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Supercompilation (supervised compilation) is a program transformation tech-
nique based on the construction of a full and self-contained model of the
program.

We illustrate the fundamental ideas and methods of supercompilation with a
working supercompiler called SC Mini [1, 2] for a very simple purely functional
language.

The Essence of Supercompilation

Supercompilation was invented by V. F. Turchin in the Soviet Union during the
1970s. In his own words [3]:

A program is seen as a machine. To make sense of it, one must observe
its operation. So a supercompiler does not transform the program by
steps; it controls and observes (SUPERvises) the machine, let us call it
M, which is represented by the program. In observing the operation
of My, the supercompiler COMPILES a program which describes the
activities of M;, but it makes shortcuts and whatever clever tricks it
knows, in order to produce the same effect as My, but faster. The goal
of the supercompiler is to make the definition of this program (ma-
chine) My self-sufficient. When this is achieved, it outputs Ms in some
intermediate language L**P and simply throws away the (unchanged)
machine M. ..

A supercompiler would run M; in a general form, with unknown val-
ues of variables, and create a graph of states and transitions between
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possible configurations of the computing system ...in terms of which
the behavior of the system can be expressed. Thus the new program
becomes a self-sufficient model of the old one.

Article Goals

Functional programming practitioners, who are aware of supercompilation, have
various opinions. The most common reaction is one of mistrust or even full rejec-
tion, mostly because of the fact that there is no industrial-strength supercompiler
yet. All existing supercompilers have an experimental status and, in most cases,
are only successfully used by their own authors.

Supercompilation is, in a certain sense, a very general method, but, in practice,
only specialized tools — re-using just some of the ideas of supercompilation — work
well enough to be useful. This clashes with the expectation that a general tool
should come out of a general idea. Another possible reason for the mistrust is the
fact that supercompilation is still lacking a “killer application”.

One common misconception persists: that supercompilation is only a tool for
program optimization. Supercompilation is a program transformation technique.
Program transformations can have different goals. One such goal can be optimiza-
tion, another — program analysis. Supercompilation is equally applicable to both
these goals. Most works dealing with supercompilation consider only the opti-
mization aspect, but we should not be misled that optimization is the only useful
application of supercompilation.

We must distinguish the notions of supercompilation and a supercompiler.
Many articles describe various technical difficulties arising from the implemen-
tation of a specific supercompiler and ways to overcome these difficulties, while
mostly leaving aside the underlying key ideas of supercompilation. In most cases,
the parts of a given supercompiler interact in intricate ways, which may give the
impression of a complicated monolithic construction. Or, as Simon Peyton-Jones
put it in the interview [4]: “...To build a supercompiler, if you look at how it
works, there are a number of things all wound together in one rather complicated
ball of mud. I found it extremely difficult when I really wanted to understand it.
I found it very difficult to understand the papers. ...”.

The main goal of this article is to give a clear and concise illustration of the afore-
mentioned Turchin’s quote, describing the essence of supercompilation by using a
minimalistic example supercompiler. The accent is on delineating and explaining
the basic building blocks and showing how these blocks can be implemented and
made to work together in a clear and simple fashion.

Organization of the article: A important companion to this article is the full
source code of the toy supercompiler SC Mini, with detailed comments [1] (250
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lines of main code + 200 lines of auxiliary utilities in Haskell). The text of the ar-
ticle itself can be seen as an introduction to studying these supercompiler sources.
The article introduces and explains the main supercompiler terminology and ingre-
dients, and we illustrate SC Mini’s behavior on suitable examples. These examples
are chosen to be neither too complicated, nor oversimplified. The reader is thus
invited to carefully study all examples.

Things left out: Do not expect to find a detailed comparison of supercompila-
tion to other methods of program optimization/transformation — it would require
a survey article of a much larger scope. A comprehensive bibliography of super-
compilation literature is similarly out of scope, although we do give many useful
references where relevant.

Supercompilation by Example

The advantages of every formal language are determined not only by
its ease of use by humans, but also by the amenability of its texts to
formal transformations.

V.F. Turchin [5]

It would be nice if all computer-science articles were accompanied by some formal
executable description (in the form of a program or a formal specification) in order
to ensure reproducibility of results.

The SC Mini supercompiler is such an executable description of the fundamental
methods of supercompilation, which are the main topic of this article. SC Mini is
based on the supercompiler described in the groundbreaking MSc thesis of Morten
H. Sgrensen [6] (which remained only on paper).

No supercompilation description is complete without describing subtle funda-
mental notions such as program semantics, evaluation results, computation state.
All these notions are formally represented in the sources of SC Mini, which helps
avoid ambiguities.

SC Mini transforms programs written in a toy language called SLL (= Simple
Lazy Language; corresponding roughly to Sgrensen’s My). Paraphrasing Turchin’s
quote from the beginning of the section, we argue that SLL’s main advantages are:

1. A simple language definition, and

2. A simple definition of a supercompiler for SLL programs.

Despite the fact that SC Mini is a supercompiler for a specific language, the
methods used in its construction are fairly general and appear with only small
variations in most supercompilers.
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P = d;...d, program
d == f(vr,...,0,) =¢€; “indifferent” function
| g(p1,v1,...,0,) = e€1; “curious” function
g(pmuvla 7Un> = €m,;
e = expression
v variable
| Cler,...,en) constructor
| fler, ... en) function call
p == C(u,...,v,) pattern

Figure 1: SLL abstract syntax

We shall see further through several examples that SC Mini can optimize pro-
grams (giving first a formal definition of a program optimizer), and it can also be
used to automatically prove different program properties.

SLL Object Language

Defining a language entails defining its syntax and semantics. Syntax is typically
defined using a context-free grammar. One possible way to define semantics is
to implement an interpreter for the language. The following natural-language de-
scription is more succinctly and simply re-expressed — using Haskell — in SC Mini’s
sources.

Fig. 1 gives the abstract syntax of SLL. An SLL expression can be one of the
following;:

» variable,
» constructor, having SLL expressions as arguments, or a
» function call, having SLL expressions as arguments.

We assume further the same convention as in Haskell: constructor names start
with an uppercase letter; variable names start with a lowercase letter.

An SLL expression consisting only of constructors is called a value. An SLL
expression without any variables inside is called a closed expression. We define
configuration as an alias of an SLL expression with free variables.

An SLL program consists of function definitions. We distinguish two kinds of
functions — “indifferent” and “curious” (originally called by Sgrensen in [6] f- and
g-functions respectively). Curious functions replace case expressions (which are
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add(z (O, y) = y;
add (S(x), y) S(add(x), y);

mult(ZO), y)
mult (S(x), y)

YAQN
add (y, mult(x, y));

sqr (x) = mult(x, x);

even(Z()) = True();
even(S(x)) = odd(x);
0dd(Z()) = False();
0dd (S(x)) = even(x);
add’ (2O, y) = vy;

add’ (S(v), y) add’ (v, S(y));

Figure 2: progl: Working with Peano numbers

always lifted to the top level). Indifferent functions just transfer their arguments to
other functions or constructors; their definition is just a single expression. Curious
functions perform a simple pattern match on their first argument; their definitions
consist of many expressions — one per case.

SLL has no built-in data types (Booleans, numbers; etc.). SLL can be straight-
forwardly extended with Haskell-like data-type declarations and Hindley-Milner
type inference, but we ignore issues of typing from now on, silently assuming that
all programs under consideration would be well-typed under such a type system.
We assume the following convention:

» the constructors True() and False() represent Boolean values,

» the value Z() represents 0, S(Z()) - 1, S(S(Z())) - 2, etc. If the value n
corresponds to the natural number n, then the value S(n) corresponds to
the natural number n + 1 (the so-called Peano numbers).

Fig. 2 shows a program defining some functions for working with Peano numbers.

It contains a single indifferent function — squaring (sqr). All the other functions
are curious, as they do a pattern match on their first argument.

A substitution binds variables vy, vq, ..., v, to expressions e, éq,...,¢e, and is
written as a list of pairs {v; :=eq,...,v, ;= e,}. Application of a substitution to
an expression e is defined in the usual way, and is denoted e/{vy ;=€ ..., v, =€, }.

Exercise 1. In SC Mini’s sources substitution is literally represented as a list of
pairs. Application of a substitution s to an expression e is denoted as e // s.
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Z,[e] ? e 1 (11)
Z,[C(e1, ..., en)] = C(Lple], - - -, Zylen]) (1)
Llcon{f(er,....en))] = Ty[conle/{vy :=e1,..., v, := e, })] (I3)

if f(vg,...,0,) = e
Llcon{g(C(er, ..., em), emits---sen))]= Lcon{e/{vy :=e1,...,v, = e, })] (14)

if g(C(v1,. . s Vm), Uity Un) =€

Figure 3: SLL: interpreter Z, for a program p

con == ()| g(con,...) context
red = f(er,...,e,) | g(Cler,...,en),...)  redex

Figure 4: SLL: context and redex

Find e, v1, el, v2, e2, such that
e // [(v1, el), (v2, e2)] #e // [(v1, eD)] // [(v2, e2)].

Fig. 3 shows the formal reduction semantics of SLL expressions. The notation
e1 = ey means that the program p contains a definition e; = e,. The semantics
is defined through a rewriting SLL interpreter with normal-order reduction. The
SLL interpreter Z, processing a program p evaluates, step by step, each closed SLL
expression to an SLL value (or falls into an infinite loop, or terminates with an
error message, but we shall often ignore the last case for simplicity). As far as
reduction is concerned, we distinguish two kinds of closed expressions:

1. e = C(ey,...,c,) — a constructor is “pushed” outside, and we proceed to
reduce its arguments.
2. e # C(ey,...,c,) — then we locate the leftmost reducible function call (redex,

see Fig. 4) and unfold it according to the corresponding definition from the

program. A function call is reducible if it is a call to 1) an indifferent function

or 2) a curious function, where the first argument starts with a constructor.

The rules for evaluating SLL expressions are (as typical for functional languages)

compositional, meaning that, if the expression e;/{v := e} is closed, then (taking
laziness into account):

Loler/{v = ea}] = Tp[er/{v := L[ea] }]
Remark that we can consider Z, as a machine, describing the program p.

Exercise 2. In SC Mini the interpreter is defined as a function eval. The notation
Z,[le] corresponds to the call eval p e. Prove that the evaluation of
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(even(sqr(sS(x))), progl)

x := 20
Gven(ﬁqu(S(Z())))) S0
@ven(mult(S(Zl()), 5(z0))) st
(even(add(s(20), mlult(Z(), 5(ZON)) 82
(even(s(add(20), mullt(Z(), 5(ZONN)) 3
(0dd(add (z(), mullt(Z(), 5(z0»))) =4

l

@dd(mult(z(), s(z())))) s5

0dd(Z()) s6
False() s7

Figure 5: An example of a task evaluation

eval p (el // [(v, e2)]) == eval p (el // [(v, eval p e2)])
cannot give False.

We call an SLL-task (or sometimes simply task) the pair (e, p) of a configuration
e and a program p (recall that a configuration is simply an expression with free
variables). The evaluation of a task (e,p) on arguments args is defined as:

Replargs] = Lp[e/args]

(In SC Mini the corresponding call is s11_run (e, p) args.)

Fig. 5 shows an example of evaluating the expression even(sqr(S(Z()))) with
the interpreter for the program progl. The redexes are underlined. The root node
represents the task with its arguments.

Next, we formally define what is an optimizer of SLL tasks. An SLL optimizer
takes a task (e,p) as input and outputs another task (¢/,p’). Our first requirement
is correctness: for all arguments args, the results of both tasks must be the same:

Replargs] = R pylargs]

Our second requirement is optimization: the evaluation of the second task must
require no more reduction steps than the evaluation of the first one. (The number
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of steps of a reduction sequence can be computed by the function sl1_trace in
SC Mini’s sources.)

An Overview of SC Mini

SC Mini transforms a task (e, p) into another task (¢’,p’), proceeding as follows:

1. It constructs a “machine” M,,, which encodes the behavior of the interpreter
T, of a program p over a generalized input — configurations (instead of values);

2. It performs a finite (but large enough) number of executions of the machine
M, analyzing their results;

3. It builds a finite “graph of configurations”, which fully describes the behavior
of M,, during those executions; and

4. Tt simplifies the graph of configurations and builds a new task (¢’,p’) from
it.

We now explain these steps in detail.

Driving

What would happen, if we tried to perform the following task on an empty list of
arguments?

(even(sqr(S(x))), progl)

The SLL interpreter is defined in such a way that it can actually evaluate (to
some degree) expressions with free variables:

Ceven(&i(s(x) ))) s0

@ven(mult(Sl(x), 5(0)))) st
(even(add (s (), lmult(x, 5())))) s2
(even(s (add(x, mlult(x, 5()))))) 3

(odd(add(x, mullt(x, 5())))) s4
l

ERROR

The interpreter does not expect a variable as a first argument of add. The
presence of such a free variable x, however, does not stop it from performing some
initial reduction steps, mostly thanks to the call-by-name reduction strategy.

10
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Let us “extend” the interpretation process Z: instead of stopping with an error,
let us consider the different ways in which evaluation might proceed. The definition
of add in progl provides 2 possibilities: either x = Z(), or x = S(x1):

@dd(@(x, mult (x, s<x>>))) s4

x = Z(/ \c = S(v1)

@dd(mult(x, S(x)))) s5a @dd(S(add(vl, mult (x, S(xm))) s5b

Now evaluation can proceed with the right subexpression, and so on:

@@(S(add(m, mlt (x, s(x)>>))) s5b

@ven(add(vl, mult (x, S(X)))D s6b

The interpreter Z, is intended to reduce step-by-step closed expressions. The re-
sult of interpretation Z,[e] is some SLL value (unless there is an infinite loop). We
introduce a machine M,,, which will compute over configurations. Each transition
of this machine — M, [c] — models a step of the interpreter; it can produce one
or several new configurations, labeled with the kind of step taken. We distinguish
the following kinds of machine steps:

1. Transient step — the corresponding interpretation step does not depend on
the value of any free variable in the configuration. Example: the move from
state sO to state s1.

2. Stop — further modeling is not possible. This occurs when the expression to
be reduced is a variable or a value.

3. Decomposition — some part of the result is already known. Example: in the
expression S(sqr(x)), the outer constructor is clearly a part of the result.
We can continue processing its subexpressions.

4. Case analysis — modeling cannot proceed unambiguously. We can, however,
consider all possible further steps of the interpreter, as defined in the pro-
gram. Example: the transitions from state s4 to states sba and s5b.

Such modeling — which is a key part of supercompilation — is called driving. The

preceding paragraph informally defines one driving step.

Exercise 3. In the SC Mini sources building the machine M, is performed by
driveMachine p. Show that driveMachine p is powerful enough to evaluate
closed expressions. In other words, define a function £, such that

f (driveMachine p) e = eval p e

11
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Trees of Configurations

The tree of configurations for an SLL task (e,p) is built in the following way.
We create a machine M, modeling p. In the beginning, the tree starts as a
single node, labeled with the start configuration e (the task goal). Then, for each
tree leaf n, which contains a configuration ¢, we perform one machine transition
M, [c] and attach new children nodes to n, each of them containing one of the
configurations resulting from this transition. We repeat the process for each new
leaf. The resulting tree is called “tree of configurations”, as each node is labeled by
a configuration. Note that the trees of configurations are sometimes called “process
trees” in the literature.

Of course, the tree built in this way will be infinite in general. But we can
always consider the tree only up to a given (finite) depth (in the previous subsec-
tion we have already seen an example — the top of the tree arising from the task
(even(sqr(S(x))), progl)).

Exercise 4. SC Mini builds the tree of configurations for a task (e, p) as follows:
buildTree (driveMachine p) e

Try to find a characterization of the class of tasks, which result in finite trees of
configurations.

The notion of a tree of configurations is not strictly necessary for building a
working supercompiler. Many existing supercompilers, especially those built in
recent years, make no explicit use of either trees of configurations or graphs of
configurations (which will be introduced shortly). Trees and graphs of configura-
tions can be useful, however, both from theoretical and from educational point of
view, as they open the way for defining a much more modular supercompiler.

Let’s assume for a moment, that we can build (and somehow store) infinite trees
of configurations. Then, if for a task (e, p), using a machine M,, we have built a
tree of configurations ¢, we can throw away the program p and the machine M,,
and only work with the tree . This is possible, as the tree t fully describes the
computation of the task (e, p) without any reference to the text of the program p.

Exercise 5. SC Mini sources contain an executable evidence for the last statement —
a “tree interpreter” intTree, which can perform tasks using only the corresponding
tree of configurations, and not the original program. If t is the tree of configura-
tions for the task (e, p), then intTree t args gives the result of computing the
task over arguments args. Convince yourselves that

eval (e, p) args == intTree (buildTree (driveMachine p) e) args
cannot produce False.

12



Ilya Klyuchnikov, Dimitur Krustev: Supercompilation: Ideas and Methods

Folding

Infinite driving graphs are useful in many ways, but to use a graph as
an executable program it must be finite.

V. F. Turchin [7]

We can evaluate even(sqr(S(x))) for each x, by building the tree of configu-
rations and then using the “tree interpreter” intTree. The tree of configurations
is, however, infinite. The goal of folding is to turn the infinite tree into a finite
object, from which we could recover the original infinite tree, if needed.

How does folding work? Assume that, while building the tree of configurations,
there is a path with nodes ny = ... =+ n; — ... = n; — ... Assume further that
the configuration in node n; is a renaming (differs only in the choice of variable
names) of the configuration in another node n; (i < j). It is clear that we can
reconstruct the subtree starting from node n; by the subtree starting from node
n; if we systematically rename the variables in the corresponding configurations.

Consider the tree of configurations for the task (even(sqr(x)), progl):

ng (even(sqr(x))

ni (even(mult (x, X)))

N= S(v1)

n2 @ven(add(x, mult(vl, x))) J------- .

even(Z())

X = Z()/ \x = S(v2) //

True() ) N3 (even(mult(vi, x))) ( ) ,’/

vl = 20 vl = S(v2) /

/
/

(even(Z()) Ty (even(add(x, mult(v2, x)))}ﬂ-/(vl 1= v2)

( True() )

The configuration in node ny is a renaming of the one in node ny. The (infinite)
subtrees starting from node ny and from ny4 differ only by the names of the variables
in the corresponding nodes. So, we can simply memorize that the subtree from
ny can be built by a given renaming from the subtree starting at nsy, without
building explicitly this subtree. It is important to note that the reconstruction of

13
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the subtree ny from the subtree ny does not require the original program (nor the
machine M,,).

We denote such situations with a special kind of edge, leading from the lower
node to the upper one. As a result, the tree of configurations is no longer a tree
but rather a graph of configurations (also sometimes called “process graph”).

We are lucky with the tree of configurations for the task (even(sqr(x)),
progl) — it folds into a graph. We can see, that in such a way we can turn
some infinite trees into finite graphs. The resulting graph will serve as a new self-
contained representation of the given task. We shall denote the graph for the task
t as G;.

Exercise 6. Just some small modifications of the tree interpreter intTree are
sufficient to make it work also with folded graphs of configurations. Take a look
in SC Mini’s sources to see how it is done.

The graph G, for the task t = (e, p) can be converted into a new task (¢’, p’). The
resulting program p’ is called residual, and we shall also call the corresponding
task (¢/, p') residual.

Exercise 7. SC Mini’s sources contain a function residuate: residuate g trans-
forms a graph of configurations g into a new task (e’, p’).

Generalization: converting a tree into a foldable tree

We were lucky with the example in the previous subsection, as it was possible
to fold the tree into a graph. It would be splendid if all trees of configurations
were foldable! Unfortunately, this is not the case in general. The program progi
contains a function add’, which defines addition using an accumulating parameter.
The construction of the tree of configurations for (add’(x, y), progl) goes as

follows:
= S(v1)

(ada’ (v1, 5(y)))
vi = 20 N - S(v2)

@dd’(vQ, s<s<y))>)

v2 v2 = S(v3)

@dd’(vs, s(s(s(y)))))

14
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This tree is not folding. Indeed, a configuration can only be a renaming of
another if both have the same size. In this example, the path through the rightmost
branches of the tree contains ever-growing configurations. However, if the size of
configurations be bounded, the tree will always fold to a finite graph.

Exercise 8. Try to prove the last statement. Hint: To what kind of relation does
renaming naturally give rise?

We can thus apply a divide-and-conquer heuristics. We limit the size of configu-
rations inside nodes by some constant sizeBound, and if the size of a configuration
becomes larger than this constant, we split it into smaller parts which we can pro-
cess independently.

Recall that the evaluation of closed SLL expressions is compositional. For a
closed expression e /{v := ey} we have:

Llei/{v = ea}] = Lpler/{v := L[ea]}]

The same property of compositionality holds for evaluation of tree of configu-
rations. (Look into SC Mini source code to see how intTree handles splitted
configurations.)
SC Mini limits the size of configurations in the tree and builds a foldable tree
in the following way:
» if while building the tree a configuration e is encountered, which is a function
call, and whose size is greater than sizeBound, then this configuration is

splitted,
» otherwise, the construction of the tree is done in the standard way.
Splitting represents the configuration e as e = e;/(v := ey), where ey is the

largest subexpression of e, and e; — the original expression e, in which e is replaced
by a (fresh) variable v. Such configurations are encoded as let-expressions let v =
es in e1. Then we process the configurations e; and ey independently.

Exercise 9. We do not need to check the size of constructor nodes. Why?

The configuration e; is a generalization of e. And e is, in turn, a special in-
stance of e;. By a slight abuse of terminology, the process of transforming the
tree of configurations into a foldable one — as described above — is also called
generalization.

Now, if we limit the growth of configurations (by size), for any task we can
build a (potentially infinite) tree of configurations, which will in all cases be folded
into a finite graph of configurations. Returning to our current example, if we set
sizeBound equal to 5, then as a result of generalizing the rightmost configuration
we obtain:

15
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(add’ (v1, (1))

1 = 20 Sl - s

TEEE)

Exercise 10. What properties should a task have, in order for the configuration
tree to be foldable without using generalization?

Exercise 11. It is very easy to extend intTree with treatment of let-expressions.
Check how it is done in the SC Mini sources.

The idea of generalizing configurations is one of the cornerstones of supercom-
pilation. What we have described above is one of the possibly simplest and least
sophisticated ways to perform generalization.

The supercompiler part responsible for deciding when to generalize is historically
called the whistle. Whistles in most existing supercompilers are typically more
complicated than just limiting configuration size.

The term “whistle”, despite sounding a bit unscientific, is generally accepted and
used in most descriptions of supercompilation. The whistle is a heuristic compo-
nent, whose task is to signal the danger of possibly non-foldable (and thus infinite)
fragments appearing in the tree of configurations. Of course, this task is an in-
stance of the halting problem (if the object language is Turing-complete) and does
not have an exact solution. Any whistle will necessarily give only approximative
results, and even the best heuristics cannot guarantee the absence of blunders,
such as whistling just a few steps before an actually foldable configuration. The
only strict requirement is to always err on the side of caution and never let infinite
tree paths slip through, as it would make the supercompiler itself loop.

Supercompiler prototype

In the SC Mini sources generalization and folding are implemented via following
functions:
» buildFTree — it builds a foldable tree of configurations by limiting size of
configurations (by means of splitting)

16
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» foldTree — it takes a (possibly infinite) tree of configurations and folds it
into a finite graph.
Let’s create the following program transformer:

transform :: Task -> Task
transform (e, p) =
residuate $ foldTree $ buildFTree (driveMachine p) e

A most interesting thing in this transformer happens there: the machine M,, is
not only run — the result of its run is analyzed, and possibly a decision to generalize
is taken.

We argue that this program transformer fulfills the requirements of the previ-
ously stated definition of “supercompiler”. Although this transformer performs no
interesting optimizations, it can serve as a foundation for a full-blown supercom-
piler. We shall use it as a baseline to which we shall compare the transformers
that follow (deforestation and supercompilation).

Exercise 12. Try to show that for each task (e, p) and each substitution s the
computation s11_run (e’, p’) s (where (e’, p’) is the corresponding residual
task) requires exactly as many reduction steps as the computation s11_run (e,
p) s. That means that the transformer transform does not degrade performance,
but it does not improve it either.

Does this transformer modify the input program at all? Yes, and here is an
example:

transform

(even(sqr(x)), progl) (f1(x), proglT)

Where progiT =

f1(x) = g2(x, x);

g2(z(), x) = £30);

g2(S(vl), x) = g4(x, x, vl);

£3() = True();

gd(z(), x, v1) = gb(vl, x);
gd(S(v2), x, v1) = £f7(v2, vl, x);
gb(Z(), x) = £f6();

gb(S(v2), x) = g4(x, x, v2);

f6() = True();

f7(v2, v1, x) = g8(v2, vl1, x);
g8(Zz(), vi, x) = g9(vl, x);
g8(S(v3), vi, x) = f16(v3, vl, x);
go(z(O, x) = £100);

g9(sS(v3), x) = gil(x, x, v3);
£10() = False();

gli1(z(O, x, v3) = g9(v3, x);

17
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gl1(S(v4), x, v3) = f12(v4, v3, x);
f12(v4, v3, x) = gl3(v4, v3, x);
gl3(Z(O), v3, x) = gld4a(v3, x);
g13(S(vhs), v3, x) = £f7(vb, v3, x);
glda(z(), x) = £15Q);

glda (S(vh), x) = g4(x, x, vb);
£15() = True();

f16(v3, vl1, x) = g17(v3, vi, x);
gl7(Z(O, vi, x) = gl18(vl, x);
gl7(S(v4), vi, x) = £f7(v4, v1, x);
g18(z(), x) = £f190);

g18(S(v4), x) = gi4(x, x, v4);
£19() = True();

We can easily detect at least one property of the transformer — the resulting
program contains no nested function calls: it is “flat”.

KMP Test

Consider the program in Fig. 6 (where function names are deliberately short, to
keep the drawings of graphs of configurations small): the function match(p, s)
checks if a string p is contained inside the string s. For simplicity we use a 2-letter
alphabet — ‘A’ and ‘B’. Strings are represented — as in Haskell — by lists of char-
acters. We also use some list/string syntactic sugar from Haskell for readability,
even if it is not actually implemented in SLL.

The function match is general, but inefficient. Consider the call match("AAB",
s), which checks if the substring (pattern) "AAB" appears inside the string s. Our
program will perform this check in the following way: compare ‘A’ with the first
character of s, ‘A’ — with the second one, B’ — with the third one. If any of
these comparisons fails, we restart the comparison sequence after skipping the
first character of s. This strategy is far from optimal, however. Let’s assume
that the string s starts with "AAA...". The first 2 comparisons will succeed,
the 3rd one will fail. It is inefficient to repeat the same sequence of comparisons
on the tail "AA...", as we already have enough information to know, that the
first 2 comparisons of "AAB" with "AA..." will succeed. The deterministic finite
automaton (DFA), built by the Knuth-Morris-Pratt algorithm [8], will consider
each character of s at most once.

A simple way to estimate the power of an optimizing transformation is to see if it
can produce — fully automatically — a well-known efficient algorithm from a “naive”,
less-efficient one. In the case of supercompilation, it turns out that — starting from
a naive string-matching algorithm, and fixing the value of the substring we try to
match — we can automatically obtain an efficient specialized matching program,
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match(p, s) = m(p, s, p, s);

-- matching routine

-- current pattern 1is empty, so match succeeds
m("", ss, op, os) = True();

-- proceed to match first symbol of pattern
m(p:pp, ss, op, os) = x(ss, p, pp, Op, 0S);

-- matching of the first symbol
-- current string <1s empty, so match fails
x("", p, pp, op, os) = False();
-- compare first symbol of pattern with first symbol of string
x(s:ss, p, pp, op, 0s) =
if (eq(p, s), m(pp, ss, op, os), n(os, op));

-- failover

-- current string <1s empty, so match fails
n("", op) = False();

-- trying the rest of the string

n(s:ss, op) = m(op, ss, op, ss);

-- equality routines

eq(’A’, y) = eqA(y); eqA(’A’) = True();
eqB(’A’) = False();
eq(’B’, y) = eqB(y); eqA(’B’) = False();

eqB(’B’) = True();

-- if/else

if (True(), x, y) = Xx;
if (False (O, x, y) = y;

Figure 6: prog2: find a substring inside a string

analogous in action to the well-known Knuth-Morris-Pratt algorithm (hence the
name of the test).

Our original simple transformer transform is unable to obtain an efficient
matching program. But in the next couple of sections, we will augment trans-
form using two “tricks”, which are key ingredients of “real” supercompilers, and
the transformer supercompile produces a residual task exactly corresponding to
this DFA.

This program is the so-called KMP-test, which is a classical example in the
context of supercompilation, as it demonstrates its greater power compared to
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similar program transformations like deforestation and partial evaluation[6, 9.
This test is not only a good demonstration of the combined effect of the two
tricks mentioned above, but it also gives some measure of the extent of program
transformations performed by supercompilation.

Our original simple transformer transform gives the following result:

transform
>

(match ("AAB", s), prog2) (f1(s), prog2T)

where prog2T is:

f1(s) = f2(s);

f2(s) = g3(s, s);

g3("", s) = False();

g3(vi:v2, s) = f4(vl, v2, s);
f4a(vl, v2, s) = gb(vl, v2, s);
gb(’A’, v2, s8) f6(v2, s);
gb(’B’, v2, s) £f22(v2, s);
fe(v2, s) = f7(v2, s);

f7(v2, s) = g8(v2, s);

g8("", s) False ();

g8(v3:v4, s) = f9(v3, v4, s);
f9(v3, v4, s) = glo(v3, v4, s);
glo(’A’, v4, s) = f11(v4, s);
glo(’B’, v4, s) = £20(v4, s);

f11(vd, s) = f12(vd, s);
f12(v4, s) = g13(v4, s);
gl3("", s) = False();

gl3(vb:v6, s) = f14(vb5, v6, s);
f14(v5, v6, s) = glb(vb6, v6, s);
gl5(’A’, v6, s) = f16(v6, s);
g15(’B’, v6, s) = £18(v6, s);
f16(v6, s) = gl7(s);

gl7("") = False();

gl7(v7:v8) = £2(v8);

f18(v6, s) = f19(v6, s);
f19(v6, s) = True();
£20(v4, s) = g21(s);

g21("") = False();
g21(v5:v6) = £2(v6);
£f22(v2, s) = g23(s);
g23("") = False();
g23(v3:v4) = f2(v4d);

This long listing is reproduced here only to serve as a baseline for comparison.
Note that the residual program contains no nested function calls, but each of the
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characters of s may be checked multiple times, as in the input program.

Transient step removal

Very often graphs of configurations contain fragments of the following kind:

cl - c2 — c3

where the transition c2 — ¢3 corresponds to a transient step (as defined in sub-
section “Driving”). We can always — thanks to the absence of side effects in SLL —
replace such a fragment by:

cl — c3

As an example, consider the top part of the graph of configurations for the
KMP-test program, which is produced by transform:

@atch("AAB", s))

S

(m("AAB", s, "AAB", §) ) -----------ooo--ooooooooo .

l \
\
\

x(s, *A’, "AB", "AAB", 5)) \

s ="t = vl:v2 \
(False()> @f(eq(’A’, v1), m("AB", v2, "AAB", s), n(s, “AAB"))) |

(if(qu(vl), m("AB"), v2, "AAB", s), n(s, "AAB"))) '

v1=/’A/ Nl = ’B’ ‘

( ) (if(False(), m("AB", v2, "AAB", s), n(s, ”AAB")D\\\
<
SR x
s ="" = v3:v4d \‘\

( False )(m("AAB", vd, "AAB", v4))----- J

The transient steps are displayed with zigzag arrows. If we remove them, the
cleaned-up graph of configurations will look like this:
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(m("AAB", s, "AAB", §))-----------ooo--oooo- -
X(S, JA7, IIABII’ IIAAB", S)) \\\

g =" \s\= vi:v2 .

(if(qu(vi), m("AB", v2, "AAB", s), n(s, "AAB“)))

The SC Mini sources contain a transformer deforest — a modification of trans-
form — which removes transient edges and the corresponding nodes from the graph
of configurations.

If we pass the test program through deforest, we get:

(match ("AAB", s), prog2) gggﬁ% (f1(s), prog2D)

where prog2D =

fi(s) = g2(s, s);

g2("", s) = False();
g2(vi:v2, s) = g3(vl, v2, s);
g3(’A’, v2, s) = g4(v2, s);
g3(’B’, v2, s) gl0(s);
ga("", s) = False();
gd(v3:v4, s) = gb(v3, v4, s);
gb(’A’, v4, s) = g6(vd, s);
gs(’B’, v4, s) = g9(s);
g6("", s) = False();
g6(vb:v6, s) = g7(vh, v6, s);
g7(’A’, v6, s) = g8(s);
g7(’B’, v6, s) = True();
g8("") = False();

g8(v7:v8) = £1(v8);

g9 ("") = False();

g9(vb5:v6) = £1(v6);

glo("") = False();

glo(v3:v4) = f1(v4d);

The deforested program contains less than half the number of functions (23 vs.
10) compared to the result of transform, as some intermediate functions were
removed (roughly speaking, inlined). Although the residual program is smaller, it
still contains the same inefficiency we discussed above.
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The removal of transient edges is a form of simplification of graphs of configu-
rations. This simplification is one of the two main mechanisms for optimization,
which are employed by supercompilation. It is most effective when used in con-
junction with the second mechanism — information propagation — which we shall
discuss next.

Exercise 13. It is also possible to remove transient steps from the tree of con-
figurations (before folding it to a graph). What pitfalls might such an approach
have?

There is a separate program transformation technique called deforestation [10,
11]. Tts main goal is to reduce the creation of intermediate data structures — lists,
trees (hence the name), etc. — which arise as a result of composing different func-
tions in a program. Ferguson et al. [11] describe deforestation for a language very
similar to SLL. Classical deforestation does not require generalization, as it con-
siders only programs conforming to certain syntactic restrictions (which guarantee
that the resulting tree is always foldable). A practical advantage of deforestation
is that for many special cases it can be formulated as a simple set of rewrite rules
(shortcut deforestation, or shortcut fusion — see for example [12]), which are easy
to implement. A form of shortcut deforestation is implemented inside GHC, for
example.

Information propagation

Here is the graph of configurations for the KMP test produced by deforest:

(m("AAB", s, "AAB", §))-------------oo--ooo- -

X(S, ’A’, “AB", "AAB", S)) N

s ="" ~s8 = vi1:v2 "

= N
(False()> (if(qu(vl), m("AB", v2, "AAB", s), n(s, "AAB")))

It contains a step which checks if the string s is empty or not (underlined).
Below it, there is another step, which makes the same check (double-underlined),
although we have assumed already that s is not empty (in the corresponding
subtree after the first check). Such repeated checks are clearly redundant.
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Supercompilers remove such redundancies as follows: each time case analysis

is performed during driving, information about its outcome is propagated in each
corresponding subtree.

Let’s propagate the fact that s =

v1:v2 (and hence non-empty) in the corre-
sponding subtree:

@(HAABU, S, IIAAB"’ S))<

(x(s, ’A’, "AB", "AAB", 5)) 1

s =% \s\= vl:v2 l,
(FalseO ) @f(qu(vl), m("AB"), v2, "AAB", v1:v2), n(vi:v2, "AAB"))).
vl = ’A/ Syl = B’ ‘]

C -+ ) (aCB:v2, "arB") ‘]

$ \

(m("8AB", v2, "AAB", v2)) /

We have not only removed a superfluous test, but we have also unmasked a tran-
sient step, which can be further removed. As a result we obtain

@("AAB", s, "AAB", s))«

X(S, 7A7’ IIABII’ IIAABII, S))

s = " s.= viiv2 \

(False()) Gf(qu(vl), m("AB"), v2, "AAB", v1:v2), n(vi:v2, "AAB")))

vl = ’A/ Syl = ’B’
( )@("AAB", v2, "AAB", vz)} :

The transformer supercompile (inside SC Mini sources) implements such in-
formation propagation. In contrast to deforest, each time driving performs case
analysis, its results are propagated in the corresponding new configurations. Re-
call that SLL contains just a single kind of test — matching the first argument of
a curious function against a list of simple patterns. Hence, the only kind of infor-
mation we can propagate is that a given configuration variable is equal to a given
pattern. Such a (restricted) form of information propagation is called positive
information propagation. Correspondingly, supercompilers propagating only pos-
itive informtion are called positive supercompilers. If, for example, SLL permitted
also default clauses (in curious-function definitions), we could propagate also neg-
ative information — in the default clause — that the variable is not equal to any
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of the patterns in the list. A supercompiler, which propagates both positive and
negative information, is called perfect [13]. It is also possible to have intermediate
situations, where only some forms of negative information are propagated.

Here is the final result of supercompiling our KMP test:

supercompile
—————

(match ("AAB", s), prog2) (f1(s), prog2s)

where prog2S =

f1(s) = g2(s);

g2("") = False();
g2(v1:v2) = g3(vl, v2);
g3(’A’, v2) = g4(v2);
g3(’B’, v2) = £1(v2);
gd("") = False();
gd(v3:v4) = gb(v3, v4);
gb(’A’, v4) = f6(v4d);
g5(’B’, v4) = £1(v4);
f6(v4d) g7 (vd);

g7 ("") = False();
g7(vb:v6) = g8(vh, v6);
g8(’A’, v6) f6(v6);
g8(’B’, v6) True () ;

We finally obtain the desired effect: each character of the string s is considered
at most once.

Exercise 14. Prove the last statement.

The information propagation we have just described is the second optimization
mechanism employed by supercompilation (the first was the removal of transient
steps). This propagation has 3 important effects:

1. No variable is tested twice.

2. Avoiding repeated tests uncovers further possibilities for removing transient

steps.

3. The graph of configurations is pruned of unreachable branches, which results

in dead-code removal in the residual program.
In the example above, the graph built by deforest contains the following path:

{s = vi1:v2} - ... = {s = "}

It is clear that no actual computation can take this path. Deforestation, however,
leaves it in the residual program; as a result the deforested program prog2d above
contains a function g10 whose first argument can never be an empty string:

glo("") = False();
glo(v3:v4) = f1(v4d);
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As a result of supercompiling the KMP test, we obtained a program which
contains no dead code. Of course, this is not always possible, as dead-code removal
is undecidable in general. In the case of supercompilation, dead code may still
appear in the residual program if we have applied generalization.

Exercise 15. Most works discussing supercompilation interweave information prop-
agation with other aspects of the transformation (for example, with transient-step
removal). Check if this is the case as well inside SC Mini’s sources.

The essence of SC Mini

This section turned out rather long, so let’s take a brief look — from a slightly
different angle — at what it covered.

The SC Mini supercompiler is an attempt to build a minimalistic supercompiler
in Haskell. Its main goal is to delineate the main ingredients which are present in
most supercompilers and show how they can be combined to work well together.

Let’s review the gradual transition from the basic transformer transform (which
neither improves, nor degrades performance), passing through deforest, and fi-
nally arriving at the ultimate transformer supercompile.

Starting from the baseline transformer transform...

transform :: Task -> Task
transform (e, p) =
residuate $ foldTree $
buildFTree (driveMachine p) e

...we add simplification of the graph of configurations by removing transient
steps. ..

deforest :: Task -> Task
deforest (e, p) =
residuate $ simplify $§ foldTree $

buildFTree (driveMachine p) e
...and we finish by adding information propagation:

supercompile :: Task -> Task
supercompile (e, p) =
residuate $ simplify $ foldTree $
buildFTree (addPropagation $ driveMachine p) e

Thanks to propagating test outcomes in the corresponding consequent config-
urations and further simplifications of the graph, our minimalistic supercompiler
managed to convert a naive substring search algorithm into the well-known efficient
KMP algorithm.
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Not only optimization

SC Mini can also be used to check different program properties. Let’s show that
the operation add — defined in progl — is associative, that is, for all arguments
args:

s1l_run (add(add(x,y),z), pl) == sll_run (add(x,add(y,z), pl)
We could of course prove this by induction (using the rules of SLL operational

semantics). But we can also compare the residual programs produced by SC Mini
in both cases — they turn out syntactically equivalent:

supercompile

(add (add(x, y), z), pl)
(add(x, add(y, z)), pl)

(gi(x, y, z), prog3sS’)

supercompile
>

(gi(x, y, z), prog3sS’)
where prog3s’ =

gl(Zz(O, y, z) = g2(y, z);
gl(8(vl), y, z) = S(gi(vl, y, z));
g2(2(), z) = z;

g2(S(v1), z) = S(g2(vl, z));

This is enough to prove associativity of add (assuming of course that SC Mini
always preserves the semantics of the input program), as we have:

sll_run (add(add(x, y), z), pl) ==
sll_run (gi(x, y, z), prog3S’) ==
sll_run (add(x, add(y, z)), pl)

Problems

The aim of this section is to outline what are the practical problems our simple
supercompiler faces. These problems are typical — in varying degrees — for most
existing supercompilers.

Result unpredictability

The KMP test we saw indeed shows supercompilation at its best. We were lucky
that the whistle did not blow, allowing us to fold the tree of configurations to a
graph without resorting to generalization. In many other cases, however, the size
of configurations in the tree will continue to grow, and, sooner or later, we shall
be forced to perform generalization in order to ensure building a finite graph of
configurations.

Recall a task we have already seen:
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(even(sqr(x)), progl)

Deforestation manages to build a finite graph of configurations without applying
generalization. This is not the case when we use supercompilation instead — gen-
eralization becomes necessary. This is one drawback of information propagation,
as it typically increases the size of the new configuration. The appendix accom-
panying this article lists the results of deforesting and of supercompiling this task.
It also gives a comparison of the speed of the corresponding residual programs.
Based on these observations, we can draw the following conclusions:

1. The supercompiled program is much larger than the deforested one.

2. For small numbers x the supercompiled program works faster. Exactly the

opposite is true for big numbers x however.

In a way, this example is an antithesis of the KMP test, as it displays the main
weaknesses of the SC Mini supercompiler. (We shall call it anti-KMP-test for
brevity. Such an example can be found for each of the other existing supercompil-
ers.)

While missing optimization opportunities is a feature we can readily consider
acceptable, the fact that the supercompiler can produce much larger residual pro-
gram, compared to the input one, is a more critical issue. The danger of code
explosion is an important problem for supercompilation in general. In the case
of SC Mini, by limiting configuration size we indirectly limit the growth of graph
width as well. There is no similar indirect limit to the growth of graph depth
(apart for ensuring it is finite), and this can result in very large residual programs.

Exercise 16. Try to modify SC Mini, by imposing an explicit limit on graph depth
as well. What changes in the examples we considered so far?

Exercise 17. Can we estimate the size of the residual program for a given input?

SC Mini is built in such a way as to guarantee that the residual program never
takes more reduction steps than the input one. This is but one possible measure
of efficiency. Another one is memory consumption, and here the story is not so
rosy. Existing supercompilers can produce programs, which — although requiring
less reduction steps — can sometimes consume considerably more memory than the
original ones.

Scalability issues

The supercompiler imitates the behavior of the input program by taking into
account the dynamic interactions of all its parts. This can result, unfortunately,
in the size of the model (the graph of configurations), growing very superlinearly
as a function of the size of the input program. For example, a new input program,
larger by just 30%, can make the supercompiler work 10 times longer.
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Exercise 18. Try to find such examples for SC Mini.

What is worse, the running time of the supercompiler usually depends superlin-
early on the size of the graph of configurations.

Exercise 19. Show that this statement is true for SC Mini as well.

Supercompiling big programs can be a very unpredictable process: in the worst
case, the supercompiler may take a lot of time, and it may produce a huge program,
which works only slightly faster than the original.

Supercompilation performs a global optimization for a given entry point. It is
an open question how to apply supercompilation methods to optimize libraries.

What about debugging?

Supercompilation — being a form of program transformation — converts the input
program into a new one, which is then submitted to the usual programming lan-
guage compiler or interpreter. What if we want to debug the resulting program?
It appears possible in principle — in a way similar to standard compilers generating
“debug” info — to generate some information about the correspondence of resid-
ual program lines to input program lines. This can be a tedious task, however,
and authors of experimental supercompilers avoid it. We can hope that one day
industrial-strength supercompilers will support this feature as well.

Details, details, details. ..

We saw only a very small, toy supercompiler — for a toy language — which has some
obvious deficiencies. Building a supercompiler for a similar toy language, but not
having the problems we mentioned, is already a complicated, PhD-level task. If
we consider more realistic programming languages, we will quickly stumble upon
a number of details, which must be taken care of.

Global state, side effects: SC Mini uses the compositionality of SLL semantics
in an essential way in order to perform generalization:

Llei/{v = e}l = Lpler/{v := L[ea]}]

The expression e; may be evaluated outside of the context, where it appears in
the input program.

If the language features global state and/or side effects (which is inevitable in
one form or another for any practical programming language), then the notion of
compositionality becomes more complicated, if it can be formulated at all. In order
to take this into account, an additional analysis phase appears necessary. Things
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can get even more complicated in the presence of concurrency. What makes the
situation less bleak is that many modern programming languages follow the lead
of Haskell and provide means to isolate pure functional code from side-effecting
code. In such cases a simple solution is to supercompile only the purely functional
parts of the program, leaving the side-effecting parts unmodified.

Taking strictness and laziness into account: SC Mini owes its simplicity, to a
large extent, to the fact that we assumed a call-by-name semantics for SLL. Driving
is simplest in the case of call-by-name evaluation. Call-by-name typically leads to
bad performance, however, and most programming languages do not use it as the
default evaluation mechanism. Call-by-value or call-by-need is used instead. While
recent research has shown it is possible to build a supercompiler for a call-by-need
[14, 15, 16] or a call-by-value [17, 18] language, the supercompilation process is
typically much more involved, compared to the case of call-by-name.

Exercise 20. Write a call-by-value interpreter for SLL. Find a program, which
behaves differently after supercompilation by SC Mini, when run by the new in-
terpreter.

Exercise 21. Write a call-by-need interpreter for SLL. Compare its size to the
call-by-name one. What differences in driving would you expect in the case of
call-by-need?

Why is it worth it then?

The open problems of supercompilation are wide, the results of supercompilation
difficult to rely on. Why is it, then, that interest in supercompilation has repeatedly
resurfaced and grown in the several decades since its invention, with the latest wave
of renewed interest starting 6-7 years ago [19, 20, 16, 18, 21, 22, 23|?

First of all, it turns out that many program optimization methods can be seen as
special cases of supercompilation. This includes deforestation, partial evaluation,
different kinds of fusion, inlining, defunctionalization, etc. (While this statement
will be intuitively obvious to most researchers in the area of supercompilation,
not all of these cases have been formally described in research papers.) It is most
impressing when a (relatively) simple supercompiler can optimize some programs
equally well (or better!) than some other complicated specialized tool.

A second important reason is the conceptual simplicity of supercompilation.
Supercompilation is not tied to a single specific language, nor even to a family of
languages, although most of the existing research has been done in the context of
functional languages.

Another valuable feature of supercompilation is that it has applications beyond
optimization. There are very successful attempts to apply it to program analysis,
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for example. It is tempting to image a 2-in-1, or even 3-in-1 tool, which can cover
program optimization, analysis, synthesis, etc.

Last but not least, supercompilation is itself just a specialized application of a
very general philosophical principle, invented also by V. F. Turchin — the theory
of “metasystem transitions”. We shall speak a bit more about that in the next
section.

A little history

Valentin Fyodorovich Turchin (1931-2010) — the creator of supercompilation —
could be called a Programmer-Philosopher.

“Valentin Fedorovich Turchin, born in 1931, holds a doctor’s degree in the physi-
cal and mathematical sciences. He worked in the Soviet science center in Obninsk,
near Moscow, in the Physics and Energetics Institute and then later became a se-
nior scientific researcher in the Institute of Applied Mathematics of the Academy
of Sciences of the USSR. In this institute he specialized in information theory and
the computer sciences. While working in these fields he developed a new computer
language that was widely applied in the USSR, the "Refal” system. After 1973
he was the director of a laboratory in the Central Scientific-Research Institute for
the Design of Automated Construction Systems. During his years of professional
employment Dr. Turchin published over 65 works in his field. In sum, in the 1960s
and early 1970s, Valentin Turchin was considered one of the leading computer spe-
cialists in the Soviet Union.” (from L. R. Graham’s foreword to “The phenomenon
of science” by Turchin [24].)

“The intellectual pivot of the book is the concept of the metasystem transition —
the transition from a cybernetic system to a metasystem, which includes a set of
systems of the initial type organized and controlled in a definite manner. I first
made this concept the basis of an analysis of the development of sign systems
used by science. Then, however, it turned out that investigating the entire process
of life’s evolution on earth from this point of view permits the construction of a
coherent picture governed by uniform laws....” (from the introduction to “The
phenomenon of science” by Turchin [24].)

In 1966, Turchin invented Refal (REcursive Functions Algorithmic Language) —
a programming language that was quite different from most other existing ones.
Refal was oriented towards describing and processing other languages. Even a brief
description of Refal is beyond the scope of this article, let’s just simply mention
that it quickly gathered a small group of active supporters which met regularly in
Moscow. The next 5-6 years were devoted to creating an efficient implementation
of Refal — first an interpreter, and later a compiler as well. The compiler was
itself written in Refal: it took Refal programs as input and generated assembly
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programs as output. But nothing prevented the generation of Refal as output as
well. This was how the idea of driving was born, which Turchin originally described
as “equivalent transformations of Refal functions”. In 1974, driving was described
already in the context of the theory of metasystem transitions.

In 1977, Turchin was forced to leave the Soviet Union; in the same year an
English translation of Turchin’s “opus magnum” — the book “The phenomenon of
science” — was published in the USA. This book was already finished in 1970 and
ready for printing in 1973, but its publication in the Soviet Union was blocked
for political reasons. Since then, Turchin lived and worked in New York, first in
the Courant Institute, later in the City College. Starting from 1989, Turchin was
again able to visit Russia, which he did regularly till his death in 2010.

We can distinguish — quite subjectively — 3 periods in the history of supercom-
pilation.

» 1970s-1980s. Refal supercompilers. Starting from 1979, Turchin published
(with coauthors) several tens of articles on supercompilation and metacom-
putation. It is now obvious that a huge number of interesting ideas lies
scattered inside these articles. The problem was that many concepts were
given in only a semi-formal, fragmentary way, and only in terms of Refal:
for Turchin, Refal and supercompilation were inseparable. Unfortunately,
for most people at the time even the description of driving seemed too com-
plicated and incomprehensible. And no article contained a full and self-
contained description of the complete process of supercompilation. For these
reasons, in spite of the large number of publications on the subject, till the
early 1990s supercompilation remained understood and appreciated only by
a small number of “initiates”. Turchin’s articles [5, 25, 3, 26, 27, 28, 29| are
some of the milestones of this period.

» 1990s. Supercompilation of first-order functional languages. Andrei Klim-
ov’s and Robert Gliick’s article “Occam’s Razor in Metacompuation: the
Notion of a Perfect Process Tree” [30] about the essence of driving was the
first work aimed at understanding supercompilation as a general technique,
independent of Refal. In 1994 Morten H. Sgrensen made an important further
step — in his MSc thesis, “Turchin’s Supercompiler Revisited: an Operational
Theory of Positive Information Propagation,” [6] he reformulated the key
ideas of supercompilation in the context of a simple first-order functional
language (essentially the same as SLL). This was the first work describing
the process of supercompilation in full. It was followed by a number of other
articles [31, 32, 33, 34, 9, 35| explaining supercompilation and comparing it
to other program-transformation methods.
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» 2000s. Supercompilation of higher-order functional languages. The latest
wave of renewed interest in supercompilation started in the second half of
the 2000s. Many new milestones were passed (supercompilers for call-by-
need, call-by-value, etc.), but the single most important shift so far has been
from first-order to higher-order functional languages. Regular international
workshops on supercompilation are being held — META-2008 [36], META-
2010 [37], META-2012 [38], META-2014 [39].

Current trends

This is only an introductory article on supercompilation, and a detailed survey of
the current state of the field is beyond its scope. Instead, we list some existing
supercompilers in the next section. Very briefly, one of the main goals in current
research is to build a supercompiler which can transcend the experimental status
and become practically useful for a larger audience. Another important trend is
the application of the ideas of supercompilation in new contexts.

If you are curious to see a more detailed picture of the current state of super-
compilation research, many recent PhD theses and other articles [6, 40, 41, 14, 42,
17, 43, 18, 44] contain very good overview sections.

Existing supercompilers

We list here some existing supercompilers. The list is not exhaustive; it contains
implementations which have interesting features, are publicly accessible, and which
are either actively developed, or at least have been until recently. Note that all
these implementations are considered experimental.

» SCP4 [45]. SCP4 is the latest incarnation of the first ever supercompiler,
which was developed for the Refal language. It supercompiles programs in a
recent version of Refal, Refal-5. SCP4 utilizes some of the features of Refal,
which make it particularly suited to supercompilation, like the associativity
of sequence concatenation. It also features a number of extensions of the basic
super-compilation method: recognition of constant functions, recognition of
concatenation monomials, and collection and analysis of output formats.
SCP4 is described in detail in [42] and in the monograph [46]. SCP4 can
extend the program domain in the following sense: if the input program
loops or stops with an error on certain inputs, it is sometimes possible for
the residual program to successfully terminate on these inputs.

» A (nameless) supercompiler for the TSG language [47]. TSG is a greatly
simplified version of LISP, which is “flat” (no nested function calls are al-
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lowed). Besides the experimental supercompiler for TSG described in [35],
there exist implementations for a number of other methods, which have arisen
in the context of supercompilation, and which, unfortunately, get less atten-
tion than they deserve. These methods include neighborhood analysis, neigh-
borhood testing, inverse programming, and nonstandard semantics [31].

Jscp[48] [49]. A supercompiler for Java and the first supercompiler for an
object-oriented, real-world language. One of the main conclusions of this ex-
periment: supercompilation of non-functional languages is much more com-
plicated. Jscp, unlike most other supercompilers in this list, is closed-source.

A supercompiler for Timber [50]. Timber is a pure object-oriented language
with call-by-value semantics mostly inspired by Haskell. Its supercompiler
treats the purely functional subset of the language. The main goal of this
project is to achieve similar optimizations when supercompiling a call-by-
value language — compared to a call-by-name language — while fully preserv-
ing the semantics of the original program. Good descriptions exist in [17, 18].

Supero [51]. A supercompiler for a subset of Haskell. Supero is the first
supercompiler to treat a call-by-need language, which was actually the main
goal of the project [14, 15].

SPSC [52]. SPSC is another toy supercompiler for SLL. The main goal was
to implement positive supercompilation, as described (but not implemented)
by Serensen [34, 9]. SPSC is described in [53].

HOSC [54]. HOSC is a supercompiler for a (call-by-name) Haskell subset.
Unlike many other projects, where the main goal is program optimization,
here the main interest lies in program analysis by supercompilation. Besides
standard supercompilation, HOSC can also perform “two-level” supercompi-
lation, based on discovering and applying “improvement” lemmas [43, 55].

Optimusprime [56]. Optimizes functional programs, which are then run on
a specialized FPGA-build processor (Reduceron) [22].

CHSC [57]. Another supercompiler for a Haskell subset [16]. The main goal
of this project was to include supercompilation as an optimization pass inside
GHC. An important technical difference is that CHSC does not perform
lambda-lifting as a preprocessing step, unlike most other supercompilers for
higher-order languages.

Distillation [58]. Most supercompilers use configurations based on expres-
sions with free variables. Distillation uses configurations, each of which in
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turn is similar to a configuration graph. In other words, the nodes of distil-
lation’s configuration graphs contain nested graphs; and folding and gener-
alization must be defined over graphs. Such complications are the price for
obtaining more powerful optimizations, compared to standard supercompi-
lation [59, 60].

MRSC [61] A toolkit for building “multi-result” supercompilers. Multi-result
supercompilation [62] is another generalization of the standard supercompi-
lation technique, where the supercompiler is permitted to return multiple
residual programs (all correct, of course). While this may seem useless at
first glance, it turns our that this extension opens the way for a much more
flexible and modular description of supercompilation, and in the same time
permits some optimizations, which are out of reach for the standard methods.

A Coq framework for building formally verified supercompilers [63] A
framework in Coq for building modular supercompilers by just defining the
basic ingredients (configurations, driving, folding, etc.), and plugging them
into a prefabricated generic supercompiler [64]. The organization of the su-
percompiler is very similar to the one we have just described, and there is a
complete example supercompiler for a language very close to SLL. The main
advantage of the framework is that it facilitates formally establishing the
correctness of each new supercompiler, by just having to prove some simple
properties concerning the basic building blocks.

A supercompiler for Erlang [65] A recent first step towards a practical su-
percompiler for another popular language, Erlang.

TT-Lite [66] A supercompiler for a version of Martin-Lof’s Type Theory
(MLTT). TT-Lite is the first supercompiler for a terminating (non-Turing-
complete) language with dependent types [67]. Another interesting feature
is the generation of “certificates”, containing formal, automatically verifiable
evidence that the residual program is equivalent to the input one in each
specific instance. The certificates themselves are encoded as MLTT terms.

Instead of a conclusion

The main driving force leading to this article was the following idea: using Haskell
to describe — in a clear and modular way — the main ingredients of a minimalistic
supercompiler and show how they fit together. As a result we arrived at the
following definition:

supercompile :: Task -> Task
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supercompile (e, p) =
residuate $ simplify $ foldTree §$
buildFTree (addPropagation $ driveMachine p) e

The text of the article is, in fact, just an attempt to describe each of the parts of
this definition and to show what effects they can achieve together.

We hope the reader will take some time to study SC Mini’s sources, where
comments describe some interesting technical details of the implementation.

Where can we go from here?

If you are interested in learning more about supercompilation, here is a short list
of possible next steps:

1. The articles [9, 34] are still very good and readable introductions to the
standard techniques used in supercompilation, including some not covered
here, such as using homeomorphic embedding as a whistle and using “most
specific generalization” as a generalization algorithm.

2. the Google group “Supercompilation and Related Techniques” [68] contains
the most up-to-date discussions and announcements concerning supercompi-
lation.
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The SC Mini Supercompiler

by llya Klyuchnikov (ilya.klyuchnikov@gmail.com)
and Dimitur Krustev (dkrustev@gmail.com)

The internals of the supercompiler SC Mini are explained in this appendiz. The
actual code is at https: // github. com/ ilya-klyuchnikov/sc-mint .

Introduction

The SC Mini sources can — somewhat subjectively — be divided into the following
parts:

1. Data type definitions with some basic operations: SLL abstract syntax; basic
operations on SLL expressions; definition of a SLL “task” and “graph of
configurations”.

» Data.hs

2. Auxiliary functions for working with the main data structures: parser, sub-

stitutions, expression comparison, etc.
» DataUtil.hs

3. Main part — interpreter, driving, folding, transformers transform, deforest

and supercompile, residual task generator.
» Interpreter.hs

Driving.hs

Treelnterpreter.hs

Folding.hs

Generator.hs

Prototype.hs

Deforester.hs
» Supercompiler.hs

4. A set of examples together with their results.
» Demonstration.hs

vVvyvyvyyvyy
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The full SC Mini sources are listed, only the parsers/pretty-printers are omit-
ted. New definitions are illustrated with actual output from running them. All
interesting examples are collected in the module Demonstration.hs. The reader
can also download and directly play with the actual sources.

For convenience, we recall here the definition of SLL operational semantics.

con == ()| g(con,...)
red == fle,...,en) | g(Cler,... en),...) | g(v,...)

Figure 1: SLL: expression decomposition

Z[e] = e

if e is a value

C(Zed], - - -, Z]en])

Ifcon{e{vy :=e1,...,v, := e })]

if f(xg,...,2,) =€

Ileon{g(C(e1, ... em)smits---s€n))] = ZI[con(e{vy :=e1,...,v,:=en})]
if g(C(V1,. ., Um), Umgds e oy Un) =

Z[C(ey, ..., en)]
Tcon(f(e1,---,en))]

44U

e

Figure 2: Reduction step rules

Data.hs

First a definition of SLL abstract syntax. To make generalization easier, it already
includes let-expressions.

type Name = String

data Expr = Var Name | Ctr Name [Expr] | FCall Name [Expr]
| GCall Name [Expr] | Let (Name, Expr) Expr
deriving (Eq)

data Pat = Pat Name [Name] deriving (Eq)

data GDef GDef Name Pat [Name] Expr deriving (Eq)

data FDef FDef Name [Name] Expr deriving (Eq)

data Program = Program [FDef] [GDef] deriving (Eq)

Type synonyms for operations on expressions: renaming, substitution, fresh-
name supply.

type Renaming = [(Name, Name)]
type Subst = [(Name, Expr)]
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type NameSupply = [Namel]

Technically we work with SLL-expressions almost everywhere. But to distinguish
in which sense we use them — expression, configuration, value — we introduce extra
type synonyms:

type Conf = Expr

type Value = Expr

type Task = (Conf, Program)
type Env = [(Name, Value)]

Probably the most interesting data types:

data Contract = Contract Name Pat

data Step a = Transient a | Variants [(Contract, a)] | Stop
| Decompose [a] | Fold a Renaming

data Graph a = Node a (Step (Graph a))

type Tree a = Graph a

type Node a = Tree a

type Machine a = NameSupply -> a -> Step a

In the following we shall consider a program as a kind of machine. Machine a
operates with some generalized states of type a. We assume further, that states
can contain named subparts (using identifiers), and that the machine may need
to produce some new named subparts. If the machine is given some infinite
list of names and some current state, then it computes in one step a next gen-
eralized state. The data type Step a describes the kinds of steps we use —
transient, final, decomposition, etc. The most interesting kind of step — Vari-
ants [(c1, al), (c2, a2),...] — describes case analysis. Its meaning is: if
the condition c1 holds, then the next state will be a1, if c2 holds — a2, etc. We
consider only simple conditions of type Contract — namely that some variable
matches a certain pattern. Graph a — is the graph of state transitions.

We shall use further only configurations as states, but the type of state is delib-
erately abstracted here for full generality.

DataUtil.hs

The module DataUtil defines some (mostly boring) auxiliary functions. Its text
is included for completeness anyway.
Working with abstract syntax:

isValue :: Expr -> Bool
isValue (Ctr args) = and $ map isValue args
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isValue _ = False

isCall :: Expr -> Bool
isCall (FCall _ _) = True
isCall (GCall _ _) True
isCall _ = False

isVar :: Expr -> Bool
isVar (Var _) = True
isVar _ = False
fDef :: Program -> Name -> FDef
fDef (Program fs _) fname =
head [f | f@(FDef x _ _) <- fs, x == fname]
gDefs :: Program -> Name -> [GDef]
gDefs (Program _ gs) gname =

[g | g@(GDef x _ _ _) <- gs, x == gname]

gDef :: Program -> Name -> Name -> GDef
ghDef p gname cname =
head [g | g@(GDef _ (Pat c _) _ _) <-
gDefs p gname, c¢ == cname]

Applying substitutions:

(//) :: Expr -> Subst -> Expr

(Var x) // sub = maybe (Var x) id (lookup x sub)

(Ctr name args) // sub = Ctr name (map (// sub) args)
(FCall name args) // sub FCall name (map (// sub) args)
(GCall name args) // sub GCall name (map (// sub) args)
(Let (x, el) e2) // sub Let (x, (el // sub)) (e2 // sub)

Working with names. nameSupply produces an infinite list of names. unused
removes from the list of names those used inside a condition. vnames’ — all the
names inside an expression, vnames — the same without repetitions. isRepeated
checks if a name occurs more than once in an expression.

nameSupply :: NameSupply

nameSupply = ["v" ++ (show i) | i <- [1 ..] ]
unused :: Contract -> NameSupply -> NameSupply
unused (Contract _ (Pat _ vs)) = (\\ vs)
vnames :: Expr -> [Namel
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vnames = nub . vnames’

vnames’ :: Expr -> [Namel

vnames’ (Var v) = [v]

vnames’ (Ctr _ args) = concat $ map vnames’ args

vnames’ (FCall _ args) = concat $ map vnames’ args

vnames ’ (GCall _ args) = concat $ map vnames’ args

vnames’ (Let (_, el) e2) = vnames’ el ++ vnames’ e2
isRepeated :: Name -> Expr -> Bool

isRepeated vn e = (length $ filter (== vn) (vnames’ e)) > 1

renaming el e2 finds a renaming (if possible) from an expression el into an

expression e2 (probably a more elegant definition is possible):

renaming :: Expr -> Expr -> Maybe Renaming
renaming el e2 =
f $§ partition isNothing $ renaming’ (el, e2) where

f (x:_, _) = Nothing
f (L, ps) = g gsl gs2
where
gsl = groupBy (\(a, b) (c, d) -> a == c¢)
$ sortBy h $§ nub $ catMaybes ps
gs2 = groupBy (\(a, b) (c, d) -> b == d)
$ sortBy h $§ nub $ catMaybes ps
h (a, b) (c, d) = compare a c
g Xs ys =
if all ((== 1) . length) xs

&& all ((== 1) . length) ys
then Just (concat xs) else Nothing

renaming’ :: (Expr, Expr) -> [Maybe (Name, Name)]
renaming’ ((Var x), (Var y)) =
[Just (x, y)l
renaming’ ((Ctr nl argsl), (Ctr n2 args2)) | nl == n2 =
concat $ map renaming’ $ zip argsl args2

renaming’ ((FCall nl argsil), (FCall n2 args2)) | nl == n2 =
concat $ map renaming’ $ zip argsl args2
renaming’ ((GCall nl argsil), (GCall n2 args2)) | nl == n2 =

concat $ map renaming’ $ zip argsl args2
renaming’ (Let (v, el) e2, Let (v’, el’) e2’) =
renaming’ (el, el’) ++
renaming’ (e2, e2’ // [(v, Var v’)])
renaming’ = [Nothing]
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Expression size (used inside the whistle):

size :: Expr -> Integer

size (Var _) =1

size (Ctr _ args) = 1 + sum (map size args)
size (FCall _ args) = 1 + sum (map size args)
size (GCall _ args) = 1 + sum (map size args)
size (Let (_, el) e2) =1 + (size el) + (size e2)
Other utility functions:

nodelLabel :: Node a -> a

nodeLabel (Node 1 _) =1

step :: Node a -> Step (Graph a)

step (Node _ s) = s

Interpreter.hs

The module Interpreter defines an evaluator for SLL expressions.

The interpreter int works in “small-step” fashion, or in other words, reduction
steps are repeated until the expression becomes a value. intStep implements a
single reduction step; note that it is not recursive.

int :: Program -> Expr -> Expr
int p e = until isValue (intStep p) e

intStep :: Program -> Expr -> Expr
intStep p (Ctr name args) =
Ctr name (values ++ (intStep p x : xs)) where
(values, x : xs) = span isValue args

intStep p (FCall name args) =
body // zip vs args where
(FDef _ vs body) = fDef p name

intStep p (GCall gname (Ctr cname cargs : args)) =
body // zip (cvs ++ vs) (cargs ++ args) where

(GDef _ (Pat _ cvs) vs body) = gDef p gname cname

intStep p (GCall gname (e:es)) =
(GCall gname (intStep p e : es))
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intStep p (Let (x, el) e2) =
e2 // [(x, el)]

The interpreter eval, on the other hand, is a “big-step” evaluator, and hence —
recursive.

eval :: Program -> Expr -> Expr
eval p (Ctr name args) =
Ctr name [eval p arg | arg <- args]

eval p (FCall name args) =
eval p (body // zip vs args) where

(FDef _ vs body) = fDef p name
eval p (GCall gname (Ctr cname cargs : args)) =
eval p (body // zip (cvs ++ vs) (cargs ++ args)) where
(GDef _ (Pat _ cvs) vs body) = gDef p gname cname

eval p (GCall gname (arg:args)) =
eval p (GCall gname (eval p arg:args))

eval p (Let (x, el) e2) =
eval p (e2 // [(x, el)])

For the small-step interpreter it is easy to count the number of performed reduc-
tion steps — it is enough to introduce a counter in the outer loop. intC returns a
pair (value, n), where value is a (surprise!) value, and n — the number of reduc-
tion steps performed. This number is used to measure optimization “speed-up”.

sll_run :: Task -> Env -> Value
sll_run (e, program) env = int program (e // env)
sll_trace :: Task -> Subst -> (Value, Integer)

sll_trace (e, prog) s = intC prog (e // s)

intC :: Program -> Expr -> (Expr, Integer)
intC p e = until t f (e, 0) where
t (e, n) = isValue e

f (e, n) = (intStep p e, n + 1)

From now on we start illustrating the definitions discussed with example runs.
Each such example is actually a separate function definition in the module Demon-
stration. It is useful to distinguish SLL code from Haskell code. We well present
SLL code in color. (Actually in Demonstration.hs SLL code appears as strings,
which are parsed: even(x) = read "even(x)")
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The first example evaluates an expression, and also returns the number of re-
duction steps:

-- demo01
ghci> intC progl even(sqr(S(S(Z()))))
(True (), 15)

The next examples show that the small-step interpreter and the big-step inter-
preter give the same result:

-- demo02

ghci> int progl even(sqr(S(S(Z()))))
True ()

-- demo03

ghci> eval progl even(sqr(S(S(Z()))))
True ()

-- demo04

ghci> int progl sqr(sS(sS(z())))
S(S(S(s(z())))

-- demo0b

ghci> eval progl sqr(S(sS(zZ())))
S(S(S(s(z())))

A difference between the 2 interpreters appears, if we try to evaluate an expres-
sion with free variables (a configuration). int only signals an exception. eval, on
the other hand, returns some information before signaling failure:

-- demo06

ghci> int progl sqr(S(sS(x)))

Exception: Interpreter.hs: Non-exhaustive patterns in
function intStep

-—- demo07

ghci> eval progl sqr(sS(s(x)))

S(S( Exception: Interpreter.hs: Non-exhaustive patterns
in function eval

The difference is even more dramatic, if we try to evaluate an expression, which
has an infinite value. int directly loops, while eval starts to produce the outermost
constructors of the result.
ghci> prog3 = inf () = S(inf ());
inf ) = S(inf ));
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-—- demo08
ghci> int prog3 inf ()
“CInterrupted.

-- demo09

ghci> eval prog3 inf ()
S(S(S(S(S(S(8(S(S(S(S(S(s(sS(S(S(8(s(s(s(S(s(s(s(s(s(8(s(s
(S(S(S(S(S(sS(S(S(S(8(s(S(S(S(8(s(S(S(S(s(s(s(s(s(s(s(s(s(
S(S(S(s(S"CInterrupted.

Driving.hs

buildTree creates a (possibly infinite) tree of configurations from a given start
configuration. The main work happens inside bt, which proceeds recursively,
maintaining not only a current configuration, but also a list of fresh names name-
Supply. This name supply is used, when the machine m returns as next step Vari-
ants [(cl, el), (c2, e2), ...];in this case we recursively build the subtrees
for e1, e2, ... The subtlety is that we should not use names appearing in the con-
dition c1 during the construction of the subtree for e1, as it might result in name
clashes. Therefore, (unused c ns) is the name supply used in the corresponding
recursive call.

buildTree :: Machine Conf -> Conf -> Tree Conf
buildTree m e = bt m nameSupply e

bt :: Machine Conf -> NameSupply -> Conf -> Tree Conf
bt m ns ¢ = case m ns c of
Decompose ds -> Node ¢ $ Decompose (map (bt m ns) ds)
Transient e -> Node ¢ $ Transient (bt m ns e)
Stop -> Node c Stop
Variants cs -> Node c $
Variants [(c, bt m (unused c ns) e) | (c, e) <- csl]

A machine based on driving imitates a step of the execution of eval. driveMa-
chine p creates such a machine for a given program p. If the configuration is a
variable or a value, then the machine stops. If the configuration is a construc-
tor with arguments, then eval would proceed to evaluate those arguments. As
driveMachine p models a step of eval, it returns Decompose args, indicating
that the next step should continue with evaluation of the arguments. Subexpres-
sions t1 and t2 of Let-expression let x=t1 in t2 are processed independently,
as this is important for generalization: so, again we use Decompose [t1l, t2].
Driving an indifferent-function call is simple — we return the function body with
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substituted parameters (this is called “unfolding”). Driving a curious-function call,
where the first argument is a constructor, proceeds in a similar way — the corre-
sponding clause of the function definition is taken, and parameters are substituted.
The most interesting cases follow: If we have a curious-function call with a first
argument — a variable — then we consider all possible clauses in the definition of
the function as potential continuations. This is where we use the name supply to
build a new instance of the pattern with fresh names. Study the remaining last
case as an exercise.

driveMachine :: Program -> Machine Conf
driveMachine p = drive where
drive :: Machine Conf

drive ns (Var _) = Stop
drive ns (Ctr _ []) = Stop
drive ns (Ctr _ args) = Decompose args
drive ns (Let (x, tl1) t2) = Decompose [tl, t2]
drive ns (FCall name args) =
Transient $ e // (zip vs args) where
FDef _ vs e = fDef p name
drive ns (GCall gn (Ctr cn cargs : args)) =
Transient $ e // sub where
(GDef (Pat cvs) vs e) = gDef p gn cn
sub = zip (cvs ++ vs) (cargs ++ args)
drive ns (GCall gn args@((Var _):_)) =
Variants $ variants gn args where
variants gn args =
map (scrutinize ns args) (gDefs p gn)
drive ns (GCall gn (inner:args)) =
inject (drive ns inner) where
inject (Transient t) =
Transient (GCall gn (t:args))
inject (Variants cs) = Variants $ map f cs
f (¢, t) = (c, GCall gn (t:args))

scrutinize :: NameSupply -> [Expr] -> GDef
-> (Contract, Expr)

scrutinize ns (Var v : args)
(GDef _ (Pat cn cvs) vs body) =

(Contract v (Pat cn fresh), body // sub) where
fresh = take (length cvs) ns
sub = zip (cvs ++ vs) (map Var fresh ++ args)

Some examples follow — a driving step with case analysis:

50



Ilya Klyuchnikov, Dimitur Krustev: The SC Mini Supercompiler

-- demol0
ghci> driveMachine progl nameSupply
odd (add (x, mult(x, S(x))))
x == Z() => odd(mult(x, S(x)))
x == S(v1l) => odd(S(add(vl, mult(x, S(x)))))

A transient step:

-- demoll

ghci> driveMachine progl nameSupply
odd (S(add(vl, mult(x, S(x)))))

=> even(add(vl, mult(x, S(x))))

An infinite tree of configurations:

-- demolZ2
ghci> buildTree (driveMachine progl) even(sqr(x))
even (sqr(x))

| __even(mult(x, x))
?x == Z(Q)
even(Z())

| __True ()
?x == S(v1)
| __even(add(x, mult(vi, x)))
?7x == Z()
| __even(mult(vl, x))
?7vl == Z()
even(Z())

| __True ()
?7vl == S(v2)
| __even(add (x, mult(v2, x)))
?x == Z(Q)
| __even(mult(v2, x))
?7v2 == Z()
even(Z())

| __True ()
?7v2 == S(v3)
even(add(x, mult(v3, x)))
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Treelnterpreter.hs

The tree interpreter contains not so many surprises. The only interesting cases

are:

» a node with variants (Node e (Variants cs)): we choose that subbranch,
whose condition matches the current environment (env);

» a folding node (Node

(Fold t ren)): here we continue with the subtree

(which would correspond to a loop in the graph), first performing the corre-
sponding renaming of the current environment.

intTree :: Tree Conf -> Env -> Value
intTree (Node e Stop) env =

e // env
intTree (Node (Ctr cname _) (Decompose

ts)) env =

Ctr cname $ map (\t -> intTree t env) ts

intTree (Node _ (Transient t)) env
intTree t env

intTree (Node e (Variants cs)) env =
head $§ catMaybes $ map (try env) cs

intTree (Node (Let (v, el) e2) (Decompo

se [t1, t2]1)) env =

intTree t2 ((v, intTree tl1 env) : env)

intTree (Node _ (Fold t ren)) env =
intTree t $ map (\(k, v) -> (renKey
renKey k = maybe k fst (find ((

try :: Env -> (Contract, Tree Conf) ->

try env (Contract v (Pat pn vs), t) =
if cn == pn then (Just $ intTree t
else Nothing where

k, v)) env where
k ==) . snd) ren)

(Maybe Expr)

extEnv)

c@(Ctr cn cargs) = (Var v) // env

extEnv = zip vs cargs ++ env

An example of using infinite trees for evaluation:

-- demol3

ghci> intTree (buildTree (driveMachine
[("x", S(S(Z0))))]

True ()

-- demoly

ghci> intTree (buildTree (driveMachine
[C"x", S(s(s(Z20)))))]

False ()
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Folding.hs

The tree of configurations is folded into a graph using the well-known technique
of “tying the knot” (http://www.haskell.org/haskellwiki/Tying_the_Knot).
We traverse the tree top-down, accumulating the encountered configurations. If
the current configuration coincides with a previous one modulo renaming, then a
loop is formed and we do not go inside the corresponding subtree.

foldTree :: Tree Conf -> Graph Conf
foldTree t = fixTree (tieKnot []) t

tieKnot :: [Node Conf] -> Node Conf -> Tree Conf
-> Graph Conf
tieKnot ns n t@(Node e _) =
case [(k, r) | k <- n:ns, isCall e,
Just r <- [renaming (nodelLabel k) el] of
[ -> fixTree (tieKnot (n:ns)) t

(k, r):_ -> Node e (Fold k r)
fixTree :: (Node t -> Tree t -> Graph t) -> Tree t
-> Graph t
fixTree f (Node e (Tramsient c)) = t where
t = Node e $ Transient $ £ t ¢
fixTree f (Node e (Decompose cs)) = t where
t = Node e $ Decompose [f t c | c <- cs]
fixTree f (Node e (Variants cs)) = t where
t = Node e $ Variants [(p, f t c) | (p, c) <- cs]

fixTree f (Node e Stop) = (Node e Stop)

The following example is shown in the main article, subsection “Folding”.

-—- demolb
ghci> foldTree $ buildTree (driveMachine progl)
even (sqr(x))

We repeat the graph drawing here, marking coinciding (up to renaming) nodes
with the same color.

53


http://www.haskell.org/haskellwiki/Tying_the_Knot

The Monad.Reader

(ga)s == ¢n 0z == ¢gr

mﬁﬁx ‘ga)aTnu nm>vvvmvmvnw>wu

(s Hf

(()Z)usas mﬁnx ‘ga)3Tnu Jﬁvvmv:w\,wu
1 |

mﬁﬁﬁx ‘gA)3TnU Jﬁvvmvmvvvw mQN .mbpﬂzﬁuvﬁov mamHmmu

(%8)S uV/ \ 0z ==

Q:x ‘pa)aTnm .5%%2&

(PA)S == I8

mﬁix ‘TA)3TNU .¢>vunmvmvnw>mu

(1) Hj

mAmnN ‘1A)3TNW ,m>vﬁﬂNvﬁm>®u mﬁAmx ‘ea)aTnu Jnvﬁﬁmvvﬁou g
H (ep)s == 14 0OZ == 18
QQ@ ‘TA)3TRU ,migmvmvnuou \2“,, ,ﬁ.;i:.s%o/ a
(en)s == 0z == ¢
Q:x ‘1a)3TnW .Nsuvmvuvou Qix ‘ga)3Tnu .xvvumvngwu QCSE&@
H (Tn)s == 14 0z == 14

((x ‘1A)3TNU)ULAD

hﬁ (((x ‘Ta)3TnW ‘ZA)pPPE) mv:m>ou

Am>vm4vn/

mﬁ ((x ‘1A)3TnuU .xvvvmvnw>mu

(am)s ==

((x ‘x)3Tnuw)usss

((x)abs)usns

o4



10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Ilya Klyuchnikov, Dimitur Krustev: The SC Mini Supercompiler

Generator.hs

The module Generator is quite big, and full of technical details, mostly related to
working with names

residuate

Graph Conf -> Task

residuate tree = (expr, program) where
(expr, program, _) = res nameSupply [] tree
res NameSupply -> [(Conf, Conf)] -> Graph Conf

res

res

res

res

res

-> (Conf

, Program, NameSupply)

ns mp (Node e Stop) = (e, Program [] [], ns)

ns mp (Node (Ctr cname _) (Decompose ts)) =
(Ctr cname args, pl, nsl) where
(args, pl, nsl) = res’ ns mp ts

ns mp (Node (Let (v, _) _) (Decompose ts)) =

(v, e1)], pl, nsl) where
, €2], pl, nsl) = res’ ns mp ts

(n:ns) mp (Node e (Transient t)) =

(e2 // [
([el

(fcall,
vs =
f1
fcal

Program ((FDef f1 vs body):fs) gs, nsl) where
vnames e
"f" ++ (tail n)

1 = FCall f1 $ map Var vs

(body, Program fs gs, nsl) =

res ns ((e, fcall) : mp) t

(n:ns) mp (Node e (Variants cs)) =

(gcall,
vs@ (
(vs_

gl =
gcal
(bod

pats
newG

isUs

Program fs (newGs ++ gs), nsl) where
pv:vs’) = vnames e
, vs’_) =
if (isRepeated pv e) && (isUsed pv cs)
then (pv:vs, vs) else (vs, vs’)
"g" ++ (tail n)
1 = GCall g1 $ map Var vs_
ies, Program fs gs, nsl) =
res’ ns ((e, gcall) : mp) $ map snd cs
= [pat | (Contract v pat, _) <- cs]
s = [GDef g1 p vs’_ b |
(p, b) <= (zip pats bodies)]

ed vname cs =
any (any (== vname) . vnames . nodelLabel . snd)
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cSs

res ns mp (Node e (Fold (Node base _) ren)) =
(call, Program [] [], ns) where
call = baseCall // [(x, Var y) | (x, y) <- renl]
Just baseCall = lookup base mp

res’ :: NameSupply -> [(Conf, Conf)] -> [Graph Conf]
-> ([Conf], Program, NameSupply)
res’ ns mp ts = foldl f ([], Program [] [], ns) ts where
f (cs, Program fs gs, nsl) t =
(cs ++ [g], Program (fs ++ fsl) (gs ++ gsl), ns2)
where
(g, Program fsl gsl, ns2) = res nsl mp t

isBase el (Node _ (Decompose ts)) =

or $§ map (isBase el) ts
isBase el (Node _ (Variants cs)) =

or $§ map (isBase el . snd) cs
isBase el (Node _ (Transient t)) = isBase el t
isBase el (Node _ (Fold (Node e2 _) _)) = el =
isBase el (Node e2 Stop) = False

= e2

residuate delegates the main part of the work to res, which processes the tree
top-down, left-to-right. The result of traversing each subtree is a new configuration
and a program (a list of indifferent and curious function definitions). The main
complication is to ensure a unique name for each generated function. A more
detailed explanation would probably get too long. The reader is rather invited to
study directly the sources. To aid understanding, we list the graph obtained for
the KMP-test from the main article, and then repeated the same graph overlaid

with the new generated configurations.
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Cm("AAB", s, "AAB", s))

Cx(s, ’A’, "AB", "AAB", S)]

g == un s == vl:v2
False() 1f(qu(v1), m("AB", v2, "AAB", vi1:v2), n(vi:v2, "AAB“))]

vl == / \vl== 'B?

[X(V?, ’A’, "B", "AAB", ’A’.VQ)) m("AAB", v2, "AAB", VQ)J

v2 == "n v2 == v3:v4
False() [if(qu(v?:), m("B", v4, "AAB", ’A’:v3:v4), n(’A’:v3:v4, "AAB"))J

v3 ==b:/://////////// \\\\\\\\\\\\\Zf\:= >

[if(True(), m("B", v4, "AAB", ’A’:’A’:v4), n(’A’:’A’:v4, "AAB"))) [m("AAB", v4, "AAB", v4)]

(%(V4, ’B’, nu’ "AAB", ’A’:’A’ZV4#)

v4 == "n v4 == vb:v6

le(qu(vS), m("", v6, "AAB", ’A’:’A’:v5:v6), n(’A’:’A’:v5:v6, "AAB")))

Cif(True(), m("B", v6, "AAB", ’A’:’A’:v6), n(’A’:’A’:v6, "AAB")) True()
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False()
L g3(vl, v2) J
vi == A T~ vl =B
(X(VZ A’ , "B", "AAB", ’A’: VQ)W ‘m("AAB", v2, "AAB", VQ)W
g4 (v2) J ‘ £1(v2) J
(1f(qu(v3), m("B", v4, "AAB", ’A’:v3:v4), n(’A’:v3:v4, "AAB"))W
t gb(v3, v4) J
v3 = n __— T~ v3 = B’
(ﬁf(True(), m("B", v4, "AAB", ’A’:’A’:v4), n(’A’:’A’:v4, ”AAB"))W (m("AAB", va, "AAB", v4)w
L f6(vd) J \ f1(v4) J
(X(V4 )B;’ nu, "AAB" 7AJ:7A} V4)W

g7 (v4) J
. ,/ \ v4d == v5:v6
(Ji(qu(vS), m("", v6, "AAB", ’A’:’A’:v5:v6), n(’A’:’A’:v5:v6, "AAB"))W
g8(v5, v6) J
vb == A’ / v == ’B’

[if(f[‘rue(), m("B", v6, "AAB", f’GA(’V:G’)A’:VG), n(CA’: A’ :v6, "AAB"))}

In the last figure we again mark by the same color nodes, which are equal up
to renaming. The upper part of each node contains the original configuration, the
lower part — the new configuration generated by res.

ghci> let g =

-- demo24
ghci> residuate g

f1(s)
fi1(s) =

g2(s);

g2("") = False();
g2(vl:v2) = g3(vl, v2);

gB(’A’,
g3(’B’,

v2) = g4(v2);
v2) f1(v2);

gda("") = False();
gd(v3:v4) = gb(v3, v4);
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gb(’A’, v4) f6(vd);
gb(’B’, v4) f1(v4d);
f6(vd) = g7(v4d);

g7("") = False();
g7(vb6:v6) = g8(vh, v6);
g8(’A’, v6) = £6(v6);
g8(’B’, v6) True () ;

Propotype.hs

This is the simplest “prototype” supercompiler. No simplification (transient step

removal) of the graph is performed, no information propagation is done.

transform :: Task -> Task
transform (e, p) =
residuate $ foldTree $ buildFTree (driveMachine p) e

buildFTree builds the foldable tree. The only difference with buildTree
the fact, that generalization is performed if the whistle blows:

lies in

buildFTree :: Machine Conf -> Conf -> Tree Conf
buildFTree m e = bft m nameSupply e

bft :: Machine Conf -> NameSupply -> Conf -> Tree Conf
bft d (n:ns) e | whistle e = bft d ns $ generalize n e
bft d ns t | otherwise = case d ns t of

Decompose ds -> Node t $ Decompose $ map (bft d ns)
Transient e -> Node t $ Transient $ bft d ns e
Stop -> Node t Stop
Variants cs -> Node t $
Variants [(c, bft d (unused c¢ ns) e) | (c, e) <-

ds

cs]

Probably the simplest possible whistle:

sizeBound = 40
whistle :: Expr -> Bool
whistle e@(FCall args) =

not (all isVar args) && size e > sizeBound
whistle e@(GCall _ args) =

not (all isVar args) && size e > sizeBound
whistle = False

Generalization is also extremely simple, compared to most other supercompil-

ers — the biggest subexpression is lifted into a let for separate processing:
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generalize :: Name -> Expr -> Expr
generalize n (FCall f es) =
Let (n, e) (FCall f es’) where

(e, es’) = extractArg n es

generalize n (GCall g es) =
Let (n, e) (GCall g es’) where

(e, es’) = extractArg n es
extractArg :: Name -> [Expr] -> (Expr, [Exprl)
extractArg n es = (maxE, vs ++ Var n : ws) where
maxE = maximumBy ecompare es

ecompare x y =

(vs,

W : ws) = break (maxE ==) es

eType e = if isVar e then 0 else 1

compare (eType x * size x) (eType y * size y)

Deforester.hs

If we just add simplify (transient edge removal) to the text of transform, we

obtain deforestation:

deforest
deforest

Task -> Task
(e, p) =

residuate $ simplify $ foldTree $

simplify
simplify
Node
simplify
Node
simplify
Node
simplify

buildFTree (driveMachine p) e

Graph Conf -> Graph Conf
(Node e (Decompose ts)) =
e (Decompose $ map simplify ts)
(Node e (Variants cs)) =
e (Variants [(c, simplify t) | (c,
(Node e (Transient t)) | isBase e t
e $ Transient $ simplify t
(Node e (Transient t)) =

simplify t

simplify

t =t

t) <-

cs])
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Supercompiler.hs

As a next step, we extend deforestation with information propagation, to obtain
our final supercompiler:

supercompile :: Task -> Task
supercompile (e, p) =
residuate $ simplify $ foldTree $
buildFTree (addPropagation $ driveMachine p) e

addPropagation :: Machine Conf -> Machine Conf
addPropagation m ns e = propagateContract (m ns e)
propagateContract :: Step Conf -> Step Conf

propagateContract (Variants vs) =
Variants [(c, e // [(v, Ctr cn $ map Var vs)]) |
(c@(Contract v (Pat cn vs)), e) <- vs]
propagateContract step = step

The reader is encouraged to compare the trees produced by different transform-
ers:

-- demoZ21
ghci> foldTree $ buildFTree (driveMachine prog2)
match ("AAB", s)

-—- demo22
ghci> simplify $ foldTree $ buildFTree (driveMachine prog2)
match ("AAB", s)

-—- demo23
ghci> simplify $ foldTree $ buildFTree (addPropagation
(driveMachine prog2)) conf2

...and also the resulting residual tasks (listed also in the main article):

-- demo24
ghci> transform (match("AAB", s), prog2)

-—- demo2b
ghci> deforest (match("AAB", s), prog2)
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-- demo26
ghci> supercompile (match("AAB", s), prog2)

Anti-KMP test

This section lists in detail the results of the anti-KMP-test mentioned in the main
text. To improve readability, we set specifically for these examples sizeBound=10
The baseline transformer produces 19 functions.

-- demol8

ghci> transform (even(sqr(x)), progl)
f1(x)

f1(x) = g2(x, x);

£f3() = True();

f6() = True();

f7(v2, vi1, x) = g8(v2, vl1, x);

f10() = False();

f12(v4, v3, x) = g13(v4, v3, x);
£15() = True();
f16(v3, vi, x)
£19() = True();
g2(z(O), x) = £30);

g2(s(vl), x) = g4(x, x, vl);
gd(Z(O), x, v1) = gb(vl, x);
gd(S(v2), x, v1) = £f7(v2, vl, x);
gs(z(), x) = £f6();

gb(S(v2), x) = g4(x, x, v2);
g8(z(), vi, x) = g9(vl, x);
g8(S(v3), vi, x) = f16(v3, vl, x);
g9(z(), x) = £100);

g9(sS(v3), x) = gli(x, x, v3);
gli1(z(O), x, v3) = g9(v3, x);
gl1(S(v4), x, v3) = f12(v4, v3, x);
g13(z(), v3, x) = gl4a(v3, x);
g13(S(vhs), v3, x) = £f7(v5, v3, x);
g14(z(), x) = £15(0);

gl4a (S(vh), x) = g4(x, x, vb);
gl7(z(), v1, x) = gi18(vl, x);
gl7(S(v4), vi, x) = £7(v4, vl, x);
g18(z(), x) = £190);

g18(8(vd), x) = g4(x, x, v4);

gl7(v3, v1, x);
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Deforestation — 11 functions:

-- demol19

ghci> deforest (even(sqr(x)), progl)
gl(x, x)

f4(v2, vi, x) = gb(v2, vi, x);
gl(Zz(), x) = True();

gl(s(vl), x) = g2(x, x, vl);
g2(z(), x, v1) = g3(vl, x);
g2(sS(v2), x, vl1) = f4(v2, vl, x);
g3(Zz(), x) = True();

g3(s(v2), x) = g2(x, x, v2);
gb(Z2(), vi, x) = g6(vl, x);
gb(S(v3), vi, x) = gl0(v3, vl, x);
g6(Z(), x) = False();

g6 (s(v3), x) = g7(x, x, v3);
g7(Z2(), x, v3) = g6(v3, x);
g7(S(v4), x, v3) = g8(v4, v3, x);
g8(Z(), v3, x) = g9(v3, x);
g8(S(vb), v3, x) = f4(vb, v3, x);
g9(Zz(), x) = True();

g9(sS(vb), x) = g2(x, x, vb);
gl10(z(), v1, x) = gii(vl, x);
glo(S(v4), vi, x) = f4(v4, v1, x);
gl1(z(), x) = True();

gl1(S(v4), x) = g2(x, x, vd);

Supercompilation — 34 functions.

-—- demoZ20

ghci> supercompile (even(sqr(x)), progl)

gl(x)

gl(Zz()) = True();

gl(s(vl)) = g2(vil);

g2(Z()) = False();

g2(S(v2)) = g3(v2);

g3(Z()) = True();

g3(S(v3)) = g33(S(ga(v3)));

g4(Z()) = S(S(S(S(S(S(Z()))))));

g4 (8(v5)) = S(g32(v5, S(8(8(8(g31(vh, S(S(S(S(g30(v5,
S(S(S(s(g29(vs, g5(v5))))))))))))))))));

gs(z()) =20

gs(8(v10)) = S(S(S(S(S(g28(v10, g6(v10)))))));

g6(Z()) = 2Q);

g6(s(v12)) = S(S(S(S(8(8(g27(v12, g7(v1i2))))))));
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g7(z()) = Z20);

g7(S(v14)) = S(S(S(S(S(8(S(g26(vid, g8(v1i4))))III));

g8(z()) = Z20);

g8(S(v16)) = g25(S(S(S(S(S(8(8(8(v16)))))))),
g9 (v16, S(S(S(S(S(S(S(8(v1B)IIIIIIIIIND;

g9(z(), vi18) = Z(0);

g9(8(v19), v18) = gl0(vi8, vi9);

gl0(z(), v19) = gl1(v19);

g10(8(v20), v19) = S(gl2(v20, v19));

gl1(z(O) = 20;

g11(s(v20)) = g11(v20);

gl2(Z(), v19) = g13(v19);

gl2(S(v21), v19) = S(gl4(v21l, v19));

g13(z(O) = 20;

g13(8(v21)) = S(g13(v21));

g14(Z(), v19) = g15(v19);

gl4(8(v22), v19) = S(gl6(v22, v19));

gls(ZQ)) = Z20);

g15(8(v22)) = S(S(gl5(v22)));

gl6(z(), v19) = g17(v19);

gl6(S(v23), v19) = S(g18(v23, v19));

gl7(z () = 20;

gl7(S(v23)) = S(S(S(gl17(v23))));

g18(z(), v19) = g19(v19);

g18(S(v24), v19) = S(g20(v24, v19));

g19(z () = 20;

g19(S(v24)) = S(S(S(S(g19(v24)))));

g20(Z (), v19) = g21(v19);

g20(8(v25), v19) = S(g24(v25, g22(v19, v25)));

g21(z () = 20);

g21(8(v25)) = S(S(8(S8(S(g21(v25))))));

g22(z(), v25) = 2Q);

g22(S(v27), v25) = S(S(S(S(S(S(g23(v25, g22(v27,
v25))))))));

g23(Z(), v28) = v28;

g23(S(v29), v28) = S(g23(v29, v28));

g24(Z2(), v26) = v26;

g24 (8 (v27), v26) = S(g24(v27, v26));

g25(Z2(0), v17) = vi7;

g25(8(v19), v17) = S(g25(v19, vi7));

g26(z(), vi15) = vi5;

g26(S(v16), vib) = S(g26(vi6, vi5));

g27(z(), v13) = v13;
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g27(S(v14), vi3) = S(g27(vi4, vi3));
g28(Z(), vi1l) = viil;

g28(S(v12), vil) = S(g28(vi2, vil));
g29(Z2(0), v9) = v9;

g29(S(v10), v9) = S(g29(vi0, v9));
g30(z(), v8) = v8;

g30(S(v9), v8) = S(g30(v9, v8));
g31(z(), v7) = v7T;

g31(8(v8), v7) = S(g31(v8, v7));
g32(z(), v6) = v6;

g32(8(v7), v6) = S(g32(v7, v6));
g33(Zz()) = True();

g33(8(vb)) = g34(vh);

g34(Z()) = False();

g34(s(v6)) = g33(ve);

We compare below the speed-ups of the task even(sqr(x)), progl obtained
by using transform, deforest, and supercompile. The speed-up of task t5 with
respect to task ¢; is calculated as follows (where x is a natural number, and x —

the corresponding Peano number):

acc tl t2 x = stepsl / steps2 where

(_, stepsl) = sll_trace t1 [("x"),
(_, steps2) = sll_trace t2 [("x"
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These results demonstrate, that the speed-up from supercompilation is most
impressive for small z; for such small numbers we do not reach the cases of gener-
alization present in the graph. When grows, however, the drawbacks of performing
generalization start to show, and the deforested task turns out faster.



