolated places, there exists ¢; € Tj such
that s; € *t; or s; € t1°. Then ¢} (1) must be defined—suppose that ¢.(t1) = ts.
Assume, without loss of generality, that s; € #;*. Then, since (¢5)7'(t:1*) = t2°,
we must have sy € t5°. Since ¢k = ¢, we have sy € ¢%(t;)" as well, which implies
that ¢%(s2) exists and furthermore ¢%(s2) = si € #1°. To establish that s| = s; it
suffices to establish the following:

Claim. Ml'ln(sl) = Mlln(sll) and Vt € T1. W1 (Sl,t) = W1 (Sll,t) and Wl(t,Sl) =
Wi(t,s)).
Proof of Claim.

We know that M}, (s1) = M2 (s2) since s1 = ¢k(s2). M}, (s}) = M2 (s2) as
well since s| = ¢%(s2). So M} (s1) = M}, (s}).

Suppose t € *sy. Then, since 51 = ¢k (s2), ¢1(t) is defined. Further, W (¢,s1) =
Wy (¢ph(t),s2). Since ¢ = ¢h and s = ¢%(s2), Wi(t,s)) = Wa(dZ(t),s2) =
W2(¢%ﬂ(t), SQ). Thus W1 (t, Sl) = W1 (t, Sll)

A symmetric argument can be used to show that for each t € *s|, Wi(t,s}) =
Wl (t7 81)'

Similarly, we can establish that for each t € Ty, Wi(s1,t) = Wi(s},t), thus
establishing the claim.

Returning to the main proof, since PN; was assumed to be simple with respect to
places, we can conclude that s; = s}. Hence s; = ¢%(s2) implies that s; = ¢%(s2)
as well.
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By a symmetric argument we can show that s; = ¢%(s2) implies that s; =
#5(s2). Thus ¢k = ¢% and so ¢' = ¢°. m]

7. From Petri nets to PN-transition systems

We now construct a functor NT from the category PANet of Petri nets to the category
PNts of PN-transition systems.

NT maps objects in the obvious way—each Petri net PN is mapped to its
associated transition system T'Spy. Let PN = (S, T, W, M;;,) be a Petri net. Then

NT(PN) = ([Mn),T,=pn, M)

where, as usual, [M;,) is the set of markings reachable from M, in PN, T is the
set of transitions of PN, = pp is the step transition relation for Petri nets defined
in Section 3 and Mj, is the initial marking of PN.

Next we define how NT maps arrows. Let PN; = (S;, T;, W;, M%), i = 1,2, be
two Petri nets and let ¢ = (dg, ¢r) be a net morphism from PN; to PNs. Then,
NT(¢) = f¢ is defined as follows:

o VtET. fR(t) = pr(t).
o VM € [M},). f&(M) = M,.

| M(¢s(s)) if ds(s) exists
(Recall that Vs € So. My(s) = { M2 (s) otherise )
Proposition 17. Let PN = (S,T,W, M) be a Petri net. Then NT(PN) =
([Min), T,=pnN, M) is a PN-transition system.

Proof. T is countable by assumption. To establish that [M;,) is countable,
we first observe that the free monoid 7* is countable. Each marking M € [M;,)
is reachable by some sequence of transitions t1ty...t, € T*. Further, TSpy is
deterministic—a given sequence of transitions can lead to only one marking. From
this, it follows that the cardinality of [Af;,) is less than or equal to the cardinality
of T* and so [Mj,) must be countable.

Since M[07)M' in PN iff M = M', clearly NT(PN) satisfies axiom (A1). The
fact that NT(PN) satisfies (A2) follows directly from the definition of [M;,).

To verify (A3) we have to show that distinct states in NT(PN) can be separated
by non-trivial regions. For each s € S, it is easy to check that r, is a region where

VM € [Mi,). rs(M) = M(s) and Vt € T. rs(t) = (W (s,t), W(t,s)).

For M, M' € [My,), if M # M’, there must be a non-isolated place s € S such that
M(s) # M'(s). Then clearly rs is a non-trivial region that separates M from M’
in NT(PN).

Finally, consider (A4). Suppose M € [M;,) and u € MSg,(T), and for every
region r in NT(PN) it is the case that r(M) > 3, ., u(t) - "t. Then we have to
show that there exists M' € [M;,) such that (M,u, M") € =pn.
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We know that for every s € S, r; (as defined above) is a region in NT(PN).
Since rg(M) = M(s) and "st = W (s,t) it follows that for every s € S we have
M(s) > > ,cpu(t) - W(s,t). But then, we know that M[u)M' where, for each
s €8, M'(s) = M(s) + Y_,cru(t) - (W(t,s) — W(s,t)). So, by the definition of
=pN, (M,u,M") € =px and we are done. a

Proposition 18. Let PN; = (S;,T;, W;, M.)), i = 1,2, be two Petri nets and let
® be a morphism from PN, to PN,. Then NT(¢) = f¢ is a transition system
morphism from NT(PN;y) to NT(PN-).

Proof. Recall that Vt € T1. fR(t) = ¢r(t) and YM € [ML). fS(M) = M,.
By Lemma 13, we know that for each M € [M}), M, € [MZ2), so fg is a total

function from [M},) into [M2,) as required. By definition, we know that fg is a
partial function from 77 into T5.

We have to show that if (M,u,M') € =pp, then (fS(M),fg(u),fS(M’)) €
=pn,. This follows directly from the second part of Lemma 13 which says that
(M,U,MI) € =pn, implies that (M¢,¢T(u),Mé) € = PN,- O

Theorem 19. NT : PNet — PNts is a functor.

Proof. We have already verified that NT maps objects and arrows in PNet to
objects and arrows in PNts correctly. We only have to verify that NT preserves
the identity arrows and respects composition.

For every net PN = (S,T,W, M;,) € PNet, the identity arrow is given by
1pn = (ids,idr) where ids and idr are the (total) identity functions. Clearly
fEEN(t) =t for every t € T and fé)PN(M) = M4, = M for every M € [M,;,) and
so f1P~ is the identity arrow for NT(PN).

Let ¢! : PN; = PN, and ¢?> : PN, — PNs be a pair of net morphisms.
Let fi = NT(¢), i = 1,2, and let f2° = NT(¢? o ¢'). We have to show that
f2o fl = f2°1. Clearly, f22'(t) = ¢% o ¢r(t) for all t € Ty. But, (f?o f1)p(t) is
again equal to ¢% o ¢ (t) for all t € Ty. Since f&*! = (f2 o f!)g, by Lemma 11 we
must have f2°1 = f2 o f! and we are done. O

8. The adjunction

Having constructed the functor NT from PNet to PNts, we want to show that it
has a left adjoint TN : PNts — PANet. According to Mac Lane [8], it suffices to
construct a map TNo mapping objects in PAts to objects in PNet so that the
diagram shown in Figure 7 commutes. The object map TNp can then be extended
uniquely to a functor TN : PAts — PNet which is the left adjoint of NT.

In other words, we have to first construct a universal transition system morphism
n in PNts (which will serve as the unit of the adjunction). We then have to
prove that for any object T'S in PANts and any object PN in PANet, if there is
a transition system morphism f : T'S — NT(PN) then there is a unique net
morphism ¢ : TNo(T'S) — PN such that f = NT(¢) o nrs.
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TS TNo(T'S)

nrs !
NT o TNo(T'S) i

f K
NT(¢) |

NT(}DN) P'N

Figure 7: The adjunction

We first describe the object map TNp. Let T'S = (Q, E,—,qin) be a PN-
transition system. Then

TNo(TS) = (Rrs, E,Wrs, ML)

where Wrg(r,e) = e and Wyg(e,r) = e” for each r € Rys and e € E and
MTI3(r) = r(gin) for each r € Rrs.

Proposition 20. Let TS = (Q,E,—,qin) be a PN-transition system.  Then
TNo(TS) = (Rrs, E,WTS MIS) is a Petri net. Moreover, TNo(TS) is simple
with respect to places and has no isolated places.

Proof. Checking that TNo(T'S) is a Petri net is straightforward. We know that F
is countable, so the set of transitions of TNo(T'S) is countable. Notice that if E is
infinite, Rrs may well be uncountable. In verifying that the places and transitions
of TNo(T'S) are disjoint, a small problem arises in the (pathological) case where
Rrs and E are not disjoint! We shall ignore this possiblity by noting that we can
always construct TN (T'S) with disjoint sets of places and transitions by using a
suitable coding technique.

The regions in Ryg are “simple” by definition (any two distinct regions either
differ in their value at g;;, or in their value for some e € E). Since we create exactly
one place in TNo(T'S) for each region from Rrg, it is clear that the net TNo (T'S)
is also simple with respect to places.

Finally, since Rrs has only non-trivial regions, TN (7'S) has no isolated places.

O

Next we describe how to construct 7, the unit of the adjunction. We first need
the following lemma.

Lemma 21. Let TS = (Q, E, —, qir) be a PN-transition system and let TNo(T'S) =
(Rrs, E,Wrs, MI9). Then we have:
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(i) VM € [ML%). 3qg € Q such that ¥r € Rrs. M(r) = r(q). We denote this
state by qur.

(i) Vg € Q. M € [MLS) such that ¥r € Rrs. M(r) = r(q). We denote this
marking by M,.
(ZZZ) :>TNO(TS): {(MqauaMé) | (Q7u7ql) € _>}
Proof.
(i) For each M € MIS we show that there is at least one ¢ € @ such that

Vr € Rrs. M(r) =r(q).
Let p be a step sequence ujus ...up such that (MZIS p, M) € =%y, We
proceed by induction on k = |p|.

k =0: Then M = MIS and by the definition of MLS, g;, satisfies the given
requirement.

k > 0: Then write p = p'uy, where |p'| < k. We know that IM'. (ML o' M') €
=%y and M'[ug)M. By the induction hypothesis, there exists ¢' € @ such
that Vr € Rrs. M'(r) = r(¢'). Since M'[ux)M, we know that r(¢') >

Y ecpule)e for all 7 € Rrs. Therefore, by axiom (A4), 3q. ¢’ 2y g0 Tt is
straightforward to compute that Vr € Rygs. M(r) = r(q).

Having established that there is at least one candidate for ¢, for every mark-
ing M, we now have to show that there is exactly one choice for qp;. Suppose
g and ¢' are both states in @ such that Vr € Rys. M(r) = r(q) = r(¢').
Then, by axiom (A3), we know that ¢ = ¢’ since they agree on all regions.

(ii) Similar to (i), by induction on g, 5* q.

(iii) Follows in a straightforward way from (i) and (ii).

O

Lemma 22. LetTS = (Q, E, —, ¢in) be a PN-transition system and let TNo(T'S) =
(RTS,E,WTS,MZ-:’;ZS). Then the map nrs : TS — NT o TNo(T'S) given by

Vg € Q. nrs(q) = M, and Ve € E. nrg(e) =e
s a transition system isomorphism.

Proof. From the previous lemma, it follows that nrg is a transition system
morphism. To check that it is in fact an isomorphism, we show that we can construct
a transition system morphism 77g such that nrs o n7g = INToTN, (15) and nypg ©
nrs = lrs.
Define 1g : NT o TNo(T'S) — T'S as follows:
VM € [MESY. nhrg(M) = qar and Ve € E. nhpg(e) = e

By the previous lemma, it is easy to verify that %.¢ is also a transition system
morphism. Since gy, = ¢ for all ¢ € Q and My,, = M for all M € [M]%), it
follows that nITS onrs = lrs and nrg o n&vs = 1NToTNo(TS)- O

We can now prove our main result.
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Theorem 23. There exists a functor TN : PNts — PNet such that TN and NT
form an adjunction (coreflection) with TN as the left adjoint and n as the unit.

Proof. We have to show that the diagram shown in Figure 7 commutes.
Let TS=(Q,E,—,qn) and PN = (S,T,W, M;,). Then TNo(TS) =
(RTS,E,WTS,MZ-:’;LS) and NT(PN) = (M), T,=pn, M;,). Define ¢ as follows:

¢s 1S = Rrpg is given by

1 . —1
[ if r;" € Rrs
Vs €S ¢s(s) = { undefined otherwise

o1 = fE,

where for each s € S, rs € RnT(pny is the region defined in the proof of Proposi-
tion 17. In other words,

VM € [My,). rs(M) = M(s) and Yt € T. rs(t) = (W (s, t), W(t,s)).
Also, recall that for 75 € Rnt(pN), r ! is the inverse of r, through f, as defined in

s
Section 5.

Claim A. ¢ is a net morphism.

Proof of claim.

Suppose that r = ¢s(s). We have to check that MIS(r) = M;,(s). We know
that MI%(r) = r(gin) and that M, (s) = ry(M;y,). Since r = r;%, it follows that
7(¢in) = 75(f(qin)) = 7s(Min).

Suppose that e € E and ¢r(e) is undefined. We have to show that ¢g'(*e) =
¢5'(e*) = 0. Consider any 7 € ®e such that r = ¢g(s), for some s € S. Then
Wrs(r,e) = "e. But, since r = 77! and f(e) = ¢r(e) is undefined, we must
have r(e) = (0,0), and therefore Wrg(r,e) = 0, which contradicts » € ®e. Thus,
$5' (*e) = 0. Similarly, we can show that ¢3'(e®) = 0.

On the other hand, suppose that e € E and ¢r(e) = t. Then, we have to show
that ¢5'(*e) = *t and ¢5'(e*) = t*. We also have to establish that for each s € *¢,
W(s,t) = Wrs(os(s),e), and for each s € t*, W (t,s) = Wrs(e, ps(s)).

We first show that ¢5'(%e) C *t. Let r € ®e and let s € ¢5' (r). Since r =
r;1 and f(e) = ¢r(e) is defined, we must have r(e) = rs(f(e)) = rs(t) and so
Wrg(r,e) ="e ="t = W(s,t). Thus, if r € ®e then s € *t.

Conversely, we show that *¢ C ¢5'(%e). Suppose that s € *t. Since f(e) is
defined and rs(f(e)) # (0,0), ;! is a non-trivial region r € Rrg. Thus, ¢s(s) =7
and by the definition of 771, r(e) = rs(t) and so W (s,t) = "st = "e = Wrg(r,e).
Thus s € *t implies ¢s(s) =1 € ®e.

From this it follows that ¢ ' (*e) = *¢. Similarly, we can establish that ¢ ' (e*) =
t*.

The fact that for each s € *t, W(s,t) = Wrs(ds(s),e) and for each s € ¢°,
W (t,s) = Wrs(e, ds(s)) again follows easily from the definition of 77 1.

Claim B. NT(¢)onrs = f.
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Proof of claim. Let f' = NT(¢)onrs. Then fr, = NT(¢)goidg = NT(¢d)g = ér.
But, ¢v = fg by definition. Hence f; = fg and so, by Lemma 11, f' = f and we
are done.

Claim C. ¢ is unique.

Proof of claim. We have to show that if ¢' : TNo(T'S) — PN is any net
morphism such that NT(¢') o nrs = f, then ¢' = ¢.

We know that fr = ¢r onrsg = ¢ onrsg. Since nrsp = idg, we have
fe = ¢ = ¢'». But, we know that TNo(T'S) is simple with respect to places and
has no isolated places (by Proposition 20). So, by Lemma 16, we have ¢s = ¢ as
well.

Returning to the main proof, Claims A, B and C establish that the diagram shown
in Figure 7 commutes. From [8], it then follows that TNo can be uniquely extended
to a functor TN from PNts to PNet which is the left adjoint of NT.

Since 7, the unit of the adjunction, is an isomorphism, we have, in fact, a
coreflection between TN and NT. m|

If we work out the way TN maps morphisms, it turns out to be the following.
Let T'S; = (Q4, Fi, —i,4q%,), ¢ = 1,2, be two PN-transition systems and let f :
TS, — T'S; be a transition system morphism. Then TN(f) is the map ¢/ where
qﬁé : Rrs, = Rrs, is given by
Vra ER ¢! (re) = r if ' € Rrs,
2 T52- PS\2) =\ undefined otherwise

(Zﬁé:El_\EQ:fE.

9. Universal Constructions

Having established the coreflection between the categories PNts and PNet, we now
look at some universal constructions in these categories.

It is easy to verify that the trivial transition system T'S = ({qin},0, =, qin),
where == {(¢in,0p, ¢in)}, is both an initial and a terminal object in PAts. Simi-
larly, its image in PAet, the empty net PN = (), 0,0, 0p), is the initial and terminal
object in PNet.

The standard product construction goes through for both PN-transition systems
and Petri nets. For Petri nets, the product of two nets is the synchronized parallel
composition of the two nets.

Definition 24. Let PN; = (S;,T;,W;, Mi.), i = 1,2, be two Petri nets. Define
the Petri net PNiyo = (SlXQ,Tlxg,Wlxg,MilnX2) as follows.

o Sixo = (S1 x {x})U ({x} x S2), where = ¢ S; US,.
L] T1><2 = (T1 X TQ) U (T1 X {*}) U ({*} X TQ), where x ¢ T1 UTQ.
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( Wi(s1,t1) if s = (s1,%*) and
t=(t1,%) or t = (t1,t2)

o Vs € Sy Vt€Txa. W1><2(S,t) = W2(82,t2) Zf s = (*,82) and
t= (*,tg) ort= (tl,tg)
0 otherwise

\

( Wi(t1,s1) if s=(s1,*) and
t = (t1,%) or t = (t1,t2)

e Vs € Siya. Vt € Tiys. W1><2(t,8) = WQ(tQ,SQ) Zf s = (*,82) and
t= (*,tg) ort= (tl,tg)
0 otherwise

\

Miln(sl) Zf s = (517*)
M?2 (s2) if s=(x,52)

Define morphisms w; : PN1xs — PN;, i = 1,2, as follows:

e Vs € Siya. Miln“(s) = {

o VseS. m14(8) = (s, %).
Vt € T1xo. T (t) =t Zf t= (tl,*) ort= (tl,tg).

(
o VseS,. Toq (s
Vt € T xs. 7T2T(t =ty if t:(*,tQ) OTt:(tl,tg).

Lemma 25. Let PN; = (S;,T;,W;, M} ), i = 1,2, be two Petri nets. The product
of these two nets is the Petri net PN1ys = (Sixa, Tix2, Wixa, Mj*?) equipped with
the projections m;, i = 1,2, defined above.

Proof. It is easy to verify that m; and w5 are PN-morphisms from PN x5 to PNy
and PN, respectively.

To prove that PNix» together with 71 and ms actually is the product of PN
and PN, we have to establish the following.

Claim. For any other net PN = (S,T,W, M;,) such that there exist morphisms
fi : PN — PN,, i = 1,2, there is a unique morphism g : PN — PNy» such that
fi =T7;og, i = 172

Proof of claim. .
It is convenient to first define total functions f; : T — (T; U {x}), i = 1,2, as
follows.

VteT. fit) = { fi(t) if fi(t) defined

otherwise

Now, define g : PN — PN 14> as follows.

fi(s1) if s=(s1,%) and fi(s1) defined
Vs € Six2. gs(s) = f2(s2) if 5= (x,82) and fa(s2) defined
undefined otherwise
_ [ undefined if fi(t) = fat) =+
vieT. gr(t) = { (f1(t), f2 (1)) othelrwise i
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It is easy to verify that ¢ is a PN-morphism and that f; = m; 0 g, i = 1,2, and,
furthermore, that it is the unique map from PN to PN;y» with this property. O

Since the right adjoint preserves limits, and, further, every PN-transition system
in PNts is the image of some net in PNet, we know that PANts has products as
well. It is straightforward to verify that the product of two PN-transition systems
T'S; and T'S, is the transition system 7'Sy «» equipped with projections 71 and
as defined below.

Definition 26. LetTS; = (Q;, Ei,—i,q%,), i = 1,2, be two PN-transition systems.
Let the transition system T'S1x2 = (Q1x2, F1x2, ~1x2, qgn“) be defined as follows:
® Qix2=0Q1 X Q2.
o Biys = (E1 x E2) U (Ey x {*})U ({x} x E»).
o >ixo={((q1,92),u,(q1,¢5)) | where u € MSg,(E1x2) and there exists
u; € MSgn(E;), i = 1,2, such that:

— (gi,ui, q;) € —>i-
—Ver € Er. ui(er) = u((er,*)) + Z u((e1,e2)).

ea€F>

— Ves € Es. uz(ea) = u((x,e2)) + Z u((e1,eq)).
} e1€E

Define morphisms w; : TS1x2 = T'S;, i = 1,2, as follows:

L4 7T1Q(((11,(12)) ={q-

7T1E((ela *)) = 7T1E((ela 62)) = €1.
L4 WQQ((qlan)) = q2-

Tap (%, €2)) = M2 (€1, €2)) = €o.

It turns out that PAet also has coproducts. If the initial markings of the
two nets are reasonably similar, then the sum of the two nets represents non-
deterministic choice. If the initial markings are dissimilar, then the sum corresponds
to the asynchronous parallel composition of the two nets.

Definition 27. Let PN; = (S;,T;, W;, M{.), i = 1,2, be two Petri nets. Define
the Petri net PN1yo = (Sit2, Tiy2, Wita, Mj:F?) as follows.

o Sip2= (St x{x}h)U({*}xS2) U
{(81782)|S1 € Sl,SQ € SQ,Miln(Sl) = M?n(SQ)}, where * ¢ S USs.

o Tiyo= (T x {x})U ({*} x Ty), where x ¢ Ty UTs.

Wi(s1,t1) if t = (t1,%) and
s =(s1,%) or s =(s1,82)

e Vs e Sl+2. Vt € T1+2. W1+2(S,t) = WQ(SQ,tQ) Zf t= (*,tg) and
s = (%,82) or s = (s1,82)
0 otherwise
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Wi(t1,s1) if t = (t1,%) and
s =(s1,%) or s = (s1,82)

e Vs e Sl+2. Vt € T4o. W1+2(t,8) = Wg(tQ,Sz) if t= (*,tQ) and
s = (%,82) or s = (s1,82)
0 otherwise

e Vs ¢ Sl+2- Mi1n+2(s) — { Miln(sl) Zf s = (Sla*) or s = (81,.92)

MZQn(SQ) zf s = (*752)
Define morphisms in; : PN; — PNy, 1= 1,2, as follows:

o Vs€Sita. ini (s) =s1 if s=(s1,%) or s =(s1,52).
vVt eTy. ini. () = (t, %).
(s)

(t)

o Vs€ESita. ina,(s) =s2 if s=(%,82) or s=(s1,52).

Vit € TQ. 7:7’LQT t *,t)

So, given transitions t; € T} and to € T5 that are enabled at the initial markings
M}, and M}, respectively, PN1;> will have a common input place for ¢; and ¢,
provided there is an s; € °t; and an sy € ®ty such that M} (s;) = M2, (s2).
This represents a kind of non-deterministic choice between (t1,*) and (x,t2) in the
composite net PN1,5. On the other hand, if we cannot find s; € *¢; and sy € *t5
such that M}, (s1) = M2, (s2), then both (t;,%) and (*,t3) will be independently
enabled at the initial marking M} in PN, corresponding to the asynchronous
parallel composition of ¢; and ts.

Lemma 28. Let PN; = (S;,T;,W;, M} ), i = 1,2, be two Petri nets. The coprod-
uct of these two nets is the Petri net PN119 = (S142,T112, Wi1a, M}HH) equipped
with the injections in;, i = 1,2, defined above.

Proof. It is easy to verify that in; and in, are PN-morphisms from PN; to
PNi,5 and PNy to PNi42 respectively.

To prove that PNi,2 together with in; and ins actually is the coproduct of
PN; and PN,, we have to establish the following.

Claim. For any other net PN = (S,T,W, M;,) such that there exist morphisms
fi: PN; — PN, i= 1,2 there is a unique morphism ¢g : PN1y2 — PN such that
fi :goinia i = 172

Proof of Claim.

For convenience, we first define total functions fl 1S = (S;U{x}),i=1,2, as
follows.

otherwise

Vs € S. fi(s) = { *i(S) if fi(s) defined

Now, define g : PN142 — PN as follows.
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undefined if fi(s) = fa(s) ==

Vs e S. gs(s) = { (fi(s), f2(s)) otherwise

fi(ty) if t=(t1,%) and fi(t1) defined
VteTiyo. gr(t) = f2(t2) if t=(x12) and f(t2) defined
undefined otherwise

We first verify that ¢ is a PN-morphism. It is straightforward to check that
Vs € S.Vs' € Sito. g(s) = 5" implies M;,(s) = M}:P2(s').

Next, suppose g(#') is undefined for ¢ € T} ;2. We have to show that g~ (*#') =
g '(#*) = 0. Let s’ € *t. Without loss of generality, let ¢’ = (¢;,%). Then it
is clear that s’ is of the form (si,z), where s; € *t; in PNy and z € Sy U {x}.
If s = g(s) for some s € S, then this implies that sy = fi(s). But we know
that fi(t;) is undefined as well and so f;'(*t;) = 0. In particular, f;'(s;) = 0
and so g 1(s') = 0 as well. Since s’ was an arbitrary place in *t' it follows that
g (*t") = 0. By a similar argument, g~!(#'*) = () as well.

On the other hand suppose that g(t') = ¢ for t' € Ty12 and t € T'. Then, we have
to show that g='(*#') = *t and g~ '(#'*) = t*. We also have to establish that for
each s € *t, W(s,t) = Wi12(g(s),t") and for each s € t*, W (t,s) = Wipa(t, g(s)).

Without loss of generality, assume that ¢’ is of the form (¢y, *).

We first show that g~ 1(*#') C *t. Let s’ € *#. Clearly s’ must be of the
form (s1, ), where s; € ®t; in PNy and x € Sy U {x}. Then, s € g~!(s') implies
s € ffl(sl). But fi(t;) = t' and so ffl('tl) = *t. Hence, it follows that if s; € *¢;
then s € *t. So s € g~!(°t') implies s € °t.

Conversely, let s € *t. Then, since fi(t;) = t, we know that fi(s) = s; for
some s; € *t; in PNy. Tt follows that g(s) = (s1,z), where z = fo(s) and (s1,z) €
*(t1,%). So *t C g L(*t).

So we have shown that ¢g~'(*#') = *t. A similar argument establishes that
g (#®) =t

The fact that for each s € *t, W(s,t) = Wit2(g(s),t') and for each s € ¢*,
W(t,s) = Wiia(t', g(s)) follow easily from the definition of g and Wyys.

To show that g is the unique map from PN;;» — PN such that f; =
goin;, i = 1,2, we establish that gg : S — Sj42 is the unique map such that
fie = inig ogs, i = 1,2, and gr : Tiy2» — T is the unique map such that
fir =groiniy,i=1,2.

First define the maps ing : Si142 = S; U {x},i=1,2, as follows.

ini(s) if ini(s) defined

Vs € Sita. ini(s) = { * otherwise

Now define the maps (inig,in2,) : Sip2 — (S1U{x}) x (SaU{x}) and (fi, fos) :
S = (S1 U {x}) x (S2 U {x}) such that

Vs € Siqa.  (inig,inag)(s) = (iny(s),ina(s)).

Vs € S. (fis) f25)(8) (f1(5), fa(s)).
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Figure 8: A Naive Coproduct Construction in PNts

To establish that gg is the unique map such that f;; = in;, 0ogs, i = 1,2, it
suffices to show that gg is the unique map such that (fi, fos) = (in14,ina4) 0 gs.
Suppose that there is some other gy such that (fi,, f2s) = (inig,in2g) 0 g =
(in1g4,in24) © gs. Since (inig,inag) is an injective total function from Siis to
(S1 U {x}) x (So U {x}) , it follows that g5 = gs.

To show that g7 is the unique map such that f;, = gr oin;,, i = 1,2, define
maps (fi, + for) : 1 WTe — T and (iny, +ins.) : Ty WTs — T4 as follows

t if teT,

Vt S Tl W T2- <f1T + f2T>(t) = ;;Etg (ftherwisle
. . 1 (T if teT,

Vie Ty Wy, (ing, +ina)(t) = 22;8 thherwisle

It then suffices to show that gr is the unique map such that (fi,. + forp) =
gr © (in1, + ins.). Suppose that there is some other g4 such that (fi, + f2,) =
g o (iny . +1ins,) = gr o (iny, +ine.). Since (iny, +ing, ) is a surjective function
from T7 W T5 to Th 42 , it follows that g} = gr. O

On the other hand, for PN-transition systems, the situation regarding the exis-
tence of coproducts is not so straightforward.

For transition systems in general, there is a canonical way to form the coproduct—
given T'S; and T'S,, the transition system T'S; + TS5 is obtained by identifying the
initial states of T'S; and T'Ss.
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This operation is well behaved for various special classes of transition systems—
for instance, the sum of two elementary transition systems defined in this manner
is also an elementary transition system [14] and the sum of two asynchronous tran-
sition systems is also an asynchronous transition system [20].

Unfortunately, it turns out that for PN-transition systems, this is not the case.
In other words, it is possible to define two PN-transition systems T'S; and TS,
such that the transition system obtained by identifying their initial states is not a
PN-transition system.

Consider the transition systems shown in Figure 8. T'S; is generated by PN;
and T'S; is generated by PN» so both T'S; and T'S; are PN-transition systems.

On the other hand the transition system 7'S} 42, obtained by forming the normal
coproduct of T'S; and T'S,, is not a PN-transition system. To see this, observe that
for any region r in T'S142, r(si+1) > r(s;) for all i € Ny.

For, suppose there is some ' such that 7'(s;11) < r'(s;) for some i € Nj.
Then it must be the case that "es > e;” and in fact r'(siy+1) < r'(s;) for every
i € Ny. Since /(o) is finite, there must be some j € N where /(s;) < e, which
contradicts the fact that e is enabled at all s;,7 € Ny.

As a result, it follows that for all regions r, for all i € Ny, r(s;) > r(sg) > "e1,
since ey is enabled at sp. In other words, the states s;,7 € {1,2,...}, do not satisfy
axiom (A4) of PN-transition systems, because ey is enabled by all regions at these
states and there is no e; transition out of these states.

However, we can show, indirectly, that PAts does have coproducts.

Lemma 29. The category PNts has coproducts.

Proof. Let T'S; and T'S> be two PN-transition systems. We want to find a PN-
transition system 7'Si;» and two maps in; : T'S; = T'S142, ¢ = 1,2, such that
T'S142 equipped with the injection morphisms iny and ins is a coproduct of T'Sy
and T'Ss.

Let PNy = TN(T'S;) and PNs = TN(T'S;). Since PNet has coproducts, we
can define a net PN, which, when equipped with injections in} : PN; — PNja,
i = 1,2, constitutes a coproduct of PNy and PN,.

The result we are after hinges on the following:

Claim. PN1+2 ~TNo NT(PN1+2)

Assuming the claim for the moment, let ¢ : PNiy2 — TNoNT(PNjy2) denote one
direction of the isomorphism. We can conclude that TN o NT(PNjy2) equipped
with injections ¢ o in} : PN; = TN o NT(PNi42), i = 1,2, is also a coproduct of
PN1 and PN2

It follows from the fact that we have a coreflection between TN and NT that the
left adjoint, TN, is full and faithful. So, we can find maps in; : T'S; — NT(PNjy2)
such that TN(in;) = ¢ oin} for i =1, 2.

It is straightforward to show that full and faithful functors reflect coproduct
diagrams. Since the coproduct diagram consisting of PNy, PNy, TNo NT(PN;42)
and the two injection maps ¢ oin}, i = 1,2, lies within the range of TN, it follows
that the corresponding diagram in PAts consisting of T'Sy, T'Sy, NT(PN;,5) and
the maps in;, i = 1,2, constitutes a coproduct diagram as well, and we are done.
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NT(PNy42)

TS, =~ NT(PN>) %
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PN1+2 TNo NT(PN1+2)

+2
N(T'Sy) = PN, mT (PN») mné)

Figure 9:

To complete the proof, we have to establish the claim that PN;, s is isomorphic
to TN o NT(PNp42).

Proof of claim.

By the coreflection between TN and NT, we know that 7'S; is isomorphic to
NT(PN;), i = 1,2 (recall that PN; abbreviates TN(T'S;), i = 1,2).

Since TN is full and faithful, it preserves isomorphisms and thus PN; ~ TN o
NT(PN;),i=1,2.

Combining this isomorphism with TN o NT(in}), we have maps from PN; to
TN o NT(PN;12) (see Figure 9). Since PNj;s equipped with the injections in}
and in), is a coproduct of PN; and PN, we have a unique map ¢ : PNiyo —
TN o NT(PN;42) such that ¢ oin), = TN o NT(in}), i = 1,2 (where we ignore the
isomorphism between PN; and TN o NT(PN;), i = 1,2, from now on).

From the way the adjunction is defined, it follows that the set of transitions of
PNi42, TP, ., is the same as the set of transitions of TNoNT(PNy5). Similarly,
Ten; = TrnoNT(PN;)s for i = 1, 2.

As in the proof of Lemma 28, we can define maps (in}_ + in5_) and ((TN o
NT(in1))r + (TN o NT(iny))r) from Tpy, W Tpn, = Tpn,,,. It follows from the
way the functors NT and TN are defined that (in]_ +in5_) = (TN o NT(in}))r +
(TN o NT(inb))r).

We know that ¢7 o (inf,. +in5, ) = ((TNoNT(in}))r + (TNoNT(iny))r). Since
(in, +iny_) is a surjective map onto T7», it must be the case that ¢7 is the
identity map on Tpn, ..

In the other direction, the counit of the adjunction defines a map epn, ., from
TNoNT(PNiy2) to PNy4a. It follows from the way the adjunction is defined that
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Figure 10: The coproduct of T'Sy and T'S> (from Figure 8)

(ePNy4»)T is the identity map on Tpy,,, as well.

Thus, (¢ o epn,,.)7 is the identity map on Tpn,,,. We know that TN o
NT(PNiy2) is simple with respect to places and has no isolated places. Hence,
from Lemma 16, we can conclude that that ¢ oepn,,, = idTNoNT (PN, ,,) SinCE the
two morphisms agree on the way they map transitions.

Similarly, (epn,,. © @) is the identity map on Tpn,,,. Since PN; and PN,
are both simple respect to places and have no isolated places, it is not difficult to
show, from Definition 27, that PN 5 is also simple with respect to places and has
no isolated places. Hence, we can appeal to Lemma 16 once again to conclude that
EPNiy, © ¢ = ZldPN1+2'

Thus, we have established that ¢ and epp,_, constitute an isomorphism between

PNji5 and TN o NT(PN;42) and we are done.
]

Using Lemma 29, we can show that the transition system shown in Figure 10,
together with the obvious injection maps, is the coproduct of the transition systems
TS, and T'Ss shown in Figure 8.

10. Discussion

In this paper, we have established a coreflection between the category PNts of
PN-transition systems and the category PAet of Petri nets.

This coreflection essentially means that the category PAts can be embedded
in PNet—in other words, PN-transition systems can be viewed as a sub-model of
Petri nets. One crucial advantage of having coreflections between different models
of concurrency is that we can automatically translate results from one model to
another. For instance, to obtain a non-interleaved model for a process calculus
such as CCS [9], it is intuitively easier to enrich the standard interleaved transition
system semantics to obtain a more faithful representation of concurrency, rather
than providing a semantics directly in terms of nets [3, 15] or event structures [19].
So, for example, we can use a very simple extension of the standard operational
semantics for CCS to provide a non-interleaved semantics for a rich subclass of the
language in terms of asynchronous transtition systems [13]. These asynchronous
transition systems belong to the special subcategory shown to correspond closely
to safe nets in [20]. This implies that we obtain “for free” a net semantics for this
language.
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An advantage of working with categories is that many interesting operations that
one defines on these models can be captured as universal categorical constructions.
For instance, parallel composition corresponds to a notion of categorical product,
while nondeterministic choice can be described in terms of coproducts. Thus, by
relating categories of models, we can also compare how these constructions behave
in different models. This issue is discussed in some detail in [20], where a number
of relationships between models for concurrency are established in a categorical
setting, spanning the spectrum of linear-time, branching-time and partial-order
approaches to modelling the behaviour of concurrent systems.

In establishing our coreflection, we have placed no restrictions on the nets in
PNet. In particular, we permit isolated transitions in our nets. Behaviourally,
isolated transitions have the unpleasant side-effect of introducing unbounded con-
currency into the system. Thus, a useful restriction to place on nets is that every
transition has an input place. The corresponding restriction on PN-transition sys-
tems is that the steps enabled at any state should be bounded. By introducing
these restrictions, we obtain full subcategories of PAts and PNet which are also
related by a coreflection.

We have also removed the restriction imposed by Nielsen, Rozenberg and Thia-
garajan [14] in constructing their category of elementary net systems that the nets
be simple. This restriction is crucially used by them to establish the equivalent of
Lemma 16 for elementary net systems. However, as we have observed here, it is
sufficient to ensure that in going from PN-transition systems (elementary transition
systems) to Petri nets (elementary net systems), the nets that one constructs are
simple. So, the coreflection between elementary transition systems and elemen-
tary net systems established in [14] continues to hold even when their category of
elementary net systems is extended to permit non-simple nets.

Our construction of a Petri net from a PN-transition system always gives rise to
an infinite net (except in the case of the trivial transition system). This is because
any non-negative linear combination of regions is also a region and we saturate
the net with all possible non-trivial regions. So, it would be interesting to try and
characterize those PN-transition systems which can be described in terms of a finite
basis set of regions.

For elementary transition systems, it is straightforward to see that a given
transition system can be represented as a finite elementary net system if and only
if the set of states and the set of events of the transition system are finite.

However, since Petri nets can have places which are unbounded, a finite Petri
net can give rise to an infinite PN-transition system.

Since we are dealing with unlabelled structures, the set of events of a PN-
transition system is the same as the set of transitions of the Petri net whose be-
haviour it represents. Thus, for a PN-transition system to have a representation as
a finite net, it is necessary for its set of events to be finite.

Unfortunately, this condition is not sufficient. In [11], we show an example
of a Petri net that has a finite number of transitions but an infinite number of
(unbounded) places whose behaviour cannot be simulated by any finite net.

However, it is the case that if both the set of events and the set of states of
a PN-transition system are finite, then we can construct a finite Petri net whose
behaviour is the same as that of the original transition system.
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We turn now to other categories of Petri nets that have been described in the
literature—notably those of Winskel [18] and Meseguer and Montanari [10].

Our definition of net morphisms is a strengthened version of the one used by
Winskel in [18]. Winskel permits the map on places to be an arbitrary relation (ac-
tually a multirelation) in the forward direction which preserves the initial marking
and neighbourhoods of transitions. The main reason for this is to permit morphisms
between the unfolding of a net and the original net (for 1-safe nets). However, as has
been pointed out in [14], this relaxation does not permit us to establish an adjunc-
tion between transition systems and nets. The essential problem is that we can, in
general, find more than one of Winskel’s morphisms between a pair of nets describ-
ing the same behavioural morphism between the corresponding transition systems.
This destroys the bijection between hom(TN(T'S), PN) and hom(7'S,NT(PN))
which is required for an adjunction. The observation in [14] is made with respect
to elementary transition systems, but it holds for PN-transition systems as well.

Meseguer and Montanari [10] define a variety of categories based on Petri nets.
They regard multisets of places and transitions as commutative monoids and, in the
most general case, define their net morphisms to be monoid homomorphisms over
both places and transitions which respect the neighbourhoods of the transitions.
Their category MPetrip, where maps on places are monoid homomorphisms and
maps on transitions are partial functions, is closest in spirit to our category PNet.
Once again, we cannot obtain an adjunction using their net morphisms because
there can be more than one such net morphism corresponding to the same transition
system morphism. Also, in MPetriy initial markings are restricted to sets of places
(rather than multisets) in order for coproducts to exist. Given this restriction,
coproducts in MPetriy correspond to non-deterministic choice. In PAet no such
restriction is necessary to obtain coproducts, and, as we have noted in the previous
section, for nets satisfying such a restriction on the initial marking, our coproducts
would also always correspond to non-deterministic choice.

Admittedly, our net morphisms appear to be fairly restrictive when compared
to those of [18] or [10]. However, the restrictions we impose on net morphisms seem
essential for establishing the correspondence we would like between nets and tran-
sition systems, given our “free” construction of a net TN(T'S) from a PN-transition
system T'S, where all non-trivial regions are included as places in TN(T'S). One
possible way to relax the notion of a net morphism and still obtain a coreflection
between PN-transition systems and nets is to tighten up the construction of a net
PN from a PN-transition system T'S to include, say, only a basis set of regions as
places in PN, rather than all non-trivial regions.

Despite the restricted nature of our net morphisms, our coreflection does offer
a solution to a general problem with net morphisms. Ideally, a morphism should
exist between nets PN, and PN, iff PNy can simulate the behaviour of PN;.
However, the structure of PN{ and PN 5 will often rule out such a morphism, even
when the behaviours of the two nets can be related. This is true even in the more
generous setup of [18] or [10] and is a consequence of the fact that nets are too
concrete a representation of system behaviour. Our coreflection gives us a way to
get around this difficulty. Suppose we have two nets PN, and PN, such that there
is a transition system morphism from NT(PN;) to NT(PN,), but there is no net
morphism from PN; to PN,. We can construct the net TN o NT(PN), which is
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the “canonical” representation of PN;. The coreflection then guarantees that a
net morphism exists between TN o NT(PN;) and PN». In fact, we do not even
need the entire net TN o NT(PNy) to obtain a morphism to PN,. If f is the map
between NT(PN ) and NT(PN>), it is sufficient to construct a net PN} from PN
by adding to PN; those places which are inverse images via f of the special regions
rs in NT(PN2) (recall that for each place s in PNy, we can associate a region ry in
NT(PN,)).

Another way that Meseguer and Montanari [10] generalize their net morphisms
is by permitting a single event in the source net to map to a “computation” of
the target net. In fact, in [18], Winskel also generalizes his morphisms to permit
an event to be mapped to a multiset of events rather than a single event. This
corresponds to a sort of refinement operation. It would be interesting to see if such
an idea could be transported to our setup—this would also require us to define a
more sophisticated notion of transition system morphism.

As we had mentioned in the introduction, our work is a generalization of the
results described in [14] dealing with elementary net systems. In addition, Winskel
and Nielsen [20] have established a similar result relating a subclass of asynchronous
transition systems to 1-safe Petri nets.

By tuning our regions appropriately, we can fit the results of [14] and [20] neatly
into our framework [12]. To begin with, for a region r, we can restrict the range
of rg to {0,1} and the range of rg to {(0,0),(0,1),(1,0),(1,1)}. If we enforce
the regional axioms (A3) and (A4) for step transition systems in terms of this
restricted class of regions, we obtain a full subcategory of PNts consisting of safe
PN-transition systems, which corresponds to 1-safe Petri nets. For all transition
systems in this subcategory, it turns out that the steps in the transition relation
consist of only sets of events and not multisets because autoconcurrency is ruled
out.

Winskel and Nielsen have established a coreflection between a subcategory of
asynchronous transition systems and safe nets [20]. In an asynchronous transition
system, information about concurrency is incorporated in terms of a binary inde-
pendence relation on the events, rather than by adding structure to the labels of the
transitions as we have done here. At first sight, it appears that the category of safe
PN-transition systems should coincide with the subcategory of asynchronous transi-
tion systems studied in [20]. However, we can show that there is only a coreflection
between these two categories [12], indicating that asynchronous transition systems
are a slightly more “concrete” model than safe PN-transition systems (though still a
more abstract model than safe nets). This “concreteness” arises from the fact that
the independence relation can specify that two events are concurrent in an asyn-
chronous transition system even when there is no state at which the concurrency
is actually exhibited in the behaviour of the system.

By further restricting the range of rg to exclude (1,1), we obtain a full sub-
category of PNts called elementary PN-transition systems, corresponding to ele-
mentary net systems. In [12], we establish an equivalence between our category
of elementary PN-transition systems and the category of elementary net systems
of Nielsen, Rozenberg and Thiagarajan [14]. Since elementary transition systems
are a subclass of conventional sequential transition systems, this categorical equiv-
alence offers an alternative proof of the result of Hoogeboom and Rozenberg [6]

475



Elementary

Safe nets — Petri nets

net systems

f

Asynchronous transition
i systems i
(Winskel, Nielsen)

f

Elementary Safe .-
- .- PN-t t
PN-transition — PN-transition — ranstion
systems
systems systems

(a2

Elementary transition
systems (Nielsen,
Rozenberg, Thiagarajan)

Figure 11: Relating various models for concurrency

that for elementary transition systems, no information about concurrency is lost
by restricting one’s attention to sequential transition systems.

The relationship between these different models is summarized in Figure 11.
The vertical arrows () indicate coreflections; the arrow indicates the direction of
the left adjoint.

It also turns out that if we are interested only in the sequential behaviour of Petri
nets, we can characterize Petri nets using conventional transition systems. Suppose
we consider purely sequential transition systems (thereby restricting our attention
to the sequential firing sequences of Petri nets). We then get an obvious sequential
definition of a region and we can impose the corresponding regional axioms to
obtain a category of sequential PN-transition systems. Somewhat surprisingly, it
turns out that we can establish a coreflection between this category of sequential
PN-transition systems and the category PNet[12]. In this setup, every net PN will
have a canonical representation TN o NT(N) which is purely sequential—i.e. there
will be a place s in TN o NT(N) such that for every transition ¢ in TN o NT(N),
Wi(s,t) =W(t,s) = 1.

The observation that we can use both sequential and step transition systems to
characterize Petri nets seems to indicate that we can use objects like PN-transition
systems to bridge the gap between interleaving and non-interleaving models of
concurrency in a smooth way.

We conclude by pointing out a major issue which we have ignored in our study—
that of labelling. In the theory of Petri nets, abstraction is achieved by adding a
set of labels which can be associated with the underlying events of the system.
This is crucial for using nets to provide, say, a semantics for CCS-like langages.
In [20], labelling is introduced into the categorical treatment of different models of
concurrency by means of fibrations and cofibrations. Though they point out some
problems in defining these constructions over categories of nets, it does not seem

476



to prevent the coreflection between unlabelled transition systems and unlabelled
nets from being extended to the corresponding labelled categories. So, while we
have not explicitly handled labelling in our framework, we are confident that we
can follow the route set out in [20] without too much difficulty.
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