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Abstract. Coloured Petri nets (CP-nets) can be used for several fundamentally different purposes like
functional analysis, performance analysis, and visualisation. To be able to use the corresponding tool
extensions and libraries it is sometimes necessary to include extra auxiliary information in the CP-net.
An example of such auxiliary information is a counter which is associated with a token to be able to
do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific
use may lead to creation of several slightly different CP-nets – only to support the different uses of
the same basic CP-net. One solution to this problem is that the auxiliary information is not integrated
into colour sets and arc inscriptions of a CP-net, but is kept separately. This makes it easy to disable
this auxiliary information if a CP-net is to be used for another purpose. This paper proposes a method
which makes it possible to associate auxiliary information, called annotations, with tokens without
modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for
determining the behaviour of the system being modelled, but are rather added to support a certain use
of the CP-net. We define the semantics of annotations by describing a translation from a CP-net and
the corresponding annotation layers to another CP-net where the annotations are an integrated part of
the CP-net.

1 Introduction

Coloured Petri nets (CP-nets or CPNs) were formulated by Kurt Jensen [8, 9] with the primary purpose of
specifying, designing, and analysing concurrent systems. The tools Design/CPN [3, 5] and CPN Tools [4]
have been developed to give tool-support for creating and analysing CP-nets. Ongoing practical use of
CP-nets and Design/CPN in industrial projects [10] have identified the need for additional facilities in the
tools.

One industrial project described in [2] illustrated that CP-nets can be used for performance analysis by
predicting the performance of a web server using a CPN model. As part of this project, the Design/CPN
Performance Tool [12] was developed as an integrated tool extension supporting data collection during
simulations. Later, work was done to extend and generalise these data collection facilities to serve as a
basis for a common so-called monitoring framework [13]. Other projects have shown that visualisation
of behaviour using so-called message sequence charts (MSCs) [7] is very useful in combination with CP-
nets. As a consequence, a library [14] has been developed for creating MSCs during simulations. Other
similar libraries are Mimic [15], which is used for visualisation, and Comms/CPN [6], which is used for
communicating with external processes.

The fact that a CPN model can be used for several fundamentally different purposes like functional
analysis, performance analysis, and visualisation means that it is desirable that the tool extensions and
libraries can be used without having to modify the CPN model itself. It should be possible to use a CPN
model, for e.g. performance analysis, without having to add extra places, transitions, and colour sets purely
for the purpose of collecting data. Optimally, the auxiliary information should not be integrated into colour
set and arc inscriptions of a CPN model, but should be kept separately, so that it is easy to disable this
information if the CPN model is to be used for something else.

Up to this point it has only been partially possible to use a CPN model for different purposes without
having to change the CPN model itself. With the current tools, it is indeed possible to do, e.g. performance
analysis without adding transitions and places for the sole purpose of doing the performance analysis.
Unfortunately however, it is often necessary to add extra information to colour sets and arc inscriptions to
hold, e.g. performance-related information such as the time at which a certain event happened.



This paper presents work on separating auxiliary information from a CPN model by proposing a method
which makes it possible to associate auxiliary information, calledannotations, with tokens without mod-
ifying the colour sets of the CPN model. Annotations are pieces of information that are not essential for
determining the behaviour of the system being modelled, but rather are added to support a certain use of
the CPN model. A CP-net that is equipped with annotations is referred to as anannotated CP-net. In an
annotated CP-net, every token carries a token colour, and some tokens carry both a token colour and an
annotation. A token that carries both a colour and an annotation is called anannotated token. Just like a
token value, an annotation may contain any type of information, and it may be arbitrarily complex.

Annotations are defined inannotation layers. Defining annotations in layers makes it possible to make
modular definitions of both a CP-net and one or more layers of auxiliary information that can be used
for varying purposes. By defining several different layers of annotations, it is possible to maintain several
versions of a CP-net and thereby to use the same basic CP-net for various purposes by adding, removing,
or combining annotation layers. An advantage of the annotation layers is that they are defined so that they
affect the behaviour of the original CP-net in a very limited and predictable way. Every marking of an
annotated CP-net is the same as a marking in the original CP-net, if annotations are removed.

In the following, we will assume that the reader is familiar with CP-nets as defined in [8]. The first
half of this paper provides an informal introduction to annotations and an example of how annotations can
be used in practice. The second half of the paper provides a formal definition of annotations and proof of
the fact that annotations affect the behaviour of a CP-net in a very limited way. In this paper, we will only
discuss how to annotate non-hierarchical, untimed CP-nets. However, timed and hierarchical CP-nets can
also be annotated using similar techniques.

The paper is structured as follows. Section 2 presents the well-known resource allocation system CP-
net, which will be used as a running example throughout the paper, and discusses existing ways of including
auxiliary information in CP-nets. In Sect. 3 we informally introduce our proposal for how to annotate CP-
nets. Section 4 discusses how multiple annotation layers can be used for visualisation using MSCs. In
Sect. 5 we give the formal definitions for annotating CP-nets. Finally, in Sect. 6 we conclude and give
directions for future work.

2 Motivation

It is seldom the case that the exact same CP-net can be used for a variety of different purposes, as it is
frequently necessary to make small modifications to a CP-net in order to obtain a CP-net that is appropriate
for a given purpose. Consider for example the resource allocation system that is found in Jensen’s volumes
on CP-nets [8, 9]. At least three variations of the resource allocation CP-net can be found in these volumes:
abasicversion (shown in Fig. 1) suitable for full state space analysis; anextendedversion (shown in Fig. 2)
which is extended with cycle counters for thep andq processes; and atimedversion with cycle counters
and timing information which could be used for performance analysis.

The basic version in Fig. 1 purely models the basic aspects of the resource allocation system, and
thereby only models the parts of the system that are common for any use of the CP-net. However, even
for such a simple system as the resource allocation system, it is indeed necessary to have slightly different
versions of the same CP-net in order to support different kinds of use. In other words, modifications of
the basic CP-net are made only to support a certain use, and the modifications may limit other uses of the
modified CP-net because the modifications may change the behaviour.

An example of a situation where the basic version does not contain sufficient information is when we
need to be able to count how many cycles each of thep andq processes make in the resource allocation
system. The extended CP-net in Fig. 2 shows how the basic CP-net can be extended with such auxiliary
information. First of all, the colour setU has been extended to the product colour setUxI to include an
integer for the counter in every process token. In addition, the arc inscriptions have been modified to pass
on and to update the cycle counters. The cycle counters for thep andq processes are increased each time
a p or q token passes the transitionT5. The initial marking has also been modified to include the initial
values of the cycle counters. Using this extended CP-net it is possible to determine the number of cycles a
process has completed by inspecting the counter of the corresponding tokens.

The version extended with the cycle counters is not useful for all kinds of analysis. This is due to
the fact that the cycle counters for thep and q processes increase each time thep and q tokens pass
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Fig. 1.The basic CP-net for the resource allocation sys-
tem.
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Fig. 2. The CP-net for the resource allocation system ex-
tended with a counter.

transitionT5, thus resulting in an infinite state space. Therefore, the extended version with cycle counters
may be inappropriate for certain kinds of state space analysis. The effect of the cycle counters on the state
space can be factored out using equivalence classes, however, it may be annoying to have to remember to
manually take care of such auxiliary information before doing state space analysis. In contrast, the state
space for the basic CP-net without the cycle counters is finite. This means that the full state space can be
generated and analysed, e.g. to prove that the system never reaches a deadlocked state.

Analysing the performance of the resource allocation system is another kind of analysis that requires
auxiliary information to be maintained for the tokens in the CP-net. The timed CP-net from [9] could be
used to measure the average processing times for each of the two processes. This timed CP-net can be
created by modifying the CP-net in Fig. 2 by changing the colour setUxI to a timed colour set, and by
adding an auxiliary component to the colour set to be used for recording the time when a process restarts a
cycle,1 i.e the time at which aq process is removed from placeA or the time at which ap process is removed
from placeB. This value can then be used to calculate the processing time for a given process when it passes
theT5 transition. If the timed CP-net should be used for a purpose where the auxiliary information should
be ignored, it should often be removed. In the tool Design/CPN, it is easy to disable time, i.e. to consider
a timed CP-net as an untimed CP-net. However, auxiliary components that have been added to the colour
sets also need to be removed by manually modifying the colour sets and arc inscriptions.

From the examples presented above it should now be clear that when using CP-nets for different pur-
poses it is often necessary to maintain different versions of a CP-net with slightly different behaviour. The
reason for maintaining different versions is, as mentioned, that it may be necessary to be able to include
auxiliary information in tokens. However, the auxiliary information may be extraneous or even disastrous
for other uses, e.g. consider the effects of the cycle counters on the size of the state space. Including ex-
tra information in a CP-net often requires modification of colour sets, arc expressions, and initialisation
expressions.

1 The colour setUcould be modified to consist of pairs (u,t) where u∈U is a process and t∈TIME is the time at which
the process started processing.



3 Informal Introduction to Annotated CP-nets

In this section we will informally present a method for augmenting tokens in a CP-net with extra or auxiliary
information that affects the behaviour of the CP-net in a very limited and predictable manner. To do this we
introduce the concept of anannotationwhich is very similar to a token colour in that an annotation is an
additional data value that can be attached to a token. Anannotation layeris used to define annotations and
how these annotations are to be associated with tokens in a particular CP-net. An annotation layer cannot
be defined independently from a specific CP-net. Therefore, it is always well-defined to refer to the unique
CP-net for which an annotation layer is defined. We will refer to this unique CP-net as theunderlying
CP-net of an annotation layer. Anannotated CP-netis a pair consisting of an annotation layer and its
underlying CP-net. We define the semantics of annotations by describing a translation from an annotated
CP-net to a CP-net without annotations, referred to as thematching CP-net. In practice, the annotations are
integrated into the matching CP-net when the translation is made. Section 3.1 gives an informal introduction
to annotations and annotation layers. Section 3.2 describes the intuition of how to translate an annotated
CP-net to a matching CP-net. Section 3.3 discusses the behaviour of the matching CP-net, and it discusses
how the behaviour of the matching CP-net is similar to the behaviour of the underlying CP-net. The formal
definition of annotated CP-nets follows in Sect. 5.

3.1 Annotation Layer

To get an intuitive understanding of how annotations can be used, let us see how the cycle counters that
were discussed in Sect. 2 can be added as annotations. Recall that Fig. 2 shows how the CP-net from Fig. 1
can be modified to include the cycle counters as part of the token colours.

Figure 3 contains an annotated CP-net for the basic CP-net for the resource allocation system from
Fig. 1. In Fig. 3 the elements from the annotation layer are shown in black, whereas the underlying CP-
net is shown in grey. The annotation layer containsauxiliary declarationsandauxiliary net inscriptions,
where the auxiliary net inscriptions consist of auxiliary arc expressions, auxiliary colour sets, and auxiliary
initialisation expressions.
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Fig. 3. Annotated CP-net for the resource allocation system.



The colour setI is declared in the first line of the auxiliary declarations. PlacesA, B, C, D andE have
auxiliary colour setI which means that tokens on these places will be annotated tokens that carry integer
annotations. A token that carries the annotationn has completed the cyclen times. Places with auxiliary
colour sets are calledannotated places. The token value for a token on an annotated place has both a token
colour and an annotation. Not all places will contain annotated tokens, therefore, some places will not have
an associated auxiliary colour set.

All of the annotated places that have an initialisation expression in the underlying CP-net must also
have anauxiliary initialisation expressionin the annotation layer. PlacesA andB have the auxiliary initial
expression0. This expression means that all tokens on placesA andB will have annotation0 in the initial
marking.

All arcs that are connected to annotated places have anauxiliary arc expression. In Fig. 3, most auxiliary
arc expressions consist of the variablei which has typeI . Variablei is declared in the annotation layer,
therefore, it may only be used within the annotation layer, i.e. it cannot be used in the underlying CP-net.
In contrast, variables, colour sets, functions, etc. that are declared in the underlying CP-net may be used
both in the underlying CP-net and in the annotation layer. However, certain conditions must be fulfilled in
order to ensure that using the same elements in both the annotation layer and the underlying CP-net does
not affect the behaviour of the underlying CP-net. These conditions will be discussed further in Sect. 5.2.

Let us consider the intuition behind the auxiliary arc expressions on the arcs surrounding transitionT5.
In the underlying CP-net,T5 can occur whenever there is one token on placeE, and this must still be true
in an annotated version of the CP-net. Informally, the interpretation of the two types of arc expressions
surroundingT5 is that when transitionT5 occurs with, e.g. binding<x=q, i=5>, one token with colourq
and annotation5 will be removed from placeE. One token with colourq and annotation5+1=6 will be
added to placeA, and the empty multi-set of annotated tokens will be added to placeB. On the other hand,
if T5 occurs with binding<x=p, i=3>, then one token with colourp and annotation3+1=4 will be added
to placeB, and no tokens will be added to placeA. In both bindings, multi-sets of (non-annotated)e tokens
are also added to placesT andS, which are non-annotated places.

The intuition behind the auxiliary inscriptions that have been discussed until now is fairly straightfor-
ward. There are, however, some restrictions on the kinds of auxiliary arc expressions that are allowed in
order to ensure that annotations have only limited influence on the behaviour of the underlying CP-net.
All of the auxiliary arc expressions on arcs from annotated places to transitions consist only of variables,
and this is not accidental. For example, the auxiliary arc expressioni on the arc fromC to T3 must not
be replaced with, e.g. the constant4, which would require that when removing a token fromC the annota-
tion must be4. Allowing such an auxiliary arc expression would mean that the behaviour of the matching
CP-net and the underlying CP-net would no longer be similar. Sections 5.2 and 5.3 discuss the restrictions
about which kinds of auxiliary arc expressions are allowed.

3.2 Translating an Annotated CP-net to a Matching CP-net

Rather than defining the semantics for annotated CP-nets, we will define the semantics of annotations by
describing how an annotated CP-net can be translated to an ordinary CP-net, which is referred to as the
matching CP-net. The discussion above should have provided a sense of what kinds of annotations the
tokens should have and of how an annotated CP-net for the resource allocation system should behave. The
annotation layer (referred to asA and shown in black in Fig. 3) and the underlying CP-net (referred to
as CPN and shown in Fig. 1) constitute an annotated CP-net for the resource allocation system. In this
section, we will show how the various auxiliary inscriptions fromA and the inscriptions from CPN are
translated to inscriptions in the matching CP-net (referred to as CPN∗ and shown in Fig. 4). The general
rules for translating an arbitrary annotation layer and its underlying CP-net are presented in Sect. 5.3. In
the following, we shall say that a place/arc is annotated/non-annotated in a matching CP-net (like Fig. 4) if
it is annotated/non-annotated in the corresponding annotated CP-net (like Fig. 3).

The rules are simple for translating an annotated CP-net to a matching CP-net. CPN and CPN∗ have
the same net structure. The colour sets for non-annotated places in CPN∗ are unchanged with respect to
CPN; in the example, the colour sets for placesR, S andT are unchanged. The colour sets for the annotated
places are now product colour sets which are products of the original colour sets and the auxiliary colour
sets. The colour set for annotated placesA-E in CPN∗ is UxI which is a product of colour setU (the colour
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Fig. 4. Matching CP-net for the resource allocation system.

set of placesA-E in CPN) and auxiliary colour setI (the auxiliary colour sets fromA). The tokens on an
annotated place p in CPN∗ are said to have an annotated colour(c,a) , wherec is a colour (from the
colour set of p in CPN), anda is an annotation (from the auxiliary colour set of p inA). The set of colour
sets for CPN∗ is the union of the set of colour sets from CPN, the set of auxiliary colour sets fromA, and
the set of product colour sets for annotated places.

In the previous section, the intuitive meaning of several auxiliary expressions was that a given annota-
tion should be added to all elements in a multi-set of colours. This is the meaning of, for example, all of
the auxiliary initial expressions. Let us define a functionAnnotate that, given an arbitrary multi-set and
an arbitrary annotation, will annotate all of the elements in the multi-set with the annotation. This function
is used in several net inscriptions in CPN∗.

Let us consider how the initialisation expressions are created for CPN∗. The initialisation expressions
for non-annotated places (R, S andT) are unchanged, and evaluating these expressions yields non-annotated
multi-sets (1`e,3 `e, and2`e respectively). The initial markings for annotated places in CPN∗ must be
multi-sets of annotated colours. PlaceA has the initialisation expressionAnnotate (3 `q) 0 , which
evaluates to3`(q,0) tokens which correspond to the desired multi-set of three annotated tokens, each
with colourq and annotation0. Note, in particular, that if the annotations are removed from the multi-set
3 (̀q,0) , then we obtain the multi-set3`q which is exactly the multi-set that is obtained when evaluating
the initialisation expression forA in the underlying CP-net. Similarly, placeB has an initial marking of two
tokens, each with colourp and annotation0. The initial markings of the remaining places are empty.

The arc expressions of CPN and the auxiliary arc expressions ofA are combined in a similar manner to
create arc expressions for CPN∗. If the type of an arc expression in CPN,expr , is a single colour, then the
arc expression in CPN∗ is the pair(expr, aexpr) , whereaexpr is the auxiliary arc expression inA.
The arc expressions for most annotated arcs in Fig. 4 have this form. When the type of an arc expression is a
multi-set of colours, then the arc expression for CPN∗ is Annotate expr aexpr . The arc expressions
for the arcs from transitionT5 to placesA andB were created in this manner. The next section discusses
how the behaviour of the matching CP-net is similar to the behaviour of the underlying CP-net.



3.3 Behaviour of Matching CP-nets

In a matching CP-net some places contain annotated tokens, other places contain non-annotated tokens,
and occurrences of binding elements can remove and add both regular, non-annotated tokens and annotated
tokens. Figure 5 shows a marking of the matching CP-net, CPN∗. The marking of placeA contains two
tokens – one with colour(q,4) , the other with colour(q,5) . This corresponds to a marking in the
annotated CP-net of Fig. 3 whereA has one token with colourq and annotation4 and another token
with colourq and annotation5. Similarly, placeB contains three tokens with colours(p,5) , (p,6) and
(q,1) . This corresponds to a marking in the annotated net whereB has one token with colourp and
annotation5, another token with colourp and annotation6, and a third token with colourq and annotation
1. Finally, placesS andT each contain two non-annotated tokens with coloure.
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Fig. 5. Marking of the matching CP-net for the resource allocation system.

We say that the behaviour of the matching CP-netmatchesthe behaviour of its underlying CP-net. In-
formally this means that every occurrence sequence in the matching CP-net is also an occurrence sequence
in the underlying CP-net if annotations are ignored. Furthermore, for every occurrence sequence in the
underlying CP-net, it is possible to find at least one matching occurrence sequence in the matching CP-net
which is identical to the occurrence sequence from the underlying CP-net when annotations are ignored.
Consider, for example, a marking, M, of the basic CP-net from Fig. 1, in which there are twoe tokens
on placesS andT, two q tokens on placeA, and twop tokens and oneq token on placeB. The binding
element (T2, 〈x=p〉) is enabled in M. The marking of the matching CP-net in Fig. 5 is the same as marking
M if annotations are ignored. The occurrence of either (T2, 〈x=p, i=5〉) or (T2, 〈x=p, i=6〉) in the matching
CP-net will result in markings that are equal M′ where M[(T2, 〈x=p〉)〉M′ when annotations are ignored. A
formal definition of matching behaviour can be found in Sect. 5.4.



4 Using Annotation Layers in Practice

This section discusses how to use several annotation layers for the basic CP-net of the resource allocation
system presented in Fig. 1 in Sect. 2. The purpose of this section is to illustrate that multiple annotation
layers can be added on top of each other without changing the original model, and to illustrate some
of the uses of annotations. We will discuss an example of how annotations can be used for visualising
simulation results. In particular we will consider how message sequence charts (MSCs) can be created
using annotations.

A MSC can be used, e.g. to visualise the use of resources. Figure 6 depicts a MSC for the basic CP-
net of the resource allocation system. The MSC contains two vertical lines which represent the activities of
allocating and deallocating resources in the resource allocation system. An arrow represents the dependency
between the allocation and deallocation of anS or anR resource.

The MSC in Fig. 6 visualises a sequence of allocations of resources by thep andq processes. The
arrows forp processes are dashed. The MSC shows that first theq process makes a full cycle where it
first allocates anR and anS resource whenT1 occurs, and an additionalS resource whenT2 occurs. The
R resource is deallocated whenT3 occurs, and the twoS resources are deallocated whenT5 occurs. The
last five arrows show a situation where twop processes interleave with aq process. First theq process
allocates anRand anS resource, but then two cycles ofp processes appear (the two dashed arrows) before
theq process continues the cycle. This interleaving is explicitly visualised by the arrows started byT1 and
ended byT3 andT5, and crossing the arrows representing the twop processes.
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Fig. 6.Message sequence chart for the resource allocation system.

A MSC can be generated automatically from a simulation of a CP-net. However, first it is necessary to
specify which occurrences of binding elements in the CP-net should generate which arrows in the MSC.
Normally, an arrow in a MSC is created when a single transition occurs. However, arrows as illustrated
above correspond to two events: one for creating the start-point and one for creating the end-point of an
arrow. Such arrows are defined by means of these two points. First the start-point of the arrow is given.
Then some other events may appear, and then the event leading to ending the arrow is given. For CP-nets
this means that the occurrence of one transition may define the start-point of an arrow while the occurrence
of another transition may define the end-point of an arrow. We call such arrowstwo-event arrows.

When using two-event arrows, it is often necessary to annotate a token to hold information of which
arrows have been started but not ended yet. In other words, a token must hold the arrow-id of the start-
point of the arrow when the first transition occurs and keep it until a transition supposed to end the arrow
consumes the token. To avoid modifying the colours of the the CP-net, annotations can be used. Figure 7



depicts how the basic CP-net for the resource allocation system can be annotated to generate the MSC in
Fig. 6. The contents of the annotation layer are shown in black, while the underlying CP-net is shown in
grey. The annotation colourMSCis an integer which has the purpose of holding the start-point id of an
arrow, while the annotation colourMSCsis a list of MSC ids. We do not give the details of the functions
msc_start andmsc_stop here, however, they are used to set the start-point and end-point of each ar-
row. In addition each of the functions return a list of arrow-ids of the non-stopped arrows. This list becomes
an annotation for the underlying colour. As this example illustrates, we allow auxiliary arc expressions to
have side effects. However, the side effects may not affect the behaviour of the underlying CP-net.
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Fig. 7. Resource allocation system with MSC annotation layer.

The annotation layer in Fig. 3 from Sect. 3.1 adds a cycle counter to the CP-net. The value of the
cycle counter could be included on the arrows in Fig. 6 in addition to the type of resource and process.
To obtain this, an annotation layer that resembles theMSC Annotation Layer in Fig. 7 can be added on top
of the cycle counter annotation layer in Fig. 3. We will refer to this new annotation layer asCycle MSC
Annotation Layer. In theCycle MSC Annotation Layer it is possible to refer to the annotations of theCycle
Counter Annotation Layer from theMSC Annotation Layer.

Figure 8 depicts some of the possible ways to add annotation layers on top of each other. Notice that
an alternative to adding theCycle MSC Annotation Layer on top of theCycle Counter Annotation Layer, is
to add the originalMSC Annotation Layer on top of theCycle Counter Annotation Layer. This makes sense
even though the annotations inCycle Counter Annotation Layer are not used in theMSC Annotation Layer.

If we had not been able to use an annotation layer for creating the MSC, we would have had to create
a new CP-net by adding and modifying the colours of the basic CP-net. For example, the colour sets of the
placesA, B,C, D, andE should also hold theMSCscolour set. In addition, so-called code-segments possibly
had to be added to execute the themsc_start andmsc_stop function calls, and the arc-expressions
had to be modified to include the MSC variablem. In other words, we had to modify the CP-net model
itself to generate the MSCs. If the information for updating MSCs is included directly in the CP-net, then
it would be difficult to disable the updating of the MSCs, and there is no guarantee that the modifications
would not affect the behaviour of the underlying CP-net in unexpected ways.
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Cycle Counter 
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Fig. 8.Structure of annotation layers for a basic CP-net.

5 Formal Definition of Annotated CP-nets

In this section, we will formally define annotated CP-nets. We will start by introducing some new terminol-
ogy. We will then define annotation layers, and we will discuss how an annotation layer and a CP-net can
be translated into a matching CP-net. We want to define the annotation rules so that they are straightforward
to use and understand. To achieve this it turns out to be convenient only to allow annotation of those input
arcs of transitions where the arc expressions are uniform with multiplicity one (i.e. always evaluate to a
single token colour). For output arcs there are no similar restrictions. If an input arc expression is uniform
with multiplicity larger than one, it is usually easy to split the arc into a number of arcs that each have
multiplicity one. The requirement can be formally expressed as:

Requirement 1.Let CPN=(Σ, P, T, A, N, C, G, E, I) be a CP-net as defined in Def. 2.5 in [8]. Let PA⊆P be
the set ofannotated places. The following must hold in order to be able to annotate CPN:

∀ p∈PA: ∀ a∈A such that N(a)=(p,t), E(a) must be uniform with multiplicity 1.

This requirement may seem very restrictive. However, in our experience, the kinds of arc inscriptions
that are currently not possible to annotate are rarely used in practice. Therefore, the definitions presented
here should prove to be useful for annotating many of the CP-nets that are used in practice.

Section 5.1 introduces terminology regarding multi-sets of annotated colours. Section 5.2 defines anno-
tation layers by describing the auxiliary net inscriptions that are allowed in the annotation layer. Section 5.3
presents rules for translating a CP-net and an annotation layer into the matching CP-net, and it discusses
the relationship between markings, binding elements, and steps in a matching CP-net and its underlying
CP-net. Section 5.4 defines matching behaviour. Finally, Sect. 5.5 discusses the use of multiple annotation
layers.

5.1 Multi-sets of Annotated Colours

In the previous section we used expressions such as:1̀ (p,5)+1 (̀p,6)+1 (̀q,1) to denote the marking
of annotated places2 in a matching CP-net. This indicates that the marking consists of three tokens with
colours(p,5),(p,6) and(q,1) . However, within the context of annotated CP-nets, this marking can
also be interpreted to represent a multi-set of annotated tokens: two tokens with colourp and annotations
5 and6, and one token with colourq and annotation1. Multi-sets of annotated elements are ordinary
multi-sets3 of so-calledannotated elements.

2 The first paragraph in Sect. 3.2 explains what we mean when we refer to an annotated place in a matching CP-net.
3 Multi-sets as defined in Def. 2.1 in [8]



Definition 1. For a non-empty set of elements, S, and a non-empty set of annotations, AN, anannotated
element(from S) is a pair (s,a), where s∈S and a∈AN. π((s,a))=s is the projection of the annotated element
(s,a) onto the non-annotated element s.

A multi-set of annotated elementsover S×AN is a multi-set over S×AN.

If amis a multi-set of annotated elements (of S), thenamdeterminesan ordinary (non-annotated) multi-set
amπ over S, whereamπ(s) = (

∑
a∈AN am(s, a))`s. π(am) is theprojectionof amonto the non-annotated

multi-set determined byam.

If amis multi-set over S×AN, mis a multi-set over S, andπ(am)=m, thenamis said tocoverm, and we say
thatmis coveredby am.

In Sect. 3.2 we informally defined the functionAnnotate that will add a given annotation to all ele-
ments in a given multi-set. Let us now formally defineAnnotate .

Definition 2. Given an annotationa∈AN and a multi-setm=
∑

s∈S m(s)`s over a set S, the function
Annotate is defined to be:

Annotate m a =
∑
s∈S

m(s)`(s, a)

which is a multi-set of annotated elements of S, i.e. a multi-set with type (S×AN)MS .

As a consequence of Defs. 1 and 2,π(Annotate m a) = m, for all multi-setsmand all annotationsa.

5.2 Annotation Layer

We are now ready to define an annotation layer. An annotation layer is used solely to determine how to
add annotations to tokens for a subset of the places in a CP-net. An annotation layer consists of elements
that are similar to their counterparts in CP-nets. An annotation layer contains auxiliary net inscriptions, and
each auxiliary net inscription is associated with an element of the net structure of the underlying CP-net.
When translating an annotation layer and its underlying CP-net to the matching CP-net, these auxiliary
net expressions will be combined with their counterparts from the underlying CP-net to create colour sets,
initialisation expressions and arc expressions for the matching CP-net. There are, however, additional re-
quirements for each of the concepts. An explanation of each item in the definition is given immediately
below the definition. A similar remark applies for many of the other definitions in this paper.

Definition 3. Let CPN=(Σ, P, T, A, N, C, G, E, I) be a CP-net. Anannotation layerfor CPN is a tuple
A=(ΣA, PA, AA, CA, EA, IA) where

i. ΣA is a finite set of non-empty sets, calledauxiliary colour sets, whereΣ⊆ΣA.
ii. PA⊆P is a finite set ofannotated places.
iii. AA⊆A is the finite set ofannotated arcs, where AA= A(PA).
iv. CA is anauxiliary colourfunction. It is a function from PA into ΣA.
v. EA is anauxiliary arc expressionfunction. It is defined from AA into expressions such that:

∀ a∈AA: Type(EA(a))=CA(p(a))∧ Type(Var(EA(a)))⊆ΣA
vi. IA is anauxiliary initialisation function. It is a function from PA into closed expressions such that:

∀ p∈PA: Type(IA(p))=CA(p).

i. The set ofauxiliary colour setsis the set of colour sets that determine the types, operations and functions
that can be used in the auxiliary net inscriptions. The auxiliary colour sets determine the type of annotations
that the tokens on the annotated places carry. All colour sets from the underlying CP-net can be used as
auxiliary colour sets. Additional auxiliary colour sets may be declared within an annotation layer.

ii. The set of annotated places are the only places that are allowed to contain annotated tokens.

iii. The annotated arcs are exactly the surrounding arcs for the places in PA.



iv. The auxiliary colour function, CA, is a function from PA into ΣA, and is defined analogously to the
colour function for CP-nets. Thus, for all p∈PA, CA(p) is the auxiliary colour set of p.

v. Auxiliary arc expressions are only allowed to evaluate to a single annotation of the correct type. If the
arc expression of an arc is missing in CPN, then we require that its auxiliary arc expression is also missing
inA.

vi. The auxiliary initialisation function maps each annotated place, p, into a closed expression which must
be of type CA(p), i.e. a single annotation from CA(p). If the initial expression of place p is missing in CPN,
then we require that its auxiliary initial expression is also missing inA.

5.3 Translating Annotated CP-nets to Matching CP-nets

We will now define how to translate an annotated CP-net, (CPN,A), to a new CP-net, CPN∗, which is
called a matching CP-net. CPN∗ and CPN have the same net structure. Net inscriptions for non-annotated
places, non-annotated arcs, and transitions in CPN∗ are unchanged with respect to CPN. In contrast, net
inscriptions for annotated places and annotated arcs in CPN∗ are obtained by combining net inscriptions
from CPN with their counterpart auxiliary net inscriptions inA. A matching CP-net is defined below.

Definition 4. Let (CPN,A) be an annotated CP-net, where CPN=(Σ, P, T, A, N, C, G, E, I) andA=(ΣA,
PA, AA, CA, EA, IA) is a annotation layer. We define thematching CP-netto be CPN∗=(Σ∗, P∗, T∗, A∗, N∗,
C∗, G∗, E∗, I∗) where

i. Σ∗=ΣA∪{C(p)×CA(p) | p∈PA}.
ii. P∗=P
iii. T ∗=T
iv. A∗=A
v. N∗=N

vi. C∗(p) =
{

C(p) if p/∈PA
C(p)×CA(p) if p∈PA

vii. G∗=G

viii. E∗(a) =
{

E(a) if a/∈AA
Annotate E(a) EA(a) if a∈AA

ix. I∗(p) =
{

I(p) if p /∈PA
Annotate I(p) IA(p) if p∈PA

i. {C(p)×CA(p) | p∈PA} is the set of product colour sets for the annotated places in CPN∗.

ii. + iii. + iv. + v. The places, transitions, arcs, and node function in CPN∗ are unchanged with respect to
CPN.

vi. Defining the colour function C∗ is straightforward. The colour set for a non-annotated place in CPN∗ is
the same as its colour set in CPN. The colour set for an annotated place p in CPN∗ is C(p)×CA(p).

vii. The guard function in CPN∗ is unchanged with respect to CPN.

viii. The arc expression for a non-annotated arc a in CPN∗ is the same as the arc expression for a in CPN.
If the arc expression for a is missing in CPN, then its arc expression will also be missing in CPN∗. This
is shorthand for empty, as usual for CP-nets. The arc expression for an annotated arc a in CPN∗ is derived
from the arc expression for a in CPN and the auxiliary arc expression for a inA. The expressionAnno-
tate (E(a)) (E A(a)) will yield a multi-set with type (C(p(a))×Type(EA(p(a))))MS which is exactly
(C(p(a))×CA(p(a)))MS, as required. If an arc expression (for an annotated arc) evaluates to a single colour
in CPN, then we allow the arc expression for CPN∗ to be the pair(E(a), E A(a)) where the first ele-
ment is the arc expression from CPN, and the second element is the auxiliary arc expression fromA. This
is shorthand for the multi-set1`(E(a), E A(a)) .



ix. If p is not an annotated place, then the initial expression of p in CPN∗ is unchanged with respect to
CPN. If the initial expression of a place is missing in CPN, then its initial expression will also be missing
in CPN∗. A missing initial expression is shorthand for the empty. For an annotated place p, the expression
Annotate (I(a)) (I A(a)) will yield a multi-set with type (C(p(a))×Type(IA(p(a))))MS which is
exactly (C(p(a))×CA(p(a)))MS, as required. I∗(p) is a closed expression for all p, since I(p) is a closed ex-
pression for all p, and IA(p) is closed for all p∈PA. When the type of the initial expression for an annotated
place in the underlying CP-net is a single colour, then we allow the the initial expression in CPN∗ to be the
pair (I(p),I A(p)) that is uniquely determined by the initial expression of p in CPN and the auxiliary
initial expression of p inA. This is shorthand for1`(I(p),I A(p)) .

Covering Markings, Bindings and Steps We will now define what it means for markings, bindings and
steps of a matching CP-net to cover the markings, bindings and steps of its underlying CP-net.

Definition 5. Let (CPN,A) be an annotated CP-net with matching CP-net CPN∗. We then define three
projection functionsπ that map a marking M∗ of CPN∗ into a marking M of CPN, a binding b∗ of a
transition t in CPN∗ into a binding b of t in CPN, and a step Y∗ of CPN∗ into a step Y of CPN, respectively.

i. ∀p∈P∗: (π(M∗))(p) =
{

M∗(p) if p/∈PA
π(M∗(p)) if p∈PA

ii. ∀ v∈Var(t): (π(b∗))(v)=b∗(v), where Var(t) are the variables of t in CPN.

iii. (π(Y∗)) =
∑

(t,b∗)∈Y ∗ (Y∗(t,b∗))`(t,π(b∗))

If π(M∗)=M, π(b∗)=b, andπ(Y∗)=Y, then we say that M∗, b∗, and Y∗ coverM, b, and Y, respectively. We
also say that M, b, and Y arecoveredby M∗, b∗, and Y∗, respectively.

i. Given a marking of a matching CP-net,π will remove the annotations from the tokens on annotated
places, and it will leave the markings of non-annotated places unchanged. A marking of a matching CP-
net covers a marking of its underlying CP-net, if the two markings are equal when annotations in the first
marking are ignored.

ii. Given a binding of a transition in CPN∗, π removes the bindings of the variables in Var∗(t)\Var(t), i.e.
π removes the bindings of the variables of t that are not found in CPN. A binding of a transition in CPN∗

covers a binding of the corresponding transition in CPN when the variables that are found in both CP-nets
are bound to the same value.

iii. For each binding element (t,b∗) in Y∗, π removes the bindings of the variables of t that are not found in
CPN.

We define similar functions that map the set of markings (M
∗), the set of steps (Y

∗), the set of token
elements (TE∗), and the set of binding elements (BE∗) of CPN∗ into the corresponding sets in CPN:

π(M∗)={π(M∗): M∗∈M
∗}

π(TE∗)={ (p, c∗) | p/∈PA and c∗∈C∗(p)} ∪ { (p, π(c∗)) | p∈PA and c∗∈C∗(p)}
π(Y∗)={π(Y∗): Y∗∈Y

∗}
π(BE∗) = { (t,π(b∗))| (t,b∗)∈BE∗}

Sound Annotation Layers Definition 3 defines the syntax for elements in annotation layers, but it does
not guarantee that annotations do not affect the behaviour of the underlying CP-net. Instead of specifying
which kinds of auxiliary arc inscriptions are allowed, we will define a more general property that has to be
satisfied.



Definition 6. Let (CPN,A) be an annotated CP-net with matching CP-net CPN∗.A is asoundannotation
layer if the following property is satisfied:

∀M∈M, ∀ Y∈Y, ∀M∗∈M
∗: M[Y 〉 ∧ π(M∗)=M ⇒ ∃ Y∗∈Y

∗: π(Y∗)=Y ∧ M∗[Y∗〉

whereM andY are the set of markings and the set of steps, respectively, for CPN, andM
∗ andY

∗ are the
analogous sets for CPN∗.

Assume that the step Y is enabled in the marking M in the underlying CP-net. Let M∗ be a marking of
CPN∗ that covers M. Definition 6 states that it must be possible to find a step Y∗ that covers Y, and Y∗ must
be enabled in M∗. The soundness of an annotation layer is essential for showing that for every occurrence
sequence in the underlying CP-net, there is at least one matching occurrence sequence in the matching
CP-net which is identical to the occurrence sequence from the underlying CP-net when annotations are
ignored.

The auxiliary arc expressions on input arcs to a transition will be used, in part, to determine if the tran-
sition is enabled in a given state of the matching CP-net. By limiting the kinds of auxiliary arc expressions
that are allowed on input arcs to transitions, it is possible to guarantee that annotations cannot restrict the
enabling of a transition in the matching CP-net with respect to what is allowed in the underlying CP-net.
Exactly which kinds of auxiliary arc expressions should be allowed may be decided by the implementors
of tools supporting CP-nets. It is also the responsibility of tool implementors to prove that their allowable
set of auxiliary arc expressions fulfil Def. 6. An example of an allowable auxiliary arc expression for arc
a is a single variablev . However,v must also fulfil the following:v may not found in any arc expressions
for the arcs surrounding t(a), andv may not be found in any other auxiliary arc expression for input arcs to
t(a).

5.4 Matching Behaviour

In the previous sections we have stated that the behaviour of a matching CP-netmatchesthe behaviour
of its underlying CP-net. Informally this means that every occurrence sequence in a matching CP-net cor-
responds to an occurrence sequence in the underlying CP-net, and for every occurrence sequence in the
underlying CP-net, it is possible to find at least one corresponding occurrence sequence in the matching
CP-net. If a matching CP-net is derived from a CP-net and asoundannotation layer, then the following
theorem shows how the behaviour of the matching CP-net matches the behaviour of its underlying CP-net.

Theorem 1. Let (CPN,A) be an annotated CP-net with a soundannotation layer. Let CPN∗ be the match-
ing CP-net derived from (CPN,A). Let M0, M, andY denote the initial marking, the set of all markings,
and the set of all steps, respectively, for CPN. Similarly, let M∗

0, M
∗, andY

∗ denote the same concepts for
CPN∗. Then we have the following properties:

i. π(M∗)=M ∧ π(M∗
0)=M0.

ii. π(Y∗)=Y.
iii. ∀ M∗

1, M∗
2∈M

∗, ∀ Y∗∈Y
∗: M∗

1[Y∗〉M∗
2 ⇒ π(M∗

1)[π(Y∗)〉π(M∗
2)

iv. ∀ M1,M2∈M, ∀ Y∈Y, ∀ M∗
1,M∗

2∈M
∗:

M1[Y〉M2 ∧ π(M∗
1)=M1 ⇒ ∃Y∗∈Y

∗: π(Y∗)=Y ∧ M∗
1[Y∗〉M∗

2 ∧ π(M∗
2)=M2

i. The markings of a matching CP-net cover the markings of its underlying CP-net. The markings of the
underlying CP-net are covered by the markings of the matching CP-net. The initial marking of a matching
CP-net covers the initial marking of its underlying CP-net.

ii. The steps of a matching CP-net cover the steps of its underlying CP-net. The steps of the underlying
CP-net are covered by the steps of the matching CP-net.

iii. An occurrence sequence of length one in the matching CP-net covers an occurrence sequence of length
one in its underlying CP-net. In other words, if marking M∗

2 is reached by the occurrence of Y∗ in marking



M∗
1 in CPN∗, thenπ(M∗

2) will be reached by the occurrence ofπ(Y∗) in π(M∗
1) in CPN.

iv. An occurrence sequence of length one in the underlying CP-net can be covered by an occurrence se-
quence of length one in the matching CP-net. If M2 is reached by the occurrence of Y in M1 in CPN,
and if marking M∗

1 in CPN∗ covers M1, then it is always possible to find a step Y∗ in CPN∗, such that Y∗

covers Y and is enabled in M∗1. If the occurrence of Y∗ in M∗
1 yields the marking M∗2, then M∗

2will cover M2.

The proof for Theorem 1 can be found in Appendix A.

5.5 Multiple Annotation Layers

The previous sections have discussed how to create a single annotation layer for a CP-net. The purpose
of introducing an annotation layer is to make it possible to separate annotations from the CP-net, and to
annotate a CP-net for several different purposes like, e.g. performance analysis and MSCs. However, if only
one annotation layer exists, then it is not possible to easily disable, e.g. only the annotations for performance
analysis, while still using the annotations for MSCs. The reason is, that all annotations have to be written
in the one and only annotation layer. This motivates the need for multiple layers of annotations. When
multiple annotation layers are allowed, then independent annotations can be written in separate annotation
layers, and thereby making it easy to enable and disable each of the independent annotation layers.

Definition 7 defines multiple annotation layers. Multiple annotation layers are defined using the fact
that a single annotation layer,A1, and a CP-net, CPN, is translated to another CP-net, CPN∗

1. Seen from an-
other annotation layer,A2, CPN∗

1 is essentially the same as CPN aside from the added annotations, and can
therefore be annotated with an annotation layerA2. The consequence of this definition is thatA2 can refer
to annotations inA1. In general, annotations in annotation layerAi can refer to annotations in annotation
layerAj whenj ≤ i.

Definition 7. Let CPN be a CP-net and letA1,A2, ...,An be annotation layers for CPN. Letτ be the
translation from an annotation layerA and a corresponding CP-net CPN to CPN∗, as defined in Sect. 5.3.
Then CPN∗ with multiple annotation layers is defined by:

CPN∗ = τ(. . . τ(τ(CPN,A1),A2),An)

6 Conclusion

In this paper we have discussed annotations for CP-nets where annotations are used to add auxiliary in-
formation to tokens. Auxiliary information is needed to support different uses of a single CP-net, such as
for performance analysis and visualisation, thus the information should not have influence on the dynamic
behaviour of a CPN model. One of the advantages of using annotations instead of manually extending
the colour sets in a CPN model is that annotations are specified separately from the colour sets and arc
inscriptions. That means that it is easy to enable and disable annotations from being part of the simulation.
This is a great advantage when using a model for several purposes such as functional analysis, performance
analysis, and visualisation. In addition, it is a great advantage that the behaviour of the matching CP-net
matches the behaviour of the underlying CP-net in a very specific and predictable way.

Related work is considered in, e.g. Lakos’ work on abstraction [11], where behaviour-respecting ab-
stractions of CP-nets have been investigated, and a so-called colour refinement is proposed. This colour
refinement is used to specify more detailed behaviour in sub-modules by extending colour sets to larger
domains. The refined colours are only visible in the sub-modules, and the refined colours will typically
contain information that is necessary for modelling the behaviour of the system in question. This colour
refinement somewhat corresponds to our way of extending colour sets by adding annotations to colours.
We are not aware of any other work that addresses the problem of introducingauxiliary information into
a CP-net (or any other type of simulation model) while at the same time preserving the behaviour of the



CP-net. Nor do we know of any other method that can be used to automatically enable or disable different
kinds of instrumentation when analysing different aspects of one particular model.

ExSpect[1] is another tool for CP-nets. The tool provides libraries of so-called building blocks that
provide support for, e.g., creating message sequence charts and performance analysis. Each building block
is similar to a substitution transition and its subpage in Design/CPN. In ExSpectall information that is
necessary for updating a MSC or for collecting performance data is included in token colours. Reading the
relevant data from token values and processing it is also encoded directly into the model via the building
blocks. For example, the building block that can be used to calculate performance measures contains a
place which holds the current result. When a certain transition occurs, a new value can be read from a
binding element, and the result on this place is updated accordingly. While the building blocks are very
easy to use, no attempt is made to separate auxiliary information from a CP-net, and the behaviour of the
CP-net also reflects behaviour that is probably not found in the system being modelled.

There are many issues that can be addressed in future work regarding annotations. The techniques
that have been presented here have not yet been used in practice. Clearly, it is important that support for
annotations be implemented in a CPN tool in order to investigate the practicality and usefulness of the
proposed method. Future work includes additional research on dealing with arc inscriptions that do not
evaluate to a single colour on input arcs to transitions. In addition, further work is required to improve our
proposal of how to add annotations to multi-sets of tokens. The definition of annotation layers states that it
is only possible to add one particular annotation to all elements in a multi-set that is obtained by evaluating
either an initial expression or an arc expression on an output arc from a transition. This is unnecessarily
restrictive, and it should be generalised to make it possible to add different annotations to different elements
in a multi-set. Practical experience with annotations may also show that the definition of annotation layers
should be extended to include the possibility of defining guards in annotation layers.

In this paper we have only considered how to add annotations to existing arcs expressions, and thereby
only considered how to annotate existing tokens. However, it might be useful also to be able to add net
structure to the annotation layers. As an example, a place could be added only to the annotation layer with
a token to hold a counter with the number of occurrences of a transition. Allowing additional net structure
at the annotation layers would make it possible to take advantage of the powerfulness of the graphical
notation of CP-nets when encoding the logics of the annotations.

We have only discussed separating the auxiliary annotations and the CP-net from each other. This could
be generalised to also allow splitting a CP-net into layers where more layers can be combined to specify
the full behaviour of a CP-net. In other words, the specification of the behaviour in a CP-net could be
split in more layers. As an example, reconsider the resource allocation CP-net in Fig. 1 in Sect. 2. The
loop handling the resource on the placeR (R, T1, B, T2, C, andT3) is to some extent independent from
the remaining model (even though it has impact on the behaviour). This loop could be separated from the
remaining CPN model into a new layer to emphasise the fact that the loop is an extra requirement that can
be added to the system. This facility could turn out to be very useful when a modeller is simplifying a CP-
net to, e.g. be able to generate a sufficiently small state space to be able to analyse it. It would be a matter of
moving the parts of the net structure that should not be included when generating the state space to another
layer, and then only conduct the analysis on the remaining parts of the CP-net. This could be obtained by
disabling the layer with the unneeded behaviour, and the state space could be generated. The advantage is
that now a single model exists with layers specifying different behaviour which can be enabled or disabled
– instead of having several similar models. Finally, such layers can also make it easier to develop tools
where more people can work on a model concurrently, when they operate on different layers.
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A Proof of Matching Behaviour

Theorem 1(same as in Sect. 5.4)Let (CPN,A) be an annotated CP-net with a soundannotation layer. Let
CPN∗ be the matching CP-net derived from (CPN,A). Let M0, M, andY denote the initial marking, the
set of all markings, and the set of all steps, respectively, for CPN. Similarly, let M∗

0, M
∗, andY

∗ denote the
same concepts for CPN∗. Then we have the following properties:

i. π(M∗)=M ∧ π(M∗
0)=M0.

ii. π(Y∗)=Y.
iii. ∀ M∗

1, M∗
2∈M

∗, ∀ Y∗∈Y
∗: M∗

1[Y∗〉M∗
2 ⇒ π(M∗

1)[π(Y∗)〉π(M∗
2)

iv. ∀ M1,M2∈M, ∀ Y∈Y, ∀ M∗
1,M∗

2∈M
∗:

M1[Y〉M2 ∧ π(M∗
1)=M1 ⇒ ∃Y∗∈Y

∗: π(Y∗)=Y ∧ M∗
1[Y∗〉M∗

2 ∧ π(M∗
2)=M2

Proof: The proof is a simple consequence of earlier definitions and Jensen’s definitions for CP-nets [8].
Let TE, (t,b), and BE denote the set of all token elements, a binding element, and the set of all binding
elements, respectively, for CPN. Similarly, let TE∗, (t,b∗), BE∗ denote the same concepts for CPN∗.

Before showing that the above properties hold, we will show that the following holds for all annotated arcs:
∀ (t,b∗), ∀ a∈AA∩A(t): π(E∗(a)〈b∗〉)=E(a)〈π(b∗)〉. (†)

Let (t,b∗) and a∈AA∩A(t) be given.

π(E∗(a)〈b∗〉) Def. 4.viii
= π((Annotate E(a) EA(a))〈b∗〉) Defs. 1&2

= E(a)〈b∗〉 Def. 5.ii
= E(a)〈π(b∗)〉

Property i. We will show thatM=π(M∗). It is straightforward to show thatπ(M∗)=(π(TE∗))MS, and the
proof is therefore omitted. From Def. 2.7 in [8] we have thatM=TEMS. Thus it is sufficient to show that
TE=π(TE∗). The definition ofπ(TE∗) gives us:

π(TE∗)={ (p, c∗) | p/∈PA and c∗∈C∗(p)} ∪ { (p, π(c∗)) | p∈PA and c∗∈C∗(p)}

which by the definition of C∗ (Def. 4.vi) is equivalent to:



π(TE∗)={ (p, c) | p/∈PA and c∈C(p)} ∪ { (p,π(c∗)) | p∈PA and c∗∈C(p)×CA(p)}
which by the definition of the projection of annotated elements (Def. 1) is equivalent to:

π(TE∗)={ (p, c) | p/∈PA and c∈C(p)} ∪ { (p, c) | p∈PA and c∈C(p)}
the two sets can be combined and we have:

π(TE∗)={ (p, c) | p∈P and c∈C(p)} Def. 2.7in [8]
= TE

To show thatπ(M∗
0)=M0, we will show that∀p∈P∗: (π(M∗

0))(p)=M0(p).
Consider non-annotated places:

∀p/∈PA: (π(M∗
0))(p)

Def. 5.i
= M∗

0(p) = I∗(p)
Def. 4.ix

= I(p) = M0(p)

Consider annotated places:

∀p∈PA: (π(M∗
0))(p)

Def. 5.i
= π(M∗

0(p)) = π(I∗(p))
Def. 4.ix

= π(Annotate I(p) IA(p)) Defs. 1&2
= I(p) = M0(p)

Property ii. We must show thatY=π(Y∗). It is straightforward to show thatπ(Y∗)= (π(BE∗))MS, therefore
the proof is omitted. From Def. 2.7 in [8] we have thatY=BEMS, therefore it is sufficient to show that
BE=π(BE∗), which we will do by showing: (t,b′)∈π(BE∗)⇔ (t,b′)∈BE.

Let us show⇒: Let (t, b′)∈π(BE∗) be given. There exists (t,b∗)∈BE∗ such that (t,π(b∗))=(t, b′) (by def-
inition of π(BE∗)). b∗ is a binding of t in CPN∗, therefore for all v∈Var∗(t), where Var∗(t) is the set of
variables for t in CPN∗, b∗(v)∈Type(v), and b∗ fulfils the guard of t in CPN∗, i.e. G∗(t)〈b∗〉.

From Def. 5.ii we have that for all v∈Var(t), (π(b∗))(v)=b∗(v), and we know that b∗(v)∈Type(v). Since
G∗(t)=G(t) (Def. 4.vii) and Var(G(t))⊆Var(t), we can conclude that G(t)〈π(b∗)〉, i.e.π(b∗) fulfills the guard
of t in CPN. From the definition of a binding (Def. 2.6 in [8]), we have thatπ(b∗) is a binding for t in CPN,
therefore (t,π(b∗))=(t,b′) is a binding element for CPN, i.e. (t, b′)∈BE.

Let us show⇐: Let (t, b′)∈BE be given. Using arguments that are similar to the above it is straightforward
to show that b′ fulfills the guard for t in CPN∗, i.e. G∗(t)〈b′〉. The binding b′ does not bind the variables in
Var∗(t)\Var(t). Define a new function b∗ on Var∗(t):

b∗(v) =
{

b′(v) if v∈Var(t)
an arbitrary value from Type(v) if v∈Var∗(t)\Var(t)

According to Def. 2.6 in [8], b∗ is a binding for t in CPN∗. Therefore, (t, b∗) is a binding element for CPN∗.
By definition of b∗, we have thatπ(b∗)=b′, and as a result, (t, b′)∈π(BE∗).

Property iii. We must show that∀ M∗
1, M∗

2∈M
∗, ∀ Y∗∈Y

∗: M∗
1[Y∗〉M∗

2 ⇒ π(M∗
1)[π(Y∗)〉π(M∗

2)

We will first show thatπ(M∗
1)[π(Y∗〉. By theenabling rule(Def. 2.8 in [8]) we have that:

∀p∈P∗:
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E∗(a)〈b∗〉 ≤ M∗
1(p) (∗)

Consider non-annotatedplaces and non-annotated arcs. Since E∗=E for all non-annotated arcs (by Def. 4.viii),
and M∗

1=π(M∗
1) for all non-annotated places (by Def. 5.i), it follows from (∗) that:

∀p/∈PA:
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E(a)〈b∗〉 ≤ (π(M∗
1))(p)

which by the fact thatπ(b∗)=b∗ for all variables in Var(E(a)) (by Def. 5.ii) and the definition ofπ(Y∗)
(Def. 5.iii) is equivalent to:

∀p/∈PA:
∑

(t,π(b∗))∈π(Y ∗)

∑
a∈A(p,t)

E(a)〈π(b∗)〉 ≤ (π(M∗
1))(p) (∗∗)

Consider annotated places and annotated arcs. From Def. 1 and (∗), it follows that:

∀p∈PA: π(
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E∗(a)〈b∗〉) ≤ π(M∗
1(p))

which by Defs. 1 and 5.i is equivalent to:



∀p∈PA:
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

π(E∗(a)〈b∗〉) ≤ (π(M∗
1))(p)

which by (†) and the definitions ofπ(b∗) andπ(Y∗) is equivalent to:
∀p∈PA:

∑
(t,π(b∗))∈π(Y ∗)

∑
a∈A(p,t)

E(a)〈π(b∗)〉 ≤ (π(M∗
1))(p)

which together with (∗∗) and the enabling rule gives us thatπ(M∗
1)[π(Y∗)〉.

Next we have to prove that the marking reached when Y∗ occurs in M∗
1 covers the marking that is reached

whenπ(Y∗) occurs inπ(M∗
1), i.e. thatπ(M∗

1)[π(Y∗)〉π(M∗
2). A proof similar to the above can be used to

show this, and the proof is therefore omitted.

Property iv. We must show that∀ M1,M2∈M, ∀ Y∈Y, ∀ M∗
1,M∗

2∈M
∗:

M1[Y〉M2 ∧ π(M∗
1)=M1 ⇒ ∃Y∗∈Y

∗: π(Y∗)=Y ∧ M∗
1[Y∗〉M∗

2 ∧ π(M∗
2)=M2

Let M1[Y〉M2 in CPN be given. It is straightforward to show that it is always possible to find M∗
1∈M

∗

such thatπ(M∗
1)=M1, thus the proof is omitted. Since CPN∗ is a matching CP-net that is derived from an

annotated CP-net with a sound annotation layer, andπ(M∗
1)=M1, Def. 6 tells us that there exists Y∗∈Y

∗

such thatπ(Y∗)=Y and M∗
1[Y∗〉.

We have only left to show that the marking reached after Y occurs in M1 is covered by the marking reached
when Y∗ occurs in M∗. Since M1[Y〉M2 in CPN, theoccurrence rule(Def. 2.9 in [8]) gives us that:

∀ p∈P: M2(p) = (M1(p) -
∑

(t,b)∈Y

∑
a∈A(p,t)

E(a)〈b〉) +
∑

(t,b)∈Y

∑
a∈A(t,p)

E(a)〈b〉 (�)

Since M∗
1[Y∗〉 in CPN∗, the occurrence rule gives us that:

∀p∈P∗: M∗
2(p) = (M∗

1(p) -
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E∗(a)〈b∗〉) +
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

E∗(a)〈b∗〉 (��)

In other words, M∗1[Y∗〉M∗
2. We must now show thatπ(M∗

2)=M2.

We will show thatπ(M∗
2)=M2 for non-annotated places. We have found M∗

1, such thatπ(M∗
1)=M1. We have

that M∗
1=π(M∗

1) and M∗
2=π(M∗

2) for non-annotated places (by Def. 5.i). For all non-annotated arcs E∗=E
(by Def. 4.viii). It follows from these facts and (��) that:

∀p/∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

E(a)〈b∗〉) +
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

E(a)〈b∗〉

which by the fact thatπ(b∗)=b∗ for all variables in Var(E(a)) (by Def. 5.ii) and the fact thatπ(Y∗)=Y is
equivalent to:

∀p/∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b)∈Y

∑
a∈A(p,t)

E(a)〈b〉) +
∑

(t,b)∈Y

∑
a∈A(t,p)

E(a)〈b〉 (� � �)

We will show thatπ(M∗
2)=M2 for annotated places. From the definition ofπ for multi-sets and markings

(Defs. 1 and 5.i) and from (��), it follows that :
∀p∈PA: (π(M∗

2))(p) = ((π(M∗
1))(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

π(E∗(a)〈b∗〉)) +
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

π(E∗(a)〈b∗〉)

which by (†) and the fact thatπ(M∗
1)=M1 is equivalent to:

∀p∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

E(a)〈b∗〉) +
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

E(a)〈b∗〉

which by the definitions ofπ(b∗) andπ(Y∗), and the fact that all variables in E(a) are bound byπ(b∗) is
equivalent to:

∀p∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b)∈Y

∑
a∈A(p,t)

E(a)〈b〉) +
∑

(t,b)∈Y

∑
a∈A(t,p)

E(a)〈b〉

which together with (�) and (� � �) gives us thatπ(M∗
2)=M2.

ut


