Modelling Mobility and Mobile Agents using
Nets within Nets

Michael Kohler and Heiko Rolke

Universitiat Hamburg, Fachbereich Informatik
Vogt-Kolln-Str. 30, D-22527 Hamburg
roelke@informatik.uni-hamburg.de

Abstract. Mobility creates a new challenge for dynamic systems in all
stages of modelling, execution, and verification.

In this work we present an application area of the paradigm of “nets
within nets”. Nets within nets are well suited to express the dynamics of
open, mobile systems. The advantages of Petri nets — intuitive graphical
representation and formal semantics — are retained and supplemented
with a uniform way to model mobility and mobile (agent) systems.
First the modelling of mobility is introduced in general, the results are
carried forward to model mobility in the area of agent systems. The
practicality of the approach is shown in a second step by modelling a
small case study implementing a household robot system.

Keywords: agent, mobile agent system, mobility, nets within nets, Petri
nets, Mulan, Renew

1 Introduction

The general context of this paper is mobility in open multi agent systems. The
main question is how to model mobility in an elegant and intuitive manner
without losing formal accuracy. The modelling language should feature a graph-
ical representation to be used in a software engineering process. The modelling
paradigm should be capable of expressing the different kinds of agent mobility.
The models should build upon a formalism that has a formal semantics to sup-
port verification and execution. The (direct) execution of the models prohibits
errors of manual translation from models e.g. to program code. Executable mod-
els support the validation process.

Here, we present a proposal, how the paradigm of “nets within nets” can be
used to describe mobility. The paper consists of two parts: First it is shown how
“mobility” in general can be expressed (environment, moved entity, different
types of movement). In the second part these results are used to support the
engineering of mobile agent systems.

Most of the work on mobility is based on calculi. Mobility calculi like in
[CGGI9], [VCI8] or in [MPW92] formalise mobility without having a visual rep-
resentation, thus being unsuited for the software-technical modelling of mobile
entities. Mobile Petri nets [AB96] provide a description of mobility by embedding

the m-calculus into the formalism of ordinary Petri nets. Since the formalism is
far from the general intuition of a token game, it cannot be used here for the
proposed goal of supporting the specification process of complex software sys-
tems.

Structure of the paper In section 2 general statements on mobility are given:
minimal preconditions for a formalism to express mobility are suggested as well
as our needs for an intuitive modelling. A selection of formalisms is compared
on this basis. We present a short introduction to the paradigm of nets within
nets and show how this paradigm can be used to model mobility. In section 3
we give a description how this paradigm is used in the specific context of open
multi agent systems. Section 4 presents a small case study of a mobile agent
system using the modelling proposals. The paper closes with a conclusion and
an outlook to further work.

2 Nets within Nets and Mobility

Figure 1 shows the mandatory elements of a system to become a mobile sys-
tem. The overall system is divided into separate locations. At least two different
locations are necessary. Locations host entities (some of) which are able (under
certain circumstances) to undertake a movement from one location to another,
which means that the environment of the entity changes.!

(mobile) entity

location I1

12

system

Fig. 1. Elements of mobile systems

! This changing may either be logical or physical. The modelling of real-world scenarios
makes it necessary to cope with the additional problems of physical movements —
which may be mapped to a logical changing of the environment.

An important point of mobility is the embeddedness of the mobile entity:
each entity is embedded in a local environment (location) that assists the entity
by offering some services and restricts it by declining others (or not having the
potential to offer them). If all locations look the same to the mobile entity and
no difference is made in local versus remote communication, movements are
transparent to the mobile entity. This is an important feature for example in
load balancing systems. The systems we are considering usually show several
differences between the locations and hence are more interesting to model, since
these differences cause the complexity of the systems.

Modelling opportunities To argue why we are not using a common mobility
calculus, we take the Seal Calculus [VC98] as an example. In the Seal Calculus
a process term P with locality is denoted as E[P]. Mobility is described by
sending seals over channels. The term Z*{y}.P describes a process, which can
receive a seal y over the channel £* and then behaves like P. For receiving the
term 2*{z}.Q describes a process, which receives the seal z, substitutes this seal
for every occurrence of z in @ and then behaves like this new Q.2

Mobility calculi like the Seal Calculus offer about the same modelling power
while being (partly) easier to analyse than our extended Petri net formalism. We
favour nets within nets for the description of mobility, since Petri net models are
easier to read without losing the exactness. This is the main difference to models
based upon calculi or logic, like HIMAT of Cremonini et al. [COZ99]. Nets within
nets can be used for modelling purposes in our MULAN? architecture as well
as for analysis purposes. Additionally, our formalisation allows the description
of location and concurrency in an integrated way, which would not have been
possible with simple Petri nets or mobility calculi alone.

Buchs and Hulaas [HB01] use an extended variant of high-level algebraic
Petri nets to model mobile (agent) systems. The difference to this approach is the
approach to mobility: Their system uses a w-calculus like style, e.g. mobility via
passing of names. In our opinion it is more intuitive to remove the mobile entity
from one location and let it enter a new one. This will be shown in subsection
2.2. Nevertheless, it is possible to simulate our approach with m-calculus like
mobility and vice versa.

The use of widespread (graphical) modelling formalisms like UML is not
possible, because all included types of diagrams (e.g. class diagrams, activity
diagrams, state charts) are static and/or do not offer a notion of (dynamic)
embeddedness. Additionally they lack a formal semantics. This is especially the
case for the deployment diagram, that was originally used to model the static
allocation of objects among different computers (clients and servers).

In the majority of cases mobile agents are directly implemented using a
programming language like Java [Sun]. As an example we cite Uhrmacher et

2 The Seal Calculus thus describes a spontaneous move. See Figure 4 in subsection
2.3.

3 MuLAN stands for MULti Agent Nets and is an approach to cover a complete agent
framework (specification, design, implementation, and execution) on Reference nets
and Java [Ro6102].

al. [UTTO0] (representative for other publications): The implementation is done
using Java whilst the mobility aspect of the system is presented using simple
graphics (without semantics). In contrast to this approach we try to unify illus-
tration and implementation using the same (Petri net) model for both purposes.

Summing up these arguments we decided to use an extended Petri net for-
malism, that will now be introduced.

2.1 Nets within Nets

The paradigm of “nets within nets” due to Valk [Val98,Val00] is based on the
former work on task-flow nets [Val87]. The paradigm formalises the aspect that
tokens of a Petri net can also be nets. Taking this as a view point it is possible
to model hierarchical structures in an elegant way.

We will now give a short introduction to the paradigm of Reference nets
[Kum02,KW98], an implementation of certain aspects of nets within nets. It
is assumed throughout this text that the reader is familiar with Petri nets in
general as well as coloured Petri nets. Reisig [Rei85] gives a general introduction,
Jensen [Jen92] describes coloured Petri nets.

A net is assembled from places and transitions. Places represent resources
that can be available or not, or conditions that may be fulfilled. Places are
depicted in diagrams as circles or ellipses. Transitions are the active part of a
net. Transitions are denoted as rectangles or squares. A transition that fires
(or occurs) removes resources or conditions (for short: tokens) from places and
inserts them into other places. This is determined by arcs that are directed from
places to transitions and from transitions to places.

Reference nets [Kum98] are so-called high-level Petri nets, a graphical nota-
tion that is especially well suited for the description and execution of complex,
concurrent processes. As for other net formalisms there exist tools for the sim-
ulation of reference nets [KWDO01]. Reference nets offer some extensions related
to “ordinary” coloured Petri nets: net instances, nets as token objects, commu-
nication via synchronous channels, and different arc types. Beside this they are
quite similar to coloured Petri nets as defined by Jensen. The differences are now
shortly introduced.

Net instances Net instances are similar to objects of an object oriented program-
ming language. They are instantiated copies of a template net like objects are
instances of a class. Different instances of the same net can take different states
at the same time and are independent from each other in all respects.

Nets as tokens Reference nets implement the “nets within nets” paradigm of
Valk [Val98]. This paper follows his nomenclature and denominates the sur-
rounding net system net and the token net object net. Certainly hierarchies of
net within net relationships are permitted, so the denominators depend on the
beholders viewpoint.

Synchronous channels A synchronous channel [CH94] permits a fusion of tran-
sitions (two at a time) for the duration of one occurrence. In reference nets (see
[Kum98]) a channel is identified by its name and its arguments. Channels are
directed, i.e. exactly one of the two fused transitions indicates the net instance
in which the counterpart of the channel is located. The other transition can cor-
respondingly be addressed from any net instance. The flow of information via a
synchronous channel can take place bi-directional and is also possible within one
net instance. It is possible to synchronise more than two transitions at a time
by inscribing one transition with several synchronous channels.

Arc types In addition to the usual arc types reference nets offer reservation
arcs and test arcs. Reservation arcs carry an arrow tip at both endings and
reserve a token solely for one occurrence of a transition. They are a short hand
notation for two opposite arcs with the same inscription connecting a place and
a transition. Test arcs do not draw-off a token from a place allowing a token to
be tested multiple times simultaneously, even by more than one transition (test
on existence).

2.2 Modelling Mobility

The intuition of nets within nets is, that the token nets are “lying” as tokens in
places just as one is used to have ordinary tokens. This is illustrated in the figures
2 and 3. When modelling more widespread nets a displaying as in the mentioned
figures is not practical. Therefore the modelling tool Renew implements a kind
of pointer concept: net tokens are references (hence the name) to nets each
displayed in a window of their own.*

on on

=]

on:ch()

Fig. 2. Object net embedded in system net

To give an example we consider the situation where we have a two-level
hierarchy. The net token is then called the “object net”, the surrounding net is
called the “system net”. Figure 2 illustrates this situation: The object net in the
left place of the system net can be bound to the arc inscription on. Doing so,
transition M is activated with this possible binding. In addition M is inscribed

4 There is another difference between the Reference nets of Renew and the intuitive
modelling, namely the use of reference versus value semantics. This topic is covered
by Valk [Val00].

with a synchronous channel (on:ch()). This inscription means that for the object
net on to become an actual binding of transition M an adequate counterpart
has to be found within on — an enabled transition inscribed with the channel
:ch(). This precondition is fulfilled by transition f of the object net. So the
synchronous firing of object and system net can take place and leads to the
situation in Figure 3.

on l? on
L=

on:ch()

Fig. 3. Object and system net after firing

The object net is moved to the right place of the system net. Synchronously
the marking of the object net changed so that another firing of transition f is
not possible.

The example gives an idea how the interplay between object net and system
net can be used to model mobile entities manoeuvring through a system net,
where the system net offers or denies possibilities to move around while the
mobile object net moves at the right time by activating a respective transition
that is inscribed with the counterpart of the channel of the move transition of
the system net.

Without the viewpoint of nets as tokens, the modeller would have to encode
the agent somehow. This has the disadvantage, that the inner actions cannot be
modelled directly, so, they have to be lifted up to the system net, which seems
quite unnatural. By using nets within nets we can investigate the concurrency
of the system and the agent in one model without losing the needed abstraction.

2.3 Types of Mobility

The interplay between object net and system net induces four possibilities for
an object net to move or to be moved, respectively.

1. The object net is moved inside the system net, neither object nor system net
controls the move. (Spontaneous Move)

2. The object net triggers the movement, the system net has no influence.
(Subjective Move)

3. The system net forces the object net to move. (Transportation, Objective
Move)

4. Both nets come to an agreement on the movement. (Consensual Move)

O—@—0Q |f=fule

Fig. 4. Spontaneous Move

on:ch()

Fig. 5. Subjective Move: Object net triggers movement

If neither object net nor system net influence the movement it may happen
spontaneously. This is the situation in Figure 4. There is no pre- or side condition
for the movement.

One may argue that the second possibility does not exist, because the system
net offers the ways for object nets to move from one location to another. So the
system net “decides” which movements can be carried out and which can not.
But in a given system net it is possible for an object net to control the movement
as shown in Figure 5.

In the figure the only condition for the movement to be carried out is the
synchronous channel (see transition M). The synchronous channel is activated if
its counterpart inside the object net is also activated (that means, it is inscribed
to an enabled transition). So the movement depends on the (firings of the) object
net only. This movement is called subjective because the mobile entity itself is
subject of the execution.

Fig. 6. Transportation: System net triggers movement

If Figure 4 is extended with some kind of condition for transition M, the
system net may control the movement, the object net is transported from one
location to another. Figure 6 shows only one possibility of how the system net
may control the transition M, another one is for example a guard (see Figure 7).

movement

. preconditions

guard (on may move)

Fig. 7. Consensual Move

By combining Figure 5 and Figure 6 both object and system net influence
transition M. For the transition to be enabled, they have to agree upon the move-
ment. For this reason this kind of movement is called consensual. An example
for such a move is shown in Figure 7.

The figure shows another way of modelling a (side) condition for transition M:
a combination of a place holding movement conditions and an appropriate guard.
The guard monitors the movement conditions, transition M is only enabled if
the object net is allowed to move.

3 Agent Systems

In the following section we lift the general insights of how mobility can be mod-
elled to a special form of multi agent systems. The modelling of a mobile agent
(object net) moving through a “world” of several locations (system net) allows
for an intuitive reproduction of real-world scenarios.

First the multi agent architecture MULAN is introduced, that also profits
from the use of nets within nets.

3.1 Multi Agent Architecture Mulan

The multi agent system architecture MULAN [KMRO1] is based on the “nets
within nets” paradigm, which is used to describe the natural hierarchies in an
agent system. MULAN is implemented in RENEwW [KW98], the IDE (Integrated
Development Environment) and simulator for reference nets. MULAN has the
general structure as depicted in Figure 8: Each box describes one level of ab-
straction in terms of a system net. Each system net contains object nets, which
structure is made visible by the ZOOM lines.® The figure shows a simplified

® This zooming into net tokens should not to be confused with place refining.

version of MULAN, since for example several inscriptions and all synchronous
channels are omitted. Nevertheless this is an executable model.

The net in the upper left of Figure 8 describes an agent system, which places
contain agent platforms as tokens. The transitions describe communication or
mobility channels, which build up the infrastructure. The multi agent system
net shown in the figure is just an illustrating example, the number of places and
transitions or the interconnections have no further meaning.

. 00O
multi agent system Z_ — - agent platform
~
A
/ .
internal external
platforms
communication
structure
mobility
structure receive send \
agent agent 1
|
/
agent ¥
incoming outgoing
P
protocol X
oull:' |:|in
start subcall process stop

Fig. 8. Agent systems as nets within nets

By zooming into the platform token on place pl, the structure of a platform
becomes visible, shown in the upper right box. The central place agents hosts
all agents, which are currently on this platform. Each platform offers services to
the agents, some of which are indicated in the figure.® Agents can be created
(transition new) or destroyed (transition destroy). Agents can communicate by
message exchange. Two agents of the same platform can communicate by the
transition internal communication, which binds two agents, the sender and the
receiver, to pass one message over a synchronous channel.” External communi-

6 Note that only mandatory services are mentioned here. A typical platform will offer
more and specialised services, for example implemented by special service agents.

" This is just a technical point, since via synchronous channels provided by RENEW
asynchronous message exchange is implemented.

cation (external communication) only binds one agent, since the other agent is
bound on a second platform somewhere else in the agent system. Also mobil-
ity facilities are provided on a platform: agents can leave the platform via the
transition send agent or enter the platform via the transition receive agent.

A platform is therefore quite similar to a location in the general mobility
scenario as it was introduced in the beginning of section 2.

Agents are also modelled in terms of nets. They are encapsulated, since the
only way of interaction is by message passing. Agents can be intelligent, since
they have access to a knowledge base. The behaviour of the agent is described in
terms of protocols, which are again nets. Protocols are located as templates on
the place protocols. Protocol templates can be instantiated, which happens for
example if a message arrives. An instantiated protocol is part of a conversation
and lies in the place conversations.

The detailed structure of protocols and their interaction have been addressed
before in [KMRO01], so we skip the details here and proceed with the modelling
of agent migration.

3.2 Mobility as a system view

When modelling a complex system it is often undesirable to see the overall
complexity at every stage of modelling and execution (simulation in our case).
Therefore the notion of a system view is introduced. Several views on an agent
system are possible, for example the history of message transfer (message pro-
cess), the ongoing conversations and/or active protocols (actual dynamic state)
or the distribution of agents among a system of several locations (platforms).

Using nets within nets as a modelling paradigm allows for the direct use of
system models at execution time. This can be exploited as follows: The overall
system is designed as a system net with places defining locations and transitions
representing possible moves from one location to another. This is a direct trans-
formation of the general mobility modelling ideas of section 2. The adaption to
host platforms (that encapsulate the mobile agents) instead of agents directly is
straightforward (adding one level of indirection) and can be omitted here.

Figure 9 shows an example of such a system net. Places are locations (rooms)
in or in front of a house, transitions model possible movements between the
rooms. The walls of the house are drawed in for illustrationary purposes only.
This example is carried forward in the next section (4).

The interesting point is that it is possible to “decorate” the places in the
system net with additional interesting features, for example a characteristic sub-
set of the services of the hosted platform together with some of the pre- and
postconditions of these services. The beholder of such an enhanced system net
is provided with a complete view of important system activities without having
to deal with the underlying complexity.

8 This is illustrated in the next section: The mobility system net is just a small part
of the overall system consisting of several agents, platforms, technical substructure
e.g. for the remote communication and so on. This is hidden from the user as long
as the user does not wish to see the implementation details.

frontyard

house

kitchen

living room

next room

enter
next room;

Fig. 9. Example system net

The difference between this proposal and a visualisation tool that shows some
activities of e.g. a program running in background is twofold: First, using our
proposal, the modelling process concludes with a running system model. A nor-
mal modelling process requires at least three stages to gain a comparable result:
(a) model the system, (b) implement the model, and (¢) write a visualisation
for the program. Second, the visualisation of a system model at execution time
is indeed the implementation of the system. This eliminates several potential
sources of errors shifting from model to implementation to visualisation in an
ordinary software design process.

4 Mobile Robot Case Study

To illustrate the modelling method introduced before, we introduce a small case
study, a mobile household robot, unfortunately just a software bot.

4.1 Specification

The robot is internally implemented according to the MULAN architecture intro-
duced in subsection 3.1. But that is not what the supervisor of the robot wants
to know and see. What he requires is a simple view on his household, the robots
location and state, and maybe some supplementary information. That is just
what we provide with the extended system net view on the agent system.

legend
‘ location [move
O butfer/store [service

O state —— extraneous action
fetch mail frontyard
mailbox
enter
house h O u S e
hall
. bureau
mail
read
leave
hall
kitchen
coffee
.. suppl
living room kitchen pey fresh
fetch coffee coffee
living { ... enter
room kitchen
coffee table serve next room
drunk coffee
enter M\ new
next room N A
assign assignments
new robot

Fig. 10. Household System Net

The household is represented by the system net in Figure 10.° The household
consists of several rooms (locations): hall, living room, kitchen, next room, and
the front yard (dark places). Each room offers special services to the robot: it can
fetch coffee in the kitchen, serve it in the living room, fetch mail in the front yard,
open and close the door in the hall, and so on (light transitions). The possible
movements from one location to another are displayed as dark transitions. Note
that moving from room to room is not symmetric in this scenario. For example
it is not possible to move directly from the kitchen to the next room. Service
transitions are supplemented with additional information (service state/buffer,
light places) showing for instance if new mail has arrived, coffee is available and
so on. Extraneous actions not accessible for the robot are displayed as thin-lined
transitions: arrival of new mail, new assignments for the robot etc.

The door of the house is used to show another possibility of viewing special
parts of the system: the state of the door (open/closed) is directly modelled.
This system state is not belonging to a single service (as for example the state
of the mailbox), but is queried by a couple of service transitions including the
movements into and out of the house.

This model of the household is filled with life by implementing an appropriate
robot agent and defining the desired services for the platforms. The behaviour
modelling for this kind of agents has been introduced elsewhere [KMRO1].

Having defined the functionality of platforms and agents the parts are in-
serted in the household system net, which is a straightforward operation that
claims for automation (tool support). After that the system is ready for execu-
tion.

4.2 Execution

Figure 11 shows an early state of a sample simulation of the agent system. For
illustration purposes some nets that normally work “behind the scenes” are made
visible in this screen shot. An ordinary simulation would just show the net house2
in the middle of the figure. It is outside the scope of this paper to explain the
full functionality of the MULAN agent framework, so just the mobility overview
net is regarded. 19

Taking a closer view on the central household system net an additional feature
becomes visible: Tokens can be visualised by an intuitive image. In the figure
the incoming mail is visible in the upper left, and a fresh coffee on the lower
right side. This is a one-to-one matching between token and image — whenever
such a token is produced, moved, or deleted, the image follows. The case of the
robot in the next room (lower middle) is a little bit more tricky (to implement),
because what is really lying on the location place is a platform hosting the robot

9 The use of colour greatly supports the differentiation of different types of places,
transitions, or arcs. Unfortunately this is — even in the adapted form as in the
figures not so obvious in a black and white representation.

10 Details of the MULAN framework are topic of an ongoing diploma thesis [Duv02] and
a technical report [R6102] as well as other papers, e.g. [DMRO02]

(a)aaL0a anas:
88))00 PI03 MaU D

(asom:

OssolnE
ekl [)aayDaanas

3U0D 0D MauD

(asola
Qasojn e

\D ssora
(uAcD

(Elubisse mau:y

Omm._wﬁwww}h._mwmw.m " | [TEY 238l MalTe
= 100X A Wu‘
(2)aayna yna) 155 il
{sayoa"yaa e e — _HL%_/ _ oo pxau m
S3Y0% Y3)13) B _ .u! Ispua)|
H @
(yafireyniu: H & punp B
; LUGQQl U olqey W0 ml.
=)
my |
s woal Bui g
1
uaY2Ipy -]
i
] -
Onsodap m
PEaL =
nesing i gl W] N
{1 s Bk a1lal]
I, O pad g aund
(o) uponoud
-
£l SITY #nBu i
il AL
asnoy w
=
4l
(iU, _-
e Ajuad) I_l A
- 3
UDIJE SHOUBIXS m— aes O [d"yad ‘grauoa] =
Doms: Giy=Apetai-ur,)
BIAIBS _H_ SHE BN O iapactBd = gauoa uapae
QoA mbd = uad uonae &
anow [N uapesor (@ d]
[CIEGER| Ucmmw_ :
‘pejaiuiog days uoneinulg |
- 0N SN N =) E
] [e]zasnoy = 3 [Cloolo][]
- ¥/ : J 1l T 18N SEnOuY InoAE] ups - and
el ol (g []|reLyn19) = % m_T_ 7 doLSIoM 19N 20lRIz)oY =
bt g e e : 7 ! |

Fig.11. System in Action

agent, and not the robot itself. What can be seen in the system net is actually
a dynamic token figure of the platforms showing representatives of the agents
hosted by the respective platform (empty platform means no image).

It is now easy to see the state of the overall system by looking at the system
net. All the simplifications in presentation do not mean a loss of generality in
the system’s implementation. It is possible to take control of the whole agent
system implementing the robot scenario by just double clicking on one of the
tokens. The tool RENEW will then display the respective net (similar to those
introduced in subsection 3.1), allowing for a complete inspection of the running
system without having to interrupt.

In further execution steps the robot will receive one or more assignments,
for example to serve fresh coffee in the living room. Its internal representation
says that coffee is only available in the kitchen, so it moves there to look for the
coffee service of the kitchen platform. In the scenario of Figure 11 this service
is available, so the robot fetches the coffee and moves to the living room, where
it serves the coffee. The robot ends the assignment by moving back to the next
room and waiting for orders.

The behaviour modelling and planning the robot carries out to perform its
tasks is outside the scope of this paper. The mobility system net helps greatly
in validating a certain robot planning algorithm, for instance by unmasking bad
habits of the robot like fetching the coffee, leaving the house for mail, returning
to the living room later and serving cold coffee.

5 Conclusion and Outlook

In this article we have presented the paradigm of “nets within nets” for the
modelling of mobility. Nets within nets are attractive, since the concept allows for
an intuitive representation of mobile entities as well as an operational semantics
which is implemented in the RENEW-simulator.

We have shown how this approach can help in modelling and executing mobile
agent systems and underpinned our proposal with a small case study.

Besides the software-technical aspects, the exact semantics of nets within nets
—in principal — allows for an analysis of mobile applications. This still needs more
work, a starting point is [K6h02]. Formal treatment of mobile (agent) systems
may prevent “classical” problems like deadlocks because of insufficient resources,
but also helps in “modern” problems like security.

The use of an intuitive graphical formalism like Petri nets offers the room for a
more widespread use as a modelling tool in agent oriented software engineering
(AOSE) as opposed to text-based formalisms (mobile calculi), as the use of
graphic modelling is an accepted technique in mainstream software engineering
(see for example the Unified Modelling Language (UML) [Fow97]).

Additional formal results will be directly integrated in the design of the Petri
net based multi agent system architecture MULAN.

References

[AB96]

[CGGYY]

[CHY4]

(COZ99]

[DMRO02]

[Duv02]

[Fow97]

[HBO1]

[Jen92]

[KMRO1]

[K5h02]

[Kum98]

[Kum02]

[KW98]

Andrea Asperti and Nadia Busi. Mobile Petri nets. Technical report, Depart-
ment of computer science, University of Bologna, TR UBLCS-96-10, 1996.
Luca Cardelli, Andrew D. Gordon, and Giorgio Ghelli. Mobility types for
mobile ambients. In Proceedings of the ICALP’99, volume 1644 of LNCS,
pages 230-239. Springer-Verlag, 1999.

Sgren Christensen and Niels Damgaard Hansen. Coloured Petri nets ex-
tended with channels for synchronous communication. In Rober Valette,
editor, Application and Theory of Petri Nets 1994, Proc. of 15th Intern.
Conf. Zaragoza, Spain, June 1994, LNCS, pages 159-178, June 1994.
Marco Cremonini, Andrea Omicini, and Franco Zambonelli. Modelling net-
work topology and mobile agent interaction: An integrated framework. In
Proceedings of the 1999 ACM Symposium on Applied Computing (SAC’99),
1999.

Michael Duvigneau, Daniel Moldt, and Heiko Rélke. Concurrent architecture
for a multi-agent platform. In Proceedings of the 2002 Workshop on Agent
Oriented Software Engineering (AOSE’02), 2002.

Michael Duvigneau. A fipa-compliant multi agent platform. Master’s thesis,
Universiat Hamburg, 2002.

Martin Fowler. Analysis patterns: reusable object models. Addison-Wesley
series in object-oriented software engineering. Addison-Wesley, 1997.

Jarle Hulaas and Didier Buchs. An experiment with coordinated algebraic
petri nets as formalism for modeling mobile agents. In Workshop on Mod-
elling of Objects, Components, and Agents (MOCA’01) / Daniel Moldt (Ed.),
pages 73-84. DAIMI PB-553, Aarhus University, August 2001.

Kurt Jensen. Coloured Petri nets, Basic Methods, Analysis Methods and
Practical Use, volume 1 of EATCS monographs on theoretical computer sci-
ence. Springer-Verlag, 1992.

Michael Kohler, Daniel Moldt, and Heiko Roélke. Modeling the behaviour of
Petri net agents. In J. M. Colom and M. Koutny, editors, Proceedings of the
22st Conference on Application and Theory of Petri Nets, volume 2075 of
LNCS, pages 224-241. Springer-Verlag, June 2001.

Michael Kohler. Mobile object net systems: Petri nets as active tokens.
Technical report, Universitat Hamburg, Fachbereich Informatik, Vogt-Kolln
Str. 30, 22527 Hamburg, Germany, 2002.

Olaf Kummer. Simulating synchronous channels and net instances. In J. De-
sel, P. Kemper, E. Kindler, and A. Oberweis, editors, Forschungsbericht Nr.
694: 5. Workshop Algorithmen und Werkzeuge fiir Petrinetze, pages 73—78.
Universitat Dortmund, Fachbereich Informatik, 1998.

Olaf Kummer. Referenznetze. Dissertation, Universitat Hamburg, Fachbere-
ich Informatik, Vogt-Kolln Str. 30, 22527 Hamburg, Deutschland, 2002.
Olaf Kummer and Frank Wienberg. Reference net workshop (Renew). Uni-
versitdt Hamburg, http://www.renew.de, 1998.

[KWDO01] Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew - User

Guide. Universitdat Hamburg, Fachbereich Informatik, Vogt-Koélln Str. 30,
22527 Hamburg, Deutschland, 1.5 edition, May 2001.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes, parts 1-2. Information and computation, 100(1):1-77, 1992.

[Rei85]
[R6102]

[Sun]
[UT'T00]

[Valg7]

[Valog]

[Valoo]

[VCOg]

Wolfgang Reisig. Petri Nets: An Introduction. Springer-Verlag, Heidelberg,
1985.

Heiko Rolke. The Multi Agent Framework Mulan. Technical report, Univer-
sitdt Hamburg, 2002.

Sunsoft. Java Online Reference Manual. http://wuw. javasoft.com.
Adelinde M. Uhrmacher, Petra Tyschler, and Dirk Tyschler. Modeling and
simulation of mobile agents. Elsevier, Artificial Intelligence?, 2000.
Riidiger Valk. Modelling of task flow in systems of functional units. Technical
Report FBI-HH-B-124/87, Universitat Hamburg, 1987.

Riidiger Valk. Petri nets as token objects: An introduction to elementary
object nets. In Jorg Desel and Manuel Silva, editors, Application and Theory
of Petri Nets, volume 1420 of LNCS, pages 1 25, June 1998.

Riidiger Valk. Concurrency in communicating object Petri nets. In G. Agha,
F. De Cindio, and G. Rozenberg, editors, Concurrent Object-Oriented Pro-
gramming and Petri Nets, Lecture Notes in Computer Science, Berlin, 2000.
Springer-Verlag.

Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile
computations. In ICCL Workshop: Internet Programming Languages, pages
47 77, 1998.

