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Abstract. This paper discusses state space generation with the symmetry method in the

context of Coloured Petri Nets (CP-nets). The paper presents the development of the De-

sign/CPN OPS tool which, together with the Design/CPN OE/OS tool, provides fully au-

tomatic generation of symmetry reduced state spaces for CP-nets with consistent symmetry

speci�cations. Practical experiments show that the practical applicability of the symmetry

method is highly depended on eÆcient algorithms for determining whether two states are

symmetric. We present two techniques to obtain an eÆcient symmetry check between mark-

ings of CP-nets: a technique that improves the generation time and a technique that reduces

the memory required to handle the symmetries during calculation. The presented algorithms

are implemented in the Design/CPN OPS tool and their applicability is evaluated based on

practical experiments.

1 Introduction

The state space of a system is a directed graph with a node for each reachable state of the system

and an arc for each state change. From the state space it is possible to verify whether the system

possesses a set of desired properties, e.g., the absence of deadlocks, the possibility to always reenter

the system's initial state, etc. However, the practical use of state spaces for formal analysis and

veri�cation of systems is often limited by the state explosion problem [17]: even small systems

may have a large (or in�nite) number of states, thus making it impossible to construct the full

state space of the system. Several reduction techniques have been suggested to alleviate the state

explosion problem. An example of such a reduction technique is the symmetry method [3, 9, 4, 6].

The symmetry method is not restricted to a speci�c modelling language. In this paper we work

with the symmetry method for Coloured Petri Nets (CP-nets or CPN) [8, 9]. The basic observation

behind the symmetry method is that many concurrent and distributed systems posses a degree

of symmetry which is also re
ected in the state space. The idea behind the symmetry method is

to factor out this symmetry and obtain a condensed state space which typically is much smaller

than the full state space, but from which the same properties can be veri�ed without unfolding

to the full state space. The symmetries in such systems can be described by algebraic groups of

permutations. For CP-nets the symmetries used for the reduction are induced by algebraic groups

of permutations on the atomic colour sets of the CP-net. Hence, we will also use the term state

spaces with permutation symmetries (SSPSs) to denote the condensed state spaces obtained by

using the symmetry method.

In the context of CP-nets the theory of the symmetry method is well developed [9, 8] and a

computer tool (the Design/CPN OE/OS tool [11, 10]) that supports state space generation with

the symmetry method has been developed. However, the symmetry method in the context of CP-

nets has only few applications in practice, e.g. [14, 5]. One of the drawbacks of the Design/CPN

OE/OS tool is that it requires the user to implement two predicates determining whether two

states/actions are symmetric or not. This requires both programming skills and a deep knowledge

of the symmetry method. This is especially the case if the predicates are required to be eÆcient.

However, when constructing SSPSs for CP-nets, it can be observed that the predicates can be

automatically deduced [8] provided the algebraic groups of permutations used for the reduction



have been speci�ed1. The above observation has motivated the construction of a tool (the De-

sign/CPN OPS tool [13]) which, given an assignment of algebraic groups of permutations to the

atomic colour sets of the CPN model, generates the predicates for the Design/CPN OE/OS tool

expressing whether two states/actions are symmetric.

The problem of determining whether two states/actions are symmetric is in literature also

referred to as the orbit problem and an eÆcient solution to this problem is a central issue for the

applicability of the symmetry method. The computational complexity of the orbit problem has

been investigated in [3] showing that in general it is at least as hard as the graph isomorphism

problem for which no polynomial time algorithm is known. However, in the context of CP-nets

symmetry can be determined eÆciently in a number of special cases, e.g., when the CP-net only

contains atomic colour sets [1, 8]. This is, however, not true in general; the problem of determining

symmetry between states/actions is complicated by the fact that colour sets can contain arbitrary

structural dependencies.

During development of the Design/CPN OPS tool a number of practical experiments have

been performed with di�erent strategies for the implementation of the predicates. The practical

experiments show that the chosen strategy for the implementation of the predicates greatly in
u-

ences whether the symmetry method for CP-nets is applicable in practice. The algebraic groups

of permutations used for the reduction potentially becomes very large as the system parameters

grow. The number of symmetries used for the reduction is potentially �
A2�A

jAj! where �A denotes

the atomic colour sets of the CPN model. Hence, eÆcient handling of the symmetries used for the

reduction becomes an important aspect when developing algorithms for the predicates used in the

symmetry method.

In this paper we present techniques and algorithms which implements an eÆcient solution to

the orbit problem in SSPS generation for CP-nets. The algorithms presented in this paper are

based on general techniques which can be applied independently of model speci�c details. Hence,

the predicates can be automatically constructed by the tool.

The paper is structured as follows. Section 2 presents the symmetry method for CP-nets

by means of an example. Section 3 presents the basic generation algorithm for SSPSs. Section 4

introduces a basic solution to the orbit problem for CP-nets that will be used for reference purposes.

Section 5 presents algorithms that improve the run-time of the basic algorithm. Section 6 presents

algorithms that ensure an compact representation of the symmetries throughout calculation of the

SSPSs. Finally, Sect. 7 contains the conclusions.

2 The Symmetry Method for CP-nets

In this section we introduce the symmetry method for CP-nets by means of an example. We will

use the example of a distributed database from Sect. 1.3 in [7]. Section 2.1 presents the CPN

model of the distributed database and show how the symmetry method can be used to reduce the

size of the state space. Section 2.2 explains how the symmetries used in the symmetry method are

speci�ed as permutations of atomic colours. Finally, Sect. 2.3 presents a data structure which can

be used to represent sets of symmetries in a CP-net.

2.1 Example: Distributed Database

The CP-net for the distributed database is shown in Fig. 1. The CP-net models a simple distributed

database with n di�erent sites. Each site contains a copy of all data and this copy is handled by

a database manager. Each database manager can change its own copy of the database and send

a message to all other database managers requesting them to update their copy of the database.

1 There are two main approaches in the literature: either the permutations can be automatically deduced

from the model, e.g., [2, 16], or explicitly speci�ed by the modeller [8, 9]. The latter approach is based

on the belief that the modeller, who constructs the model is familiar with the system modelled and has

an intuitive idea of the symmetries present in the model [8].



The distributed database system uses the indexed colour set DBM to model the database managers,

the enumeration colour set E to model whether the protocol is active, and the product colour set

MES to model the messages. The content of the database and the messages are not modelled. Only

header information (the sender and the receiver) is contained in a message.

The distributed database system possesses a degree of symmetry. The database managers are

treated similarly, only their identities di�er. This symmetry is also re
ected in the state space

of the distributed database system. The state space for the CPN model with three database

managers is shown in the left-hand side of Fig. 2. The idea behind SSPSs is to factor out this

symmetry and obtain a smaller state space from which the properties of the distributed database

system can be veri�ed without unfolding to the full state space. When constructing the SSPS

for the database system we consider two markings/binding elements to be symmetric if they are

equal except for a bijective renaming of the database managers. This kind of symmetry (based

on bijective renamings) induces two equivalence relations; one on the set of markings and one on

the set of binding elements [8]. The basic idea when constructing the SSPS is to lump together

symmetric markings/binding elements into one node/arc, i.e., only store one representative from

each equivalence class. The right-hand side of Fig. 2 shows the SSPS for the distributed database.

The nodes in the full state space (in the left-hand side of the �gure) are coloured such that nodes

corresponding to symmetric markings have the same colour. The same colours are used in the

SSPS (in the right hand side of the �gure). From the �gure it can be seen that the SSPS only

contains one node per equivalence class of symmetric markings.

2.2 Symmetry Speci�cation

The symmetries used for the reduction are obtained from permutations of the atomic colours in

the CPN model. Let �A denote the set of atomic colour sets of the CPN model. For each atomic

colour set in the CPN model, A 2 �A, we de�ne an algebraic group of permutations �A, i.e., a

subgroup of [A! A]. A symmetry � of the system is a set of permutations of the atomic colour sets

of the model, i.e., � = f�A 2 �AgA2�A . In the rest of the paper we will use the term permutation

symmetry to denote a set of permutations of the atomic colour sets of a CPN model.

The symmetry considered in the distributed database system is a bijective renaming of the

database managers. This is obtained by allowing all permutations of the atomic colour set DBM.

Hence a permutation symmetry in the distributed database system is a set � = f�E 2 �E ; �DBM 2
�DBMg, where �DBM = [DBM ! DBM] and �E = f�idg (where �id is the identity permutation,

i.e., �id(e)=e). From the permutation symmetries of the CPN model we derive permutations of

the structured colour sets, multi-sets, markings and binding elements as described in [8].

A symmetry speci�cation of a CP-net is an assignment of algebraic groups of permutations

to each of the atomic colour sets of the CP-net and hence determines a group of permutation
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Fig. 1. CP-net for the Distributed Database example.



1 
3:3

2 
1:2 3 

1:2
4 
1:2

9 
1:2

10 
1:2

7 
1:2

8 
1:2

5 
1:2

6 
1:2

19 
1:1

18 
2:2

17 
1:1

16 
1:1

15 
2:2

14 
1:1

13 
1:1

12 
2:2

11 
1:1

25 
2:1

24 
2:1

23 
2:1

22 
2:1

21 
2:1

20 
2:1

28 
2:1

27 
2:1

26 
2:1

1 
1:1

2 
1:1

3 
1:2

4 
1:1

5 
1:1

6 
2:1

7 
1:1

Fig. 2. The full state space (the left-hand side) and SSPS (the right-hand side) of the CP-net for the

distributed database example with 3 symmetric database managers(n = 3).

symmetries. The symmetry speci�cation is required to be consistent [8] which means that it is

required to only express symmetries that are actually present in the system. We will use �SG to

denote the group of permutation symmetries given by a consistent symmetry speci�cation SG. In

the rest of the paper we assume that a CP-net with places P = fp1; p2; :::; png is given together with
a consistent symmetry speci�cation SG which determines a group �SG of permutation symmetries.

2.3 Restriction Sets

A consistent symmetry speci�cation SG determines a group of permutation symmetries �SG.

During generation of the SSPS we need some kind of representation of �SG. One possibility is to

list the permutation symmetries. Since the symmetry groups used for the reduction can be very

large, this is not a feasible solution.

A set of permutations of an atomic colour set can instead be represented as a restriction set.

Restriction sets are introduced in [8] and formally de�ned in [1]. Here we will introduce restriction

sets by means of an example. Below we use a restriction set to represent a subset of [DBM ! DBM].

The set of permutations mapping d(1) to d(2) and the set fd(2),d(3)g to the set fd(1),d(3)g
can be represented by the following restriction set:

d(1) d(2)

d(2) d(3) d(1) d(3)

Each row in the restriction set introduces a requirement for the set of permutations represented

by the restriction set. The individual restrictions (rows) express that the colours on the left-hand

side must be mapped into the colours of the right-hand side. In [1] it is proven that restriction

sets can be eÆciently intersected (while maintaining the compact representation) and that an

arbitrary set of permutations can be represented by a set of restriction sets. Hence, restriction sets

provide a potentially compact representation of sets of permutations. In the rest of the paper we

will use restriction sets to represent sets of permutations of atomic colour sets. Hence, a symmetry

speci�cation can be represented by a set of restriction sets for each atomic colour set in the CP-net.

3 Condensed State Space Generation

In this section we give an introduction to the standard algorithm Generate-SSPS for construc-

tion of the SSPS of a CP-net [8]. Nodes and Arcs are sets of states (markings) and actions (binding

elements), respectively, and it contains the states and actions that are included in the SSPS. Unpro-

cessed is a set of states, and contains the states for which we have not yet calculated the successor



states. M0 denotes the initial state. Next(M) is a function calculating the set of possible next

moves (an action and the resulting state) from the state M . Node(M) is a function that checks

whether a node symmetric to M is already included in the SSPS. If not, M is added to Nodes

and Unprocessed. Similarly, Arc(M1,b,M2) is a function that checks whether a symmetric arc is

already included in the SSPS, i.e., an arc consisting of a binding element symmetric to b from a

marking symmetric to M1 to a marking symmetric to M2. If not, (M1,b,M2) is added to Arcs.

Algorithm: GenerateSSPS () =

1: Nodes  fM0g
2: Arcs  ;
3: Unprocessed  fM0g
4: repeat

5: select M1 2 Unprocessed

6: for all (b,M2) 2 Next(M1) do

7: Node(M2)

8: Arc(M1,b,M2)

9: end for

10: Unprocessed := Unprocessed n fM1g
11: until Unprocessed = ;

The algorithm proceeds in a number of iterations. In each iteration a state (M1) is selected from

Unprocessed and the successor states (and actions) are calculated using the Next function. For

each of the successor states, M2, it is checked whether Nodes already contains a state symmetric

toM2. If notM2 is added to both Nodes and Unprocessed. Similar checks are made for the actions.

The check for symmetric states and symmetric actions are instances of the orbit problem. From the

basic generation algorithm it can be seen that eÆcient generation of the SSPS is highly dependent

on the eÆciency of the algorithms for determining the following two problems: 1) When reaching

a new marking M during generation of the SSPS, is there a marking symmetric to M already

included in the SSPS? And 2) When reaching a new arc (M1; b;M2) during generation of the

SSPS, is there a symmetric arc already included in the SSPS?

GenerateSSPS is implemented in the Design/CPN OE/OS tool and used when calculating

SSPSs for CP-nets. In Design/CPN a hash function is used when storing the markings during

generation of the SSPS. When reaching a new marking during generation of the SSPS each marking

stored with the same hash value is checked to see if it is symmetric to the newly reached marking,

i.e., symmetry checks are performed locally between markings in the collision lists. The user of

the tool is free to use his own hash function. The only requirement is that the hash function

used is symmetry respecting, i.e., symmetric states are mapped to the same hash value. This is

the case for the default hash function used in Design/CPN. Hence, when using the Design/CPN

OE/OS tool for the generation of SSPSs eÆcient generation is dependent on the eÆciency of the

two predicates, PM and PBE , determining symmetry between markings and binding elements,

respectively.

PM : Given M1;M2 2 M determine whether 9� 2 � s.t. �(M1) =M2.

PBE : Given (t1; b1); (t2; b2) 2 BE determine whether 9� 2 � s.t. �(t1; b1) = (t2; b2).

The Design/CPN OE/OS tool requires PM and PBE to be implemented by the user. Implementing

such predicates is error-prone for large CPN models and requires both programming skills and

a detailed knowledge of the symmetry method. This is especially the case if the predicates are

required to be eÆcient. The required user implementation of PM and PBE in the Design/CPN

OE/OS tool has motivated the development of the Design/CPN OPS tool which given a CP-net

and a consistent symmetry speci�cation automatically generates the two predicates, PM and PBE ,

needed by the Design/CPN OE/OS tool. In the rest of the paper we will present techniques and

algorithms to obtain implementations of PM and PBE in the Design/CPN OPS tool which are



eÆcient in practice. The algorithms are independent of the speci�c CP-net. Hence, the predicates

can be automatically generated.

In the following discussions we will concentrate on the markings since the symmetry check

between binding elements can be viewed as a special case of symmetry checks between markings:

Given a transition t with variables v1; v2; : : : ; vm, a binding b of t can be viewed as a vector

of singleton multi-sets (1`b(v1); 1`b(v2); : : : ; 1`b(vm)), where b(v) denotes the value assigned to v

in the binding b. Since transitions cannot be permuted by permutation symmetries in CP-nets

determining symmetry between binding elements is the same as determining symmetry between

markings. Hence, in the rest of the paper we will present techniques and algorithms to obtain

an eÆcient implementation of PM , i.e., given M1;M2 2 M determine whether 9� 2 � such that

�M (M2) =M1.

4 Basic Algorithm for PM

In this section we will present a basic algorithm which implements the predicate PM . Section 4.1

presents the algorithm. Section 4.2 presents experimental results obtained using the Design/CPN

OPS tool where the basic algorithm presented in this section is used to determine symmetry

between markings.

4.1 Presentation of the Algorithm

The algorithm is based on a simple approach where �SG, i.e., the group of permutation symmetries

allowed by the symmetry speci�cation SG, is iterated to determine whether 9� 2 �SG s.t. �(M1) =

M2. The algorithm PBasic
M is given below.

Algorithm: PBasic
M (M1;M2)

1: for all � 2 �SG do

2: if �(M1) =M2 then

3: return true

4: end if

5: end for

6: return false

The algorithm repeatedly selects a permutation symmetry � from �SG (line 1) and tests whether

� is a symmetry between the two markings, M1 and M2 given as input (lines 2-4). The iteration

stops when a permutation symmetry � for which �(M1) =M2 is found (line 3) or the entire �SG
has been iterated (line 6).

The algorithm PBasic
M potentially tests fewer permutation symmetries than j�SGj. This is

however not the case if M1 and M2 are not symmetric. In that case the algorithm checks the

whole �SG. Hence, P
Basic
M is only useful for CP-nets with few permutation symmetries. This is

also supported by the experimental results presented below.

However, before we present the experimental results of the PBasic
M algorithm we will brie
y

introduce how it is tested whether a permutation symmetry � maps a marking M1 to another

marking M2 (line 2 in PBasic
M ). In [1] it is shown how the set of permutation symmetries between

two markings can be determined as the intersection of the sets of permutation symmetries between

the markings of the individual places. Hence, to determine whether a permutation symmetry � 2
�SG is a symmetry between two markings M1 and M2, we in turn test the multi-sets constituting

the markings of pi 2 P . Note that if a permutation symmetry is not a symmetry for the marking

of a place pi 2 P , i.e., �(M1(pi)) 6= M2(pi) the permutation symmetry � cannot be a symmetry

between M1 and M2 and therefore there is no need to test the remaining places in P . Using



the ideas presented in [1] we obtain an algorithm TestPermutationSymmetry which given a

permutation symmetry � and two markings, M1 and M2, tests whether �(M1) =M2.

Algorithm: TestPermutationSymmetry(�,M1,M2) =

1: for all pi 2 P do

2: if �(M1(pi)) 6=M2(pi) then

3: return false

4: end if

5: end for

6: return true

The algorithm repeatedly selects a place pi 2 P of the CP-net (line 1) and tests whether � is

a symmetry between the markings of pi in M1 and M2 (line 2-4). If not, � is not a symmetry

between M1 and M2, otherwise a new place is tested. The iteration proceeds until a place pi 2 P
for which � is not a symmetry is found (line 3) or all places have been tested (line 6).

4.2 Experimental Results of the PBasic
M Algorithm

This section presents experimental results obtained using the Design/CPNOPS tool. The following

results are obtained using an implementation of PBasic
M to determine whether two markings are

symmetric. A similar approach is used for the implementation of PBE .

The Design/CPN OPS tool represents �SG as a restriction set. When checking symmetry

between two markings using PBasic
M �SG is listed and the permutation symmetries from the list

are removed and tested until a permutation symmetry � is found for which �(M1) = M2 or the

list is empty.

SSPSs have been generated for two di�erent CP-nets in a number of con�gurations. The CP-

nets used in the experiments are brie
y described below. For a detailed description of the CP-nets

we refer to [8, 12].

Commit [12]. A CP-net modelling a two-phase commit protocol with a coordinator and w sym-

metrical workers.
Distributed database [8]. The CP-net presented in Sect. 2 modelling the communication be-

tween n symmetrical database managers.

Table 1 shows the generation statistics for of the SSPS for di�erent con�gurations of the two

CP-nets using the PBasic
M algorithm. The CP-net column gives the name (C stands for commit

and D stands for distributed database) and con�guration of the CP-net for which the SSPS is

generated as well as the number of permutation symmetries given by the symmetry speci�cation

SG used for the reduction. The Count column gives two numbers: the total number of times the

PM predicate is called during calculation of the SSPS and the number of calls which evaluate to

true, i.e., the number of those calls which determine that the two markings are symmetric. The

Tests column presents statistics on the number of permutation symmetries applied to markings

during generation of the SSPS: Total gives the total number of permutation symmetries applied

to markings during generation of the SSPS, PBasic
M gives the average number of permutation

symmetries applied in each call of PBasic
M , PBasic

M =true gives the average number of permutation

symmetries applied in each call of PBasic
M which evaluates to true (the case where iteration of

the entire �SG is potentially avoided), and �nally, % j�SGj gives the average percentage of the

permutation symmetries which are tested in a call of PBasic
M . Finally, the Time column gives the

number of seconds it took to generate the SSPS for the given CP-net. A '{' in an entry means

that the SSPS could not be generated within 600 seconds. All experimental results presented in

this paper are obtained on a 333MHz PentiumII PC running Linux. The machine is equipped with

128 Mb RAM.

From Table 1 it can be seen that when system parameters increase the number of permutation

symmetries tested increase signi�cantly. This is caused by the increasing size of �SG. From the



PBasicM

CP-net Count Tests Time

Con. j�SGj PM PM=true Total PBasicM PBasicM =true % j�SGj Secs

C2 2 11 7 19 1.73 1.57 78.5 0

C3 6 26 19 90 3.46 2.53 42.0 0

C4 24 53 41 488 9.21 4.88 20.3 0

C5 120 95 76 3,242 34.1 12.7 10.5 0

C6 720 157 127 27,297 174 44.86 6.2 23

C7 5,040 { { { { { { {

D2 2 4 2 7 1.75 1.50 75.0 0

D3 6 14 6 61 4.36 2.17 36.0 0

D4 24 35 15 533 15.2 3.53 14.7 0

D5 120 71 31 5,037 70.9 7.64 6.37 0

D6 720 126 56 51,693 410 23.1 3.20 16

D7 5,040 { { { { { { {

Table 1. Generation statistics for SSPS generation using the PBasic
M algorithm.

% j�SGj column it can be seen that the average percentage of �SG which are tested in PBasic
M

decreases when the system parameters increase. However, the increasing size of �SG makes it im-

possible to generate the SSPS for the two CP-nets when system parameters, i.e., the number of

concurrent readers or database managers, becomes greater than 6. This is also caused by the ap-

proach where �SG is listed before the permutation symmetries are tested. For systems of increasing

size j�SGj imply that the entire �SG cannot be represented in memory and, thus, generation of

the SSPS is not possible. It should be noted that the results presented in Table 1 depends on the

order in which the permutation symmetries are applied. The order used for the experiments is the

same order in each call of PBasic
M based on a recursive unfolding of the restriction set.

We conclude that the experiments performed using PBasic
M in generation of SSPSs show that

the run-time incurred by the iteration of �SG becomes signi�cant when system parameters grow.

Hence, in order to make the calculation of SSPSs for CP-nets applicable in practice we need to

carefully consider the number of permutation symmetries tested in the generation of the SSPSs.

The next section presents techniques which improve PBasic
M in this direction.

5 Approximation Techniques

In this section we will present an algorithm which presents an improved implementation of the

predicate PBasic
M . Section 5.1 presents the algorithm. Section 5.2 presents experimental results

obtained using the Design/CPN OPS tool where the improved algorithm presented in this section

is used to determine symmetry between markings.

5.1 Presentation of the Algorithm

The problem when using PBasic
M for the symmetry check between markings is that in the worst case

j�SGj permutation symmetries will be checked. When determining symmetry between markings a

selection of simple checks can in many cases determine that two markings are not symmetric or

determine a smaller set of permutation symmetries that have to be checked.

In this section we will present a new algorithm for PM which given two markings,M1 and M2,

calculates a set 	M1;M2
such that f� 2 �SG j �(M1) = M2g � 	M1;M2

� �SG. Hence, 	M1;M2

is a super-set of the set of permutation symmetries mapping M1 to M2. If 	M1;M2
= ; we can

conclude that M1 and M2 are not symmetric. However, if 	M1;M2
is non-empty we have to test

the individual permutation symmetries in 	M1;M2
. In worst case j	M1;M2

j permutation symmetries

have to be checked. This is the case if M1 andM2 are not symmetric. IfM1 andM2 are symmetric

then in worst case j	M1;M2
j � jf� 2 �SG j �(M1) = M2gj + 1 permutation symmetries have to

be checked. Hence, the goal of the approximation technique is to construct 	M1;M2
as close to

f� 2 �SG j �(M1) =M2g as possible.



In [1] it was shown that if a CP-net only contains atomic colour sets then the set f� 2
�SG j �(M1) = M2g can be determined eÆciently. This is, however, not the case if the CP-net

contains structured colour sets. Nevertheless, we will use the technique to eÆciently obtain an

approximation 	M1;M2
of f� 2 �SG j �(M1) = M2g, thus reducing the number of permutation

symmetries which have to be checked compared to the approach used in PBasic
M . This is obtained at

the cost of doing the approximation. In the following we will show how such an approximation can

be obtained eÆciently when �SG is represented as a restriction set. The approximation technique

is based on ideas from [8, 1].

The set of permutation symmetries mapping a marking M1 to another marking M2 can be

found as the intersection of sets of permutation symmetries mapping M1(pi) to M2(pi) for all

pi 2 P . Similarly, it is shown in [8] and proved in [1] how the set of permutation symmetries

between such markings of places, i.e., multi-sets, can be determined as the intersection over sets of

symmetries between sets with equal coeÆcient in the multi-sets, i.e., for a permutation symmetry

to be a symmetry between ms1 and ms2 it must ensure that a colour appearing with coeÆcient c

in ms1 must be mapped into a colour appearing with the same coeÆcient in ms2. We will illustrate

using the CP-net of the Distributed Database (Fig. 1) as an example.

Let ms1=1`d(2)+1`d(3) and ms2=1`d(1)+1`d(2) be two markings of a the place Inactive

with colour set DBM. In ms1 two colours (d(2) and d(3)) appear with coeÆcient 1 and one colour

(d(1)) appear with coeÆcient 0. We can express the multi-set of coeÆcients as 2`1+1`0. In ms2
it is also the case that two colours (d(1) and d(2)) appear with coeÆcient 1 and one colour

(d(3)) appear with coeÆcient 0. Hence, ms2 has the same multi-set of coeÆcients as ms1 namely

2`1+1`0. A permutation �DBM of the colour set DBM is a permutation mapping ms1 to ms2 if

�DBM ensures that a colour appearing with coeÆcient 1 in ms1 is mapped to a colour appearing

with coeÆcient 1 in ms2, and similar for the rest of the coeÆcients (here just 0). Hence, we

can construct a restriction set representing the set of permutations between ms1 and ms2 by

constructing a restriction for each of the coeÆcients appearing in ms1 and ms2.

CoeÆcient 0:

CoeÆcient 1:

d(1) d(3)

d(2) d(3) d(1) d(2)

In the above example the two multi-sets had the same multi-sets of coeÆcients. This is a necessary

requirement for the two multi-sets to be symmetric [1]. If not, the left and right-hand sides of the

constructed restrictions do not contain the same number of elements, and thus does not represent

a valid set of permutations. Multi-sets of coeÆcients are formally de�ned in [1]. We de�ne multi-

sets of coeÆcients using the notation used in this paper below and present an algorithm which

calculates the set of permutation symmetries between two multi-sets over an atomic colour set.

De�nition:

For a multi-set ms over a colour set C we de�ne CoefficientsC (ms) as the set of coeÆcients

appearing in ms:

CoefficientsC (ms) = fi 2 Nj9c 2 C such that ms(c) = ig

Let ms be a multi-set over a colour C. For i 2 CoefficientsC(ms) we de�ne the i-coeÆcient-class

for ms as the set of colours in C appearing with coeÆcient i:

Ci(ms) = fc 2 Cjms(c) = ig

We de�ne the multi-set of coeÆcients for ms by

Cfms(ms) = fms(i)`igi2CoeÆcientsC(ms)



Based on the above de�nitions we formulate an algorithm FindPermutations which given two

multi-sets ms1 and ms2 over an atomic colour set A 2 �A calculate the set f�A 2 �A j �A(ms1) =

ms2g.

Algorithm: FindPermutationsms(ms1,ms2)

1: if Cfms(ms1) = Cfms(ms2) then

2: return f(Ci(ms1),Ci(ms2)gi2CoeÆcients(ms1)

3: else

4: return ;
5: end if

The algorithm tests whether Cfms(ms1) = Cfms(ms2) (line 1), i.e., the multi-set of coeÆcients

are equal. If not ms1 and ms2 are not symmetric [1], i.e., the empty set is returned (line 4),

otherwise a restriction set is constructed containing a restriction (Ci(ms1),Ci(ms2)) for each of

the coeÆcients i in Coefficients(ms1) (line 2).

Given two markings,M1 andM2, the algorithm FindPermutationSymme-triesM calculates

the a set of permutation symmetries 	M1;M2
as the intersection of �SG and the sets of permu-

tations between the markings of the individual places with atomic colour sets (calculated using

FindPermutationsms).

Algorithm: FindPermutationSymmetriesM (M1,M2) =

1: �0  �SG
2: for all p 2 fp0 2 P j p0 has an atomic colour setg do
3: �0  �0\ FindPermutationsms(M1(p),M2(p))

4: end for

5: return �0

If the CP-net only contains places with atomic colour sets the set 	M1;M2
of permutation symme-

tries calculated using FindPermutationSymmetriesM is equal to the set f� 2 �SG j �(M1) =

M2g. If the CP-net also contains places with structured colour sets then 	M1;M2
is a super-

set of f� 2 �SG j �(M1) = M2g, i.e, f� 2 �SG j �(M1) = M2g � 	M1;M2
. We will use

FindPermutationSymmetriesM to improve the PBasic
M algorithm presented in Sect. 4, i.e., to

reduce the number of permutation symmetries which have to be checked. The new algorithm

P
Approx
M is presented below.

Algorithm: P
Approx
M (M1;M2)

1: for all � 2 FindPermutationSymmetriesM (M1,M2) do

2: if TestPermutationSymmetry' (�,M1,M2) then

3: return true

4: end if

5: end for

6: return false

The algorithm repeatedly selects a permutation symmetry � from the set of permutation sym-

metries approximated using FindPermutationSymmetriesM (line 1) and tests whether � is a

symmetry between the two markings (lines 2-4). The iteration stops when a permutation symme-

try � for which �(M1) =M2 is found (line 3) or the entire set has been iterated (line 6). P
Approx
M

(M1;M2) uses TestPermutationSymmetry' (�,M1,M2), a modi�ed version of the algorithm

TestPermutationSymmetry presented in Sect. 4, to determine whether �(M1) = M2. The

di�erence is that given a permutation symmetry � and two markings, M1 and M2, TestPermu-



tationSymmetry' only test � on the places which have a structured colour set. The markings

of the places with atomic colour sets are already accounted for in the approximation and do not

have to be tested again.

The complexity of the calculation of FindPermutationSymmetriesM is independent of

j�SGj. This is a very attractive property, since the experimental results presented in Sect. 4

showed that iterating the group of permutation symmetries is not applicable in practice when

the symmetry speci�cation determines a large set of permutation symmetries.

If the CP-net contains places with atomic colour sets P
Approx
M potentially tests fewer per-

mutation symmetries than PBasic
M . In PBasic

M at most j�SGj � jf� 2 �SG j �(M1) = M2gj + 1

permutation symmetries are checked when determining whether two markings are symmetric,

whereas at most jFindPermuta-tionSymmetriesM (M1;M2)j � jf� 2 �SG j �(M1) =M2gj+1

permutation symmetries are tested using P
Approx
M . The experimental results presented later in this

section show that for the two CP-nets used in the experiments the approximation is very close (or

even equal) to the exact set of permutation symmetries mapping M1 to M2. Hence, the number

of permutation symmetries which have to be tested is very low in practice. Furthermore, if the

multi-sets of coeÆcients are di�erent for markings no permutation symmetries have to be tested to

determine that the markings are not symmetric. It should be noted that a necessary requirement

for two markingsM1 andM2 to be symmetric is that Cfms(M1(pi)) =Cfms(M2(pi)) for all places

pi 2 P (also for places with structured colour sets). Hence, an obvious way to improve P
Approx
M

is to test the equality of multi-sets of coeÆcients for places with structured colour sets before

checking any permutation symmetries. Places with atomic colour sets are already accounted for

in the approximation.

5.2 Experimental Results of the P
Approx

M Algorithm

In this section we will present experimental results obtained using an implementation of PM based

on the P
Approx
M algorithm. The approximation operated directly on the restriction sets and the

approximate set 	M1;M2
is also represented as a restriction set. Before checking the permutation

symmetries in 	M1;M2
the approximated set is represented as a list. The permutation symmetries

from the list are removed and checked until a permutation symmetry � is found for which �(M1) =

M2 or the list is empty. The experimental results are obtained using the two CP-nets presented

in Sect. 4.

Table 2 presents generation statistics for SSPSs for di�erent con�gurations of the two CP-nets

using the P
Approx
M algorithm. The �rst four columns are the same as the �rst four columns in

Table 1 presenting the generation statistics using the PBasic
M algorithm. The CP-net column gives

the name and con�guration of the CP-net for which the SSPS is generated as well as the number

of permutation symmetries given by the symmetry speci�cation. The Count column gives two

numbers: the total number of times the PM predicate is called during calculation of the SSPS and

the number of calls of PM which evaluate to true, i.e., the number of calls which determines that the

two markings are symmetric. The last six columns are speci�c to the P approx
M algorithm. The Cfms

column gives the number of calls of P
Approx
M for which the multi-sets of coeÆcients are di�erent for

the two markings, i.e., the number of calls of P
Approx
M where no permutation symmetries are tested.

The Tests column presents statistics on the number of permutation symmetries applied to markings

during generation of the SSPS: Total gives the total number of permutation symmetries applied

to markings during generation of the SSPS, P
Approx
M gives the average number of permutation

symmetries applied in each call of P
Approx
M , P

Approx
M =true gives the average number of permutation

symmetries applied in each call of P
Approx
M which evaluates to true (the case where iteration of

the entire �SG potentially is avoided), and �nally, %j�SGj gives the average percentage of the

permutation symmetries which are tested in a call of P
Approx
M during generation of the entire

SSPS. Finally, the Time column gives the number of seconds it took to generate the SSPS for the

CP-net in the given con�guration.

From Table 2 it can be seen that checking the multi-sets of coeÆcients before testing any per-

mutation symmetries in P
Approx
M reduces the number of permutation symmetries tested compared



to PBasic
M . It is worth noticing that in all calls of PApprox

M which evaluated to false no permutation

symmetries are tested, i.e., in all cases the multi-sets of coeÆcients di�er. This is of course highly

dependent on the CPN model and is a question of the amount of redundancy encoded in markings

of places with structured colour sets. Furthermore, all calls of P
Approx
M which evaluated to true

only in average requires one permutation symmetry to be tested. This is not a general fact of the

technique. However, it is our experience from other experiments that in practice many CP-nets

contains a degree of redundancy such that the approximation based on the atomic colour sets of

the CP-net often is very close (or equal) to the exact set of permutation symmetries mapping one

marking to another.

Even though the number of permutation symmetries tested after approximating the set of

permutation symmetries is 1 for both CP-nets in all con�gurations it can be seen that SSPSs

could not be generated for more than 7 database managers or workers. The reason is the memory

required by P
Approx
M : in the implementation of P

Approx
M used for the practical experiments the

approximated set of permutation symmetries is listed before testing the permutation symmetries.

Hence, even though the approximation determines the exact set of permutation symmetries in

worst case j�SGj permutation symmetries are listed. Thus, in order to make the method applicable

in practice we need to carefully consider the representation of the sets of permutation symmetries

during generation of the SSPSs. This is the topic of the next section.

6 Lazy Listing

In the previous sections we have used sets of restriction sets to represent sets of permutation

symmetries. The approximation technique presented in Sect. 5 operates directly on the restriction

sets. However, in the implementations of both PBasic
M and P

Approx
M the permutation symmetries

are listed before they are checked. The major drawback of the approach presented in the previous

section is that even though the approximation is exact or very close to f� 2 �SG j �(M1) =M2g,
i.e., only few permutation symmetries have to be checked, the entire approximated set is listed. The

experimental results presented in Sect. 5 also showed that this approach is not applicable in practice

since the memory use becomes a serious bottleneck as system parameters grow. The main goal of

this section is therefore to improve the P
Approx
M algorithm such that a compact representation of

the approximated set of permutation symmetries is maintained during calculation of PApprox
M .

In this section we will present an algorithm which is an improved implementation of the predi-

cate P
Approx
M . Section 6.1 presents the algorithm. Section 6.2 presents experimental results obtained

using the Design/CPN OPS tool where the improved algorithm presented in this section is used

to determine symmetry between markings.

P
Approx

M

CP-net Count cfms Tests Time

Con. j�SGj PM PM=true Total P
Approx

M
P
Approx

M
=true %j�SGj Secs

C2 2 11 7 4 7 1 1 50.0 0

C3 6 26 19 7 19 1 1 16.7 0

C4 24 53 41 12 41 1 1 4.17 0

C5 120 95 76 19 76 1 1 0.83 0

C6 720 157 127 30 127 1 1 0.14 1

C7 5,040 242 197 45 197 1 1 0.02 60

C8 40,320 { { { { { { { {

D2 2 4 2 2 2 1 1 50 0

D3 6 14 6 8 6 1 1 16.67 0

D4 24 35 15 20 15 1 1 4.17 0

D5 120 71 31 40 31 1 1 0.83 0

D6 720 126 56 70 56 1 1 0.14 0

D7 5,040 204 92 112 92 1 1 0.02 7

D8 40,320 { { { { { { { {

Table 2. Generation statistics for SSPS generation using the P
Approx

M algorithm.



6.1 Presentation of the Algorithm

One way of viewing a set of permutation symmetries (represented as a set of restriction sets) is as

a tree. Each level in the tree corresponds to possible images of a given colour. Hence, leafs in the

tree represent the permutation symmetries given by the permutation of the individual elements

found by following the path from the root to the leaf. Figure 3 shows a tree representing �SG for

the CPN model of the distributed database with 3 database managers and a consistent symmetry

speci�cation SG which allow all possible permutations of the atomic colour set DBM. The leafs of

the tree represent the 6 di�erent permutations symmetries in �SG. Below each leaf the permutation

symmetry is represented by a restriction set.
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Fig. 3. All permutation symmetries in �SG represented as a tree.

When testing a set of permutation symmetries on a marking in the PBasic
M and P

Approx
M algo-

rithms we �rst unfolded the restriction sets to a list of permutation symmetries and then applied

the permutation symmetries from an end (until one was found or the entire set was checked).

With the approach presented in this section we instead make recursive unfoldings of restriction

sets based on a depth �rst generation of the 'tree view'; each node in the tree corresponds to a

recursive call. Each time a leaf is reached the corresponding permutation symmetry is checked. If

the permutation symmetry is a symmetry between the two markings checked we conclude that the

markings are symmetric (and the iteration stops) otherwise the permutation symmetry is thrown

away and the algorithm backtracks to generate the next permutation symmetry. In this way at

most one permutation symmetry is contained in memory at a time. In a recursive call correspond-

ing to the ith layer of the tree the algorithm only needs to keep track of the restriction set in the

root as well as the images of the colours corresponding to the layers 1; ::; (i � 1). Hence, instead

of listing potentially �
A2�A

jAj! permutation symmetries the algorithm needs to represent in the

worst case images of at most �A2�A jAj colours plus the restriction set in the root. An algorithm



for such lazy listing of permutations symmetries represented by sets of restriction sets is shown

below.

Algorithm: LazyList (i,�0,M1,M2)

1: if SinglePermutationSymmetry(�0) then

2: � GetPermutationSymmetry(�0)

3: return TestPermutationSymmetry(�;M1;M2)

4: else

5: col  GetColour(i)

6: images  GetImages(�0,col)

7: found  false

8: repeat

9: select col0 2 images

10: images  imagesnfcol'g
11: found  LazyList(i+ 1,Split(�0,col,col',M1,M2))

12: until images = ; _ found = true

13: end if

14: return found

The algorithm takes four arguments: i is the depth of the call (corresponds to the level in the

tree), �0 is a set of restriction sets representing a set of permutation symmetries, and M1 and M2

are the two markings which are checked. First LazyList (i,�0,M1,M2) tests whether the set of

restriction sets �0 given as input represents a single permutation symmetry (line 1). If this is the

case a leaf in the tree is reached and the result of applying the permutation symmetry is returned

(lines 2-3). If the set of restriction sets represents more than one permutation symmetry (line 4)

we have reached an internal node in the tree and a number of depth-�rst recursive calls are made

(lines 8-12). The algorithm uses a number of functions which we will brie
y describe below.

SinglePermutationSymmetry(�0) returns true if �0 represents a set of a single permutation

symmetry and false otherwise.

GetPermutationSymmetry(�0) returns one of the permutation symmetries in the set repre-

sented by the set of restriction sets �0.

TestPermutationSymmetry(�;M1;M2) tests whether �(M1) =M2.

GetColour(i) returns the colour associated to the i'th level in the tree.

GetImages(�0,col) returns the possible images of col, i.e., the right-hand side of the restriction

in � in which col is contained in the left-hand side.

Split(�0,col,col') returns a new set of restriction sets which is similar to �0 except that the

restriction containing col has been split into two: one containing col in the left-hand side and

col' in the right-hand side and one containing the remaining colours.

An algorithm combining approximation and lazy listing in the symmetry check between markings

is given below.

Algorithm: P
Approx+Lazy
M (M1,M2)

1: �0  FindPermutationSymmetriesM (M1,M2)

2: return LazyList (1,�0,M1,M2)

The algorithm approximates the set of permutation symmetries using the technique presented in

Sect. 5 (line 1). To avoid the lengthy listing the permutation symmetries in the approximated set

are checked using the LazyList algorithm (line 2).



6.2 Experimental Results of the P
Approx+Lazy

M Algorithm

In this section we present experimental results obtained using an implementation of PM based on

the P
Approx+Lazy
M algorithm. The implementation represents the approximated set of permutation

symmetries as a set of restriction sets. During calculation a compact representation is maintained

using depth-�rst recursive unfoldings.

Table 3 presents the generation statistics for the generation of the SSPS for di�erent con-

�gurations of the two CP-nets using the P
Approx+Lazy
M algorithm. The CP-net column gives the

name and con�guration of the CP-net for which the SSPS is generated as well as the number of

permutation symmetries given by the symmetry speci�cation. The next three columns give the

time it took to generate the corresponding SSPS using the three algorithms PBasic
M , P

Approx
M , and

P
Approx+Lazy
M , respectively.

CP-net j�SGj Time (secs)

PBasicM P
Approx

M
P
Approx+Lazy

M

C2 2 0 0 0

C3 6 0 0 0

C4 24 0 0 0

C5 20 0 0 0

C6 720 23 1 0

C7 5,040 { 60 1

C8 40,320 { { 1

C9 362,880 { { 2

C10 3,628,800 { { 3

C15 1.3 � 1012 { { 77

D2 2 0 0 0

D3 6 0 0 0

D4 24 0 0 0

D5 120 0 0 0

D6 720 16 0 0

D7 5,040 { 7 1

D8 40,320 { { 2

D9 362,880 { { 4

D10 3,628,800 { { 8

D12 4.7 � 108 { { 30

D15 1.3 � 1012 { { 151

Table 3. Generation statistics for SSPS generation using the P
Approx+Lazy

M algorithm.

From Table 3 it can be seen that using the P
Approx+Lazy
M algorithm it is possible to generate

SSPSs for CP-nets with very large symmetry groups. When applying P
Approx+Lazy
M for testing the

permutation symmetries the same number of permutation symmetries is of course tested as if the

permutation symmetries are listed beforehand using the P
Approx
M approach. However, the compact

representation maintained during calculation saves space since the permutation symmetries are

represented by sets of restriction sets. Hence, when combining the idea of lazy listing with the

idea of approximations as presented in Sect. 5 signi�cant speed up is gained. The reason is that in

practice the approximations are often very close to or even equal to the exact set of symmetries

between two markings. Thus, the number of permutation symmetries which have to be tested from

large permutation groups is usually very small. Furthermore, the memory use of P
Approx+Lazy
M

caused by the size �SG is no longer a bottleneck of the practical applicability of the method.

7 Conclusions

We have presented techniques and algorithms to determine whether two markings of CP-nets are

symmetric. The algorithms presented are based on general and model independent techniques.

Hence, the algorithms can be automatically generated for arbitrary CP-nets. The techniques are

implemented in the Design/CPN OPS tool [13] which automatically generates the predicates PM



and PBE needed for the Design/CPN OE/OS Tool [11, 10]. The Design/CPN OPS tool has been

used to conduct the experimental results presented in this paper.

The approximation technique that P
Approx
M is based on is introduced in [8, 1]. The contribution

of this paper is to automate and implement the technique as well as integrate the technique into

SSPS generation. The technique is speci�c to markings of CP-nets and is as such not general for

the symmetry method.

The need for compact representations and avoidance of testing the entire group of permutation

symmetries is, however, not speci�c to CP-nets. The algorithms and experimental results presented

in this paper are therefore also relevant in other formalisms than CP-nets.

During SSPS generation we store an arbitrary marking from each equivalence class (the �rst

state from the equivalence class encountered during generation of the SSPS). Another strategy is

to calculate a canonical representative for each equivalence class. The symmetry check can then

be reduced to a simple equivalence check. In [15] we have presented an algorithm for calculation

of canonical markings of CP-nets. The algorithm requires the calculation of the minimal marking

obtained as a result of applying a set of permutation symmetries. The algorithm for calculation

of canonical markings of CP-nets presented in [15] encounters the same problem as the PBasic
M

algorithm presented in Sect. 4: applying the entire group of permutation symmetries is unfeasible

in practice. In [15] we use algebraic techniques to reduce the number of iterations. Even with the

use of algebraic techniques the canonicalization of markings experiences problems in practice due

to the memory use required when working with large sets of permutation symmetries. The lazy

listing approach presented in this paper can directly be used in the problem studied in [15] and

it is envisioned that the lazy listing approach can alleviate the bottleneck caused by the memory

use in [15].

It is possible to combine the use of algebraic techniques and the techniques presented in this

paper to obtain a solution for PM . However, since the approximation techniques only applies when

two markings are compared the approximation techniques presented in this paper cannot be used

directly in the algorithm for calculation of canonical markings of CP-nets.
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