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Abstract

Visual notations are a powerful medium for expressing algorithmic structures.
Their two-dimensionality is particularly suited to support the definition of con-
current systems, which are characterized by a notion of state, transitions be-
tween states, and communication between concurrently executing parts of the
system. This kind of system is usually referred to as a discrete-event system.

There exists a large variety of visual notations for specifying such systems,
visualizing different aspects of a system and thus being suited to different kinds
of systems—from purely state-oriented notations to purely dataflow-based lan-
guages, with languages like Petri nets combining both aspects. Many complex
systems consist of heterogeneous components which are best described in dif-
ferent visual notations.

This work defines a computational framework for describing discrete-event
systems which consist of a number of communicating components. The com-
munication structure, as well as the set of these components, is allowed to
change dynamically during the execution of the model. The framework sup-
ports an abstract notion of time, which is used to schedule concurrent activities
in a model.

This framework is then used as the basis of a generic approach to the defi-
nition of the semantics of graph-like visual languages. This approach is opera-
tional, defining the behavior of a visual description, a picture, by an interpreter
for an abstract structure corresponding to the pictures of a visual language.

As a next step, a (textual) language is defined in which these interpreters
may be formulated in an abstract but fully executable manner. This language
is based on Abstract State Machines, borrowing from them the concept of state
and state transition, and extending them with a notion of component and com-
munication between components.

Finally, these techniques are then applied to a series of increasingly complex
visual notations, exemplifying and illustrating some of the issues in defining
realistic visual languages for discrete-event systems.
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Kurzfassung

Visuelle Notationen sind ein mächtiges Medium zur Beschreibung algorithmis-
cher Strukturen. Ihre Zweidimensionalität eignet sich besonders für die Defini-
tion nebenläufiger Systeme, die durch Begriffe wie Zustand, Zustandsübergang,
und Kommunikation zwischen nebenläufigen Teilen des Systems charakterisiert
sind. Solche Systeme werden üblicherweise als diskrete Ereignissysteme beze-
ichnet.

Es existiert eine grosse Bandbreite von visuellen Notationen für die Spez-
ifikation solcher Systeme, von denen jede verschiedene Aspekte eines Sys-
tems visualisiert, was sie für unterschiedliche Arten von Systemen besonders
geeignet macht—von rein zustandsorientierten Notationen hin zu reinen Daten-
flusssprachen, mit Sprachen wie etwa Petrinetzen als Kombination dieser As-
pekte. Viele komplexe Systeme bestehen aus heterogenen Komponenten, die
am Besten in verschiedenen visuellen Notationen beschrieben werden.

Diese Arbeit definiert ein Berechnungsmodell für die Beschreibung diskreter
Ereignissysteme, die aus einer Reihe kommunizierender Komponenten beste-
hen. Hierbei kann sich die Kommunikationsstruktur, und auch die Menge dieser
Komponenten selbst, während des Modellablaufs ändern. Das Berechnungsmod-
ell unterstützt eine abstraktes Zeitkonzept, das der Ablaufplanung der Aktivitäten
innerhalb eines Modells dient.

Auf der Basis dieses Berechnungsmodells wird dann ein allgemeiner Ansatz
zur Semantikdefinition graphenartiger visueller Sprachen vorgestellt. Dieser
Ansatz ist operational, er definiert das Verhalten einer visuellen Beschreibung,
eines Bildes, durch einen Interpreter für eine abstrakte Struktur die die Bilder
einer visuellen Sprache repräsentiert.

In einem nächsten Schritt wird dann eine (textuelle) Sprache definiert, in der
diese Interpreter aufgeschrieben werden können, in einer Form die abstrakt und
dennoch ausführbar ist. Diese Sprache basiert auf Abstrakten Zustandmaschi-
nen, von denen sie die Konzepte für Zustand und Zustandsübergang übernimmt,
und die sie um einen Komponentenbegriff und um ein Konzept der Kommunika-
tion zwischen Komponenten erweitert.

Schliesslich werden diese Techniken dann auf eine Reihe komplexer wer-
dender visueller Notationen angewendet, an denen beispielhaft einige Prob-
lemstellungen bei der Definition realistischer visueller Sprachen für diskrete
Ereignissysteme illustriert werden.
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First, we want to establish the idea that a computer language is not just a way
of getting a computer to perform operations but rather that it is a novel formal
medium for expressing ideas about methodology. Thus, programs must be writ-
ten for people to read, and only incidentally for machines to execute. Second,
we believe that the essential material to be addressed by a subject at this level is
not the syntax of particular programming-language constructs, nor clever algo-
rithms for computing particular functions efficiently, nor even the mathematical
analysis of algorithms and the foundations of computing, but rather the tech-
niques used to control the intellectual complexity of large software systems.

[:::]
Underlying our approach to this subject is our conviction that ”computer

science” is not a science and that its significance has little to do with comput-
ers. The computer revolution is a revolution in the way we think and in the way
we express what we think. The essence of this change is what might best be
called procedural epistemology—the study of the structure of knowledge from
an imperative point of view, as opposed to the more declarative point of view
taken by classical mathematical subjects. Mathematics provides a framework
for dealing precisely with notions of ”what is.” Computation provides a fram-
work for dealing precisely with notions of ”how to.”

Harold Abelson, Gerald Jay Sussman
Structure and Interpretation of Computer Programs [2]





1
Introduction

Languages are structures used to communicate. They are usually described by
a set of rules, which the sender of a message uses to render that message to
the medium of communication, and which the receiver uses to reconstruct the
original content of the message. Of course in general, and in especially with
natural languages, the language might not be fully defined by any given set of
rules, the media might in principle be inadequate to represent certain aspects of
an intended message, and message encoding and decoding might therefore be
incomplete and ambiguous.1

All branches of engineering, and computer science in particular, make ex-
tensive use of languages other than ’natural’ languages. They use them to com-
municate, document, or represent the artifacts and objects of the engineering
process, models of aspects of the world relevant to the engineering problem
at hand, data and collections of facts (statistical and otherwise) pertaining to
some problem, and sometimes even the engineering process itself. There exists
an abundance of notations for these very different purposes—e.g. program-
ming languages, knitting patterns, architectural blueprints, modeling notations
for traffic networks, circuit diagram notation for representing electronic circuits.

In many areas of computer science, the communication, documentation, and
representation of computation (algorithms, computational procedures, or pro-
grams) is of major importance. In this work, the term (computational) system
is used rather broadly being applicable to anything which can be described al-
gorithmically. In practice, these may be proper programs, but could also be de-
scriptions (or models) of (aspects of) the behavior of real-world systems, such
as electronic circuits, mechanical systems or traffic networks. Hence we will
not distinguish between programming languages and (discrete-event) simula-

1cf. [36]
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tion modeling notations, and in fact we will present examples of both.
Naturally, ’traditional’ programming and simulation modeling are funda-

mentally different application areas and consequently have different engineering
problems associated with either discipline.2 In treating them as special cases of
a more general concept we simply acknowledge their common semantic prop-
erties as notations for describing the behavior of discrete systems, irrespective
of their concrete application contexts.

The notations typically used for these purposes roughly fit into two classes,
viz. textual languages and visual languages.3 Textual languages are those
which define the structure of finite strings of characters, i.e. essentially one-
dimensional entities. By far most programming languages are of this kind, and
there is a vast amount of knowledge concerning all aspects of handling these
languages. This includes how to analyze strings and reconstruct their abstract
syntax tree (essentially the logical structure contained in them), what classes
of syntactical rules exist, and how different types of syntactical rule affect the
efficiency with which a string can be analyzed etc.

1.1 Why visual languages

Despite their popularity in computer science, textual languages often lead to in-
adequate representations of a computational system. Their inherent syntactical
linearity often suggests a sequentiality in execution that might not be present.
Furthermore, for the same reason they are sometimes ill-suited to represent
complex structure, such as dependency or dataflow relations between parts of a
larger system. By contrast, visual languages make use of the two-dimensionality
of a flat surface (as well as a host of other visual cues) to represent just this kind
of information—relations between entities are visualized, e.g., by lines or ar-
rows between them, by geometric inclusion/overlapping of entities, or by their
relative placement, size, or coloring.

It has been suggested that the structure of human cognitive processes make
visual languages a better medium for expressing many types of content [17,
99]. A discussion of this is beyond the scope of the present work, but at least
it seems plausible that visual languages are superior at least in cases where
the system to be modeled is not of a linear structure such, such as real-world
material flows, a traffic networks, etc. The examples we will encounter in this
work seem to suggest that in fact their applicability extends far beyond this kind
of straightforward structural resemblance.

The visual languages that we will be concerned with here and textual lan-
guages do not differ in what can be expressed in them in principle—it is usually

2See for instance [2] on programming and [46, 113] on simulation modeling.
3See [34] for a comprehensive classification scheme for visual (programming) languages

and its relation to the ACM Computing Reviews system usually employed for classification of
research in textual programming languages.
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not particularly difficult to devise a scheme for transforming one into the other
without loss of relevant information. This work, dealing with visual languages,
will therefore not be concerned with the equivalence of both representations,
but rather with their adequacy. Starting from the assumption that visual lan-
guages are often an adequate representation of some computational entity, we
will present how the specification of their syntactical structure and also their
semantics can be given directly in terms of the elements of the visual notation
and the structures they represent.

Of course, in practice the distinction between textual languages as one-
dimensional and visual languages as two-dimensional is not that strict—e.g.
strings of textual languages are laid out on a page to represent some degree of
structure (such as indentation in programs indicating forms of lexical contain-
ment), while many visual languages make use of textual languages to annotate
the graphical entities. In the following we will largely gloss over the first point,
especially because most often layout does not change the semantics of the tex-
tual expression, and often leads to very cumbersome language definitions where
it does. However, integrating textual languages into visual ones plays an impor-
tant part of our approach to visual language syntax.

1.2 Diversity of (visual) languages

Languages describing computational systems (in the sense outlined above),4

be they textual or visual, need both their syntax and semantics to be precisely
defined. The most obvious reason for this is that often the descriptions are
to be processed, simulated, executed, or run by a machine, which requires an
executable definition of their meaning.

Furthermore, the systems described in such languages might be subject to
a formal mathematical analysis, which not only requires a formal definition of
their meaning, but one that lends itself (and thus the descriptions it defines) to
such an analysis. Also, a concise formal definition often helps to avoid am-
biguities in the language itself, and thus also tends to improve its utility for
communicating system descriptions between people. If it is executable, it may
be used to directly generate implementations in some language, which serve
at least as prototypes that further refinements may be validated against or even
formally derived from.

There are very many different kinds of computational systems with very dif-
ferent characteristics. They may be sequential or highly parallel, their control
flow may be fixed or dependent on the flow of information/data through the
system, they may be deterministic or non-deterministic, synchronous or asyn-
chronous and so on. Different languages provide varying support for the explicit

4Since this work will almost exclusively be about this kind of language, we will henceforth
omit the qualification.
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representation of the idiosyncrasies of a given system. Dataflow languages (e.g.
Kahn process networks [71] or Synchronous Data Flow diagrams [39]) focus
on the flow of information through the system, state-oriented languages (e.g.
StateCharts [58]) allow for a better (more explicit) description of the control as-
pects of a system, while more architecturally oriented languages (e.g. the class
diagrams of UML [93]) provide especially good support for the high-level com-
positional aspects of the system. Clearly, when describing a system, one would
like to be able to choose the language that seems most appropriate to the task at
hand.

Languages may also be geared towards specific application domains. The
rationale behind this is that of domain specific languages [9, 33, 107]. Here the
additional effort required to acquire sufficient fluency in a new description tech-
nique is outweighed by the additional support (as compared to more general-
purpose languages) it provides for the most common description/modeling tasks
in that domain.5 This means that a certain amount of domain expertise went into
the design of the language and is thus made more readily available for reuse than
would otherwise be possible.6

These two points already suggest that for a wide variety of possible model-
ing tasks a set of different languages be available. To make matters worse, com-
plex systems are often heterogeneous in the sense that they are most usefully
described as consisting of interacting subsystems with very different properties.
For instance, a material flow system may contain a subsystem controlling and
supervising its operation. In this case, the language in which the material flow
is best described is very likely to differ from the best choice for a language to
model its control. Ideally, one would like to formulate the two systems each with
the most adequate description technique, and then compose the partial models
to obtain the complete system model. This would not only enhance the overall
understandability of the system, it might also aid its engineering process—if
these different parts of the system are designed by different teams of domain
experts, these will most likely prefer to use the modeling notation they are most
fluent in.

The consequence of this is that not only do we need a variety of languages
to adequately deal with the various kinds of systems, it must also be our aim
to make them interoperable, i.e. to allow for systems described in different
languages to interact meaningfully. The semantic framework presented in this
work allows us to do this—for visual languages, as well as for others.

One way to approach this problem would be to provide translations of these
languages into one another, roughly parallel to the solution used for natural lan-
guages (Fig. 1a). This obviously implies that the number of translations grows
quadratically with the number of languages, which leads to significant overhead
when introducing a new language and thus inhibits extension and interoperabil-

5In fact, using domain-specific notations may also be motivated by other factors, such as
better support for analysis, implementation etc. However, the focus of this work will be on the
modeling aspects of notations.

6Cf. the notion of domain analysis in [9].
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Fig. 1: Approaches to language interoperability.

ity. Alternatively, one could devise a general basic framework, such as e.g.
Discrete Event Components in Fig. 1b that every language is mapped into, and
have them interoperate via this framework. New notations are connected to
existing ones simply by providing a mapping of the new language into the com-
mon framework. Such a mapping might consist of a compilation/translation
scheme, or it might be some form of interpreting engine for the new language.

Both approaches assume that there is an underlying ’fundamental’ similar-
ity between all the languages in our scope so that translation into each other,
or into some common base model is possible. This is the case for the class of
languages we are looking at, but it is easy to think of languages that have suf-
ficiently different semantics to make a translation of one into the other seem
rather unlikely—UML class diagrams and knitting patterns, for example.

Assuming this fundamental semantic similarity, the second approach obvi-
ously needs fewer translations than the first for more than three languages, it
scales significantly better. At least as importantly, it also allows a new language
to be interconnected to languages it does not even ”know” about—more pre-
cisely, interoperability does not depend on the language designers being aware
of the existence of other languages, let alone their semantic idiosyncrasies.
As this greatly facilitates implementation of new languages, and their use in
a heterogeneous model (i.e. one consisting of parts formulated in different lan-
guages), it is the approach we chose in this work.

1.3 Some visual languages denoting computation

Before the approach of this work is discussed in more detail a few examples of
the kind of visual language that we will be concerned with here are presented.
These will serve to illustrate the common characteristics (both in appearance
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and in meaning) of pictures in these languages,7 as well as the variation in syn-
tax and semantics that we aim to describe.

In practice for the languages we will be looking at in this work, visual lan-
guages are really a combination of graphical elements and text. They will also
differ in what exactly they visualize—which aspects of the modeled systems
described are represented by the graphical elements. When discussing the fol-
lowing introductory example languages (and some of their variants), we will
focus on three main aspects:

� their form, i.e. the graphical and textual elements that are used to form pictures
in that language, as well as the rules governing their composition,

� their meaning, i.e. the kind of computational system they describe, and specifi-
cally the way in which the descriptions translate into the meaning, and finally

� their object of visualization, i.e. which aspect of the system is actually depicted
graphically.

a/aa

x/x

b/

x/x

b/a

a/b

Fig. 2: A small finite state machine.

1.3.1 Finite state machines

Finite state machines (FSM) [62] are simple systems that have a notion of state,
that accept some input, make transitions to the next state depending on this
input, and possibly produce some output. Fig. 2 shows an example of a small
FSM.

This machine defines an automaton that takes an input string in the alphabet
a; b; x and, depending on the sequence of characters in that string, performs
certain transitions and produces some output. The states are denoted as rounded
rectangles, the transitions as arrows between them. The transitions are annotated
with short text strings of the form f=g. The intended interpretation is that the
transition causes the consumption of the character f from the input8 and the
production of the character g at the output. Either may be missing, in which

7We will use the term picture for an expression, an utterance in a visual language, just as we
would use ’string’ in the textual case.

8Of course, this makes the respective transition conditional on the presence of this character
as the next character in the input.
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case no input is consumed or output produced, respectively. The little black
dot is connected to the initial state of the system. In our example, the FSM
is initially in the right of the two states, and remains there (more precisely, it
makes a transition leading back to the state it started from) as long as it finds
only a and b characters in the input string. This situation is shown in Fig. 3a.9

The output it produces will just exchange these two characters, e.g., the feeding
string abab as input to this automaton yields the string baba as its output.

When the machine encounters an x in the input, the corresponding transition
leads it to the other state, where it remains again as long as it encounters only a
and b. In this state, however, it produces the sequence aa for each a it finds, and
an empty sequence for each b, effectively ’swallowing’ the b characters. Thus,
the input string ababxaba produces the output babaxaaaa. Yet another x leads
back to the original state, in which a and b are exchanged until the next x and
so on. ababxabaxbbaa yields babaxaaaaxaabb.

a)

a/aa

x/x

b/

x/x

b/a

a/b

b)

a/aa

x/x

b/

x/x

b/a

a/b

Fig. 3: States of an FSM.

Finite state machines illustrate all three basic semantic concepts that this
work is based on:

� a notion of state,

� a concept of discrete transitions between these states,

� systems may receive input and produce output, which can be construed as or-
dered sequences of individual data items (characters in the above example).

In the case of FSMs, the states have no structure of their own—they only
need to be distinguishable, atomic entities. Transitions between them need not
necessarily be deterministic (although they are in the example)—there is noth-
ing in principle that disallows two transitions from the same state ”consuming”
the same input character.

The above representation of finite state machines further exemplifies the
syntactical elements of the languages we will be concerned with:

9Note how additional decoration (which is not part of the visual language proper) is used
to represent the system state. We will do this as appropriate whenever we want to discuss the
concrete state a system modeled by a picture is in.
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� (possibly different kinds of) vertices

� (possibly different kinds of) edges,

� (textual) attributes to the graphical elements.

� rules that describe admissible compositions of these elements

For instance, our example contains two different kinds of vertices (states
and the dot to denote the initial state), and one kind of edge (an arrow).10 It
attributes the edges representing transitions with text that indicates the input
consumed and output produced in that transition’s firing. Furthermore, certain
rules apply to the composition of such a picture for it to be well-formed: There
must be exactly one initial-state marker, there must be exactly one arc lead-
ing from it (and ending at some other node), and arcs must never end at the
initial-state marker. Finally, all arcs except the one leading from the initial state
marker carry an input/output inscription, which in turn has to satisfy (textual)
syntactical criteria.

In the picture in Fig. 2 the state space of the finite state machine is fully ex-
plicit, i.e. its set of possible states and the transitions between them. Indeed, this
is precisely the object of visualization in the visual language of finite state ma-
chines. Obviously, this is only possible for finite state spaces and only practical
for small state spaces—too small for many real-world applications.

Fig. 4: A hierarchical FSM.

However, in practice FSMs are often represented as hierarchical graphs,
making use of some structure in their state space to reduce the number of visual
elements in the picture. Fig. 4 shows such a hierarchical FSM. Hierarchy is
visualized by graphical containment of one or more FSMs inside a state. In this
case, the contained picture becomes a decoration, an attribute of the vertex it
is contained within. Fig. 5 shows an equivalent ’flat’ finite state machine—
without going into the semantics of hierarchical FSM, it is obvious, even for

10It is of course possible to consider the arc leading from the initial-state marker to the initial
state as a different kind of arc from those between states.



1.3. Some visual languages denoting computation 9

this toy example, that the hierarchical version is much more concise and better
structured than its flat equivalent (15 vertices and 17 edges as opposed to 14
vertices and 42 edges).

Fig. 5: The ’flat’ equivalent of the FSM in Fig. 4.

Representing FSM hierarchically breaks the one-to-one correspondence be-
tween graphical elements (vertices) and states in the state space, which is a
salient feature of flat finite state machine pictures. In exchange, it makes use
of structures in the state space to reduce the number of visual elements used to
represent it. Furthermore, it supports new ways of thinking about the system—if
several machines are contained in the same state (as in the right state of Fig. 4),
these may be thought of as running concurrently, and independent of each other.
Even though, semantically, every hierarchical FSM picture always corresponds
to some ordinary finite state machine, the success of hierarchical FSM notations
such as StateCharts [58] suggests that from a modeling point of view this does
make a difference.
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Fig. 6: A simple Petri net.

1.3.2 Petri nets

Petri nets [84, 88, 89] are a well-known formalism that represents a very differ-
ent approach to modeling system behavior. They are usually depicted as graphs
made up from two kinds of vertices, called places and transitions, connected by
one kind of directed arc going from places to transitions or vice versa. Fig. 6
shows a visual representation of such a Petri net, specifically the dining philoso-
pher’s problem with four philosophers. Places are drawn as circles, transitions
as rectangles.

The state of a Petri net is defined by the distribution of tokens over its places.
Each place may hold any number of tokens, including zero. In the example, the
inner four places are initially assigned one token each (depicted as black dots
inside the places in Fig. 7a). These tokens represent the four forks placed on
the table between the philosophers.

A transition is called activated if all places in its preset (i.e. the set consisting
of those places from which an arc goes to the transition) contain at least one
token. In Fig. 7, this is denoted by an inner rectangle inside the transition
symbol. An activated transition may occur (or fire), resulting in a new state, i.e.
a new distribution of tokens over the places. This distribution is computed by
removing a token from each place in the preset and adding one to each place in
the postset (i.e. the set of those places to which an arc leads from the transition)
of the transition that fired. Fig. 7 shows a possible sequence of state transitions
due to transition firing.11

11Unfortunately, the term ’transition’ is somewhat overloaded here, used in ’state transition’
of system as well as to refer to a special kind of vertex in a Petri net.
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a) b)

c)

Fig. 7: A few states of the dining philosophers system.

Abstractly, the state of a Petri net may be represented as a mapping from
the places of the net to the natural numbers.12 The state space of a Petri net,
although related to its structure, bears in general no resemblance to the net
itself—in fact, its structure may depend heavily on other factors, such as the
initial token distribution . These points are illustrated in Fig. 8, which depicts a
Petri net and Fig. 9 which shows its state spaces for slightly different numbers
of initial tokens on the place P�.13

Instead of the structure of their state space, the usual representation of Petri
nets visualizes local causality relations. This makes it a very powerful and ap-

12Assuming an ordering on the places, this is equivalent to a vector of natural numbers. Petri
nets can then be considered as vector addition systems. [64]

13The Petri net in Fig. 8 (taken from [69]) uses a small extension to the version described
above, in that it allows for arc weights, that specify how many tokens flow across an arc when
the transition fires.
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Fig. 8: A small Petri net.

propriate technique for describing distributed and parallel computation, as well
as flow-oriented systems. Note that the state spaces in Fig. 9 can be construed
as finite state machine models of essentially the same computational process—
obviously, in this case, the Petri net representation is much more concise.

Petri nets as we presented them above exhibit certain weaknesses when ap-
plied to some real-world modeling tasks. Two of the most important shortcom-
ings are, that

� they are closed in the sense that they have no connection to anything external to
them. For instance, an FSM would consume input from a stream and produce a
stream of output, and that

� they do not allow for any manipulation of data structures since they only store
’unstructured’ tokens in their places.

Several extensions to Petri nets have been suggested to make them more compo-
sitional or to include tokens representing complex data and associated functions
[29, 70, 74, 106, 108]. One possible approach to compositionality would be to
provide input/output ports, through which tokens may enter or leave the Petri
net [68]. Manipulation of complex data could be achieved by allowing tokens
to represent data structures and transitions to specify some algorithm (in some
appropriate language) on the tokens consumed to define the tokens that are pro-
duced (along the lines of [70]). An example of such a Petri net is shown in Fig.
10.

Tokens (which are assumed to represent numbers in this example) may enter
this Petri net at the input ports In1 and In2. They are put onto the place con-
nected to the entered port and may cause the transition to be activated. If it is, it
fires and produces a new token by computing the sum of the tokens consumed,
which then leaves the net via the output port Out. In this way, Petri nets—much
like the finite state machines in the previous section—become compositional
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Fig. 9: State spaces of the net in Fig. 8 for (a) M(P�) = 0 and (b) M(P�) = 1.

entities, components, that may be composed with each other, but also with com-
ponents specified in some other formalism, for instance as finite state machines.

Note that this example also illustrates a more elaborate combination of vi-
sual and textual elements used in representing the ’function’ of a component.
This is a pervasive feature of many visual languages used for modeling or pro-
gramming, and the decision of which aspects of a system are to be represented
visually and which are to be written down textually is a major one in the design
of the visual language, and often in the modeling of a concrete system as well.

1.3.3 Dataflow networks

Dataflow networks represent yet another approach to specifying systems [98].
Essentially, they consist of a collection of concurrently executing processes
which have input/output ports of the kind we have seen for FSM and Petri nets
in the previous sections, and a set of connections between the output ports of
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Fig. 10: A very simple Petri net with input/output ports.

these processes and their input ports.
Fig. 11 shows a small example of a process network, describing a simple

prime generator. Each rectangular node denotes a process, the triangle repre-
sents an output port of this process network. Directed arcs are drawn from out-
put ports of processes to input ports of processes, and also to the output of the
process network. Graphically, ports of embedded processes are represented as
decorations of the respective node in the process network graph. Arcs, instead
of just pointing to a node representing a process, go from one of the decorations
denoting an output port to one of the decorations denoting an input port.

Nats(2)
Sieve(2)

InitToken(1)
Primes

Fig. 11: A simple dataflow process network.

A process network is executed by simply executing the embedded processes
and directing data flowing into the process network from the outside, or data
coming from one of the embedded components to either an output port of the
process network or an input port of an embedded component—according to the
connections inside the network. A step of the process network consists of a step
of any of its embedded components.

In contrast to finite state machines and Petri nets, neither the state nor state
transitions are visualized in a process network. In fact, since the process net-
work fully abstracts from the computational processes embedded into it, there
is no way of talking about the ’state’ of a process network without considering
the individual states of the embedded components. In a process network, only
the flow of data sent between processes (and to and from the environment of
the process network itself) is the object of visualization. In order to understand
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the working of the example in Fig. 11 we need not draw state diagrams14—
instead, we only need to know about the input/output relation of the individual
processes in the picture. If we know that the left-most block generates a token,
that the center block generates the natural number in sequence, starting from 2,
for each incoming token, and that the right-most block applies a prime sieve to
the incoming sequence of tokens, producing the primes at its P output and the
non-primes at its N output, then this information is sufficient to conclude that
the entire network will produce the sequence of primes at its one output.

The information about the individual processes is not contained in the graph-
ical symbols themselves used to represent them but in their inscriptions—the
formalism interprets these as expressions instantiating the processes, passing
the appropriate parameters to constructor functions. Furthermore, in addition to
these textual annotations there are also graphical decorations of the main icons
(the triangular shapes at their left and right edges) symbolizing input/output
ports across which the processes exchange information units. These serve as
anchor points for the arcs denoting dataflow connections between those pro-
cesses, more precisely between their ports, facilitating graphical editing as well
as visualization of these connections.

1.4 Problem statement and overview

This work presents a method for defining the instances of a certain class of vi-
sual notation. We will characterize this class both in terms of form and meaning,
i.e. we will restrict our attention to notations that have a particular ’look’, and
notations have a particular meaning.

Specifically, we will focus on notations that are ’graph-like’ in appearance,
i.e. whose graphical elements consist mainly of nodes of various kinds which
are connected by possibly different kinds of arcs, directed and undirected. Both,
nodes and arcs, may be decorated with textual and graphical attributes.

These notations will be used to depict computational systems, which are
informally characterized as follows:

� They have some notion of state, which may be described as exactly the amount
of information required to be able to predict the future behavior of a system
given knowledge about its input.

� There are discrete state transitions between states of the system.

� Systems may have input ports and output ports, over which discrete amounts of
information (tokens) may enter or leave the system, respectively.

14In fact, given only the information from that figure we are patently unable to draw the state
diagram!
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As these interfaces to their environment makes systems inherently compo-
sitional, and because their execution occurs in discrete state transitions, we will
call these systems discrete event components.

The main contributions of this work are the following:

� A formal model of discrete-event components that is compositional, facilitates
arbitrary and dynamic component structures, and is sufficiently general to allow
the translation of a broad variety of visual notations for such components to be
appropriately mapped into it.

� Two languages to define syntactical properties of visual notations as well as their
operational semantics in terms of these discrete-event components, effectively
providing this mapping mentioned above.

Together these results provide a technique for defining and implementing
visual notations for discrete-event computations. We will illustrate its applica-
bility by a few case studies, using a prototype implementation of these concepts
inside the MOSES tool suite [1]—cf. App. E.

The remainder of this work is structured as follows. Chapter 2 develops
the formal framework for the semantics of discrete event components, the basic
model of computation that constitutes the common semantical platform for our
specification.

Building on this, chapter 3 elaborates a concept of abstract syntax of visual
languages, which will form the link to our notion of discrete event component
by introducing the concept of abstract syntax interpreters of visual languages.
Finally, chapter 4 provides a concrete notation based on Abstract State Machines
to specify such interpreters in a way that is formal and executable.

These concepts are then applied in chapter 5 to a number of concrete exam-
ples in an attempt to cover a reasonable spectrum of visual languages denoting
computational systems. Finally, we conclude in chapter 6 with a summary and
discussion of our results as well as of future work in this field.



2
A discrete event model of computation

As we have seen in the previous chapter, a discrete event component is essen-
tially characterized by

� a set of states, one of which is called the initial state of the component,

� a transition function, relating a state and some input to possible successor states
and some output,

� an I/O signature, abstractly identifying the input/output ports of the component
that other components may be connected to.

Abstractly, a component acts on a number of input streams fed to its input
ports, and produces a number of output streams, one at each output port. This
kind of component is also called an actor or dataflow actor,1 to emphasize the
fact that the streams represent flows of data (usually between more than one
actor). The pictures we draw in the visual languages that are of interest to us are
essentially representations of such discrete event components.

In this section we first make explicit the notion of streams or sequences
of data upon which actors work. We will then proceed to define the concept
of an actor, and discuss some of the properties of actors, including the relation
between their denotational and operational semantics. Finally, we will identify a
particular subclass of dataflow actors that serves as the basis for our semantical
description of discrete event components, and discuss their composition into
systems. This forms our basic model of computation into which the semantics
of our visual languages are embedded.

1Here we follow the terminology of [77], extending the actors presented there by a notion
of state.
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2.1 Sequences
Our computational systems will act on items of data, or tokens. For the moment,
the will not be concerned with the structure of the individual tokens, but simply
assume that they be from some set A, the set of all tokens.

Effectively, during its operation, an actor produces and consumes sequences
of these tokens, which may either be finite or infinite. We will now introduce
some basic notation for manipulating sequences.

The set of all finite sequences over A is called A�, the set of all infinite
sequences over A is AN . Since in the following we will mostly work with se-
quences over A, rather than with A itself or elements of it, we will simple define

S =def A
�
[ A

N (2.1)

The empty sequence will be written as �. For convenience of expression,
we will further introduce

Sfin =def A
� (2.2)

Sinf =def A
N (2.3)

Concatenation, denoted by the + operator, is the most fundamental opera-
tion on these sequences. Thus for any s; r 2 S, s+ r denotes the concatenation
of s and r. Note that

s 2 Sinf =) 8t 2 S : s+ t = s (2.4)

A� �m inputs n outputs

Fig. 12: An actor

2.2 Dataflow actors
Now we will define the notion of dataflow actor introduced above, as an entity
with states and discrete transitions between them which consumes input from a
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number of input sequences and produces output. This actor definition builds on
and slightly generalizes the one found in [77] by adding a notion of state.

Informally, we can think of actors as automata with a number of input ports,
and a number of output ports, that are in one of any number of states, and which
consume a ’prefix’ of their input sequences in an event called firing—cf. Fig.
12.2 The firing of an actor has two effects: it may change the state of the actor,
and it may produce a tuple of output sequences (one sequence per port).

Hence an actor transforms input sequences, from which subsequences are
consumed during firing, to output sequences where the result of each firing is
concatenated to a single tuple of streams—which is of course exactly how we
want to view actors. In fact, a certain class of actors may even be viewed as
iterative realizations of functions on streams—this will be discussed in App. A.

So formally, we will write actors in their most general form as follows:

Def. 1: (Dataflow actor with firing)
Assuming a set of sequences S over some set of tokens A, a dataflow actor

with firing A (also simply actor for short) mapping a tuple of streams from Sm

to Sn, with m;n 2 N0 [ f1g, (written as A : Sm
 Sn) is defined as a tuple

A = (�; �0; (P�)�2�; (��)�2�)

with

� a set of states �

� an initial state �0 2 �

� for each � 2 �, we have3

– P� : Sm
�! }(Sm

fin) such that p 2 P�s ) p v s a function mapping
an m-tuple of input sequences to the set of (finite) prefixes (which we call
its active prefixes) in �. The prefix domain D� of � is the union of all
possible active finite prefixes in that state: D� =def

S
s2Sm

P�s We further

require that 8p 2 D� : p 2 P�p.

– �� : D� �!
}(��Sn

fin)n; a transition function mapping active prefixes
from D� to a non-empty set of possible next states and the corresponding
(finite) outputs generated in that transition.4

2Conceptually, as far as our actor model is concerned, firing an actor will be a conceptually
atomic step.

3}(A) denotes the powerset of a set A.
4Obviously, the P� and �� can also be represented by a transition relation

� � }(Sm

fin
� � � � � Sn

fin
) such that P�s = fp j p v s ^ 9�0; v : (p; �; �0; v) 2 �g

and ��p = f(�0; v) j (p; �; �0; v) 2 �g. We use the functional description because it is more
convenient later on.
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So in any state �, the function P� can be presented with a tuple of input
sequences (those, that have not yet been consumed by the actor, for instance)
and it returns a set of prefixes of this tuple. These prefixes essentially identify
that part of the input that the actor decides it can operate on. Note that this set
general depends on the current state.

Having identified these ’active’ prefixes, the function �� represents the ac-
tual firing. Passing it an active prefixes will produce a new state and a tuple
of output sequences. More precisely, it will produce a set of new state/output
tuple combinations, reflecting the fact that an actor may be non-deterministic.
Note that the transition function is required to always return at least one possible
result of the firing.

It is important to note that the actor definition itself does not contain any
notion of ’consumption’ of input or ’production’ of output, other than that P�

identifies prefixes of some sequence tuple, and �� produces output tuples. The
actual handling of input and output sequences, e.g. the reduction of the input
by the prefix that the actor fired on, or the concatenation of its collected output,
are considered to be defined outside of the actor. In the next section this will be
formally defined. The following examples assume that there is an input and an
output tuple of sequences, and that prefixes the actor fires on are removed from
its input (thus consumed by the firing), and output tuples are appended to the
current collected output.

Merge

A

B

C

Fig. 13: An actor

As an example, we will elaborate various ways of realizing a Merge actor
(Fig. 13). Intuitively, this actor takes two streams of input tokens and merges
them into one output stream in such a way that their relative order in each stream
is preserved, but not necessarily the order between the two input streams. For
example, taking the two input streams (ab; cde), admissible outputs would in-
clude abcde, cdeab, acbde, acdeb etc. Writing this as an actor according to the
above definition, this could look as follows:
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Ex. 1: (Non-deterministic merge)

� = fQg

�0 = Q

PQ : (s1; s2) 7!

8>>>>>><
>>>>>>:

f(x1; �); (�; x2)g with s1 = x1 + s01; s2 = x2 + s02;

x1; x2 2 A; s
0

1; s
0

2 2 S

f(x; �)g with s1 = x+ s0; s2 = �; x 2 A; s0 2 S

f(�; x)g with s1 = �; s2 = x+ s0; x 2 A; s0 2 S

; s1 = s2 = �

�Q : s 7!

(
f(Q; x)g s = (x; �)

f(Q; x)g s = (�; x)

This actor has only one state (Q), and its active prefixes include the first to-
kens of either input, if there are any. For example, PQ(ab; cde) is f(a; �); (�; c)g,
whereas PQ(ab; �) is f(a; �)g.

Thus, in the interesting case where both input sequences are not empty, PQ

produces two possible active prefixes (one part of which is always the empty
sequence) which the transition function �Q then maps to the respective non-
empty component. Nothing in this actor definition specifies the order in which
inputs will be processed. Hence its result is indeterminate, and any possible
merge of the two input sequences might be its output.

A merge actor that alternatively takes tokens from the two inputs as long as
both sequences are not empty, starting with a token from the first input sequence,
can be described as follows:

Ex. 2: (Deterministic merge, version 1)

� = fQg

�0 = Q

PQ : (s1; s2) 7!

8>>>>>><
>>>>>>:

f(x1; x2)g with s1 = x1 + s01; s2 = x2 + s02;

x1; x2 2 A; s
0

1; s
0

2 2 S

f(x; �)g with s1 = x + s0; s2 = �; x 2 A; s0 2 S

f(�; x)g with s1 = �; s2 = x+ s0; x 2 A; s0 2 S

; s1 = s2 = �

�Q : s 7!

8><
>:
f(Q; x1x2)g s = (x1; x2)

f(Q; x)g s = (x; �)

f(Q; x)g s = (�; x)

Here, in contrast, PQ(ab; cde) results in the singleton prefix set f(a; c)g, and
applying �Q to it produces the output ac. The facts that this actor has at most
one active prefix, and that �Q always produces exactly one result, makes this
actor deterministic.
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Note that this actor can process two input tokens in a single firing, where
it first outputs the token from the first input and then the one from the second
input. If the actor would be required to consume exactly one token on each
firing (this will be a requirement for the subclass of actors we will be looking at
in section 2.5). This behavior would have to be encoded in the state, as in the
following example.

Ex. 3: (Deterministic merge, version 2)

� = fQ1; Q2g

�0 = Q1

PQ1
: (s1; s2) 7!

8><
>:
f(x; �)g with s1 = x+ s0; x 2 A; s0 2 S

f(�; x)g with s1 = �; s2 = x + s0; x 2 A; s0 2 S

; s1 = s2 = �

PQ2
: (s1; s2) 7!

8><
>:
f(�; x)g with s2 = x+ s0; x 2 A; s0 2 S

f(x; �)g with s2 = �; s1 = x + s0; x 2 A; s0 2 S

; s1 = s2 = �

�Q1;Q2
: s 7!

(
f(Q1; x)g s = (�; x)

f(Q2; x)g s = (x; �)

In this version of the deterministic merge, if the actor is in stateQ1 (its initial
state), it will take a token from its second input only if its first input sequence is
the empty sequence, otherwise, it will take a token from its first input sequence
only—and vice versa. The state transition function � (which is the same for
both states) will lead into state Q2 if a token was taken from the first input
sequence, and to Q1 otherwise. Effectively, this leads to taking tokens from the
input sequences in an alternating fashion, as long as both are not empty. The
output computed by the two deterministic merges is identical, but they differ in
the number of firings it takes them to compute their results.

Now we formally define the semantics of actors. In this work, we will be
primarily concerned with the operational notion of running an actor. However,
it is possible to construct a denotational semantics for the important subclass of
deterministic actors, which is shown in App. A.

2.3 Operational semantics of an actor
In this section we formalize the execution of an actor already informally de-
scribed in the previous section. The execution of an actor will be defined by
the notion of a run, i.e. a stepwise transition of the actor from one state to the
next—which depends on the input sequences fed to the actor. Each step in such



2.3. Operational semantics of an actor 23

a run consists of determining the set of active prefixes, consuming one of them
from the input, firing the actor on the consumed prefix(computing the new state
and appending the resulting output to the output up to this point), and repeating
the process on that part of the input tuple that was not consumed until the set of
active prefixes is empty.

In order to do this, we not only have to keep track of the state of an actor,
but also of the unconsumed input at any step, and the collected output up to that
point. Formally, we can write this as follows:

Def. 2: (Run of an actor)
Given a dataflow actor A : Sm

 Sn as defined in Def. 1, and a tuple of
input sequences s 2 Sm a run on this tuple is a sequence

(si; qi; ri)i2N0

with si the unconsumed input tuple, qi the state of the actor, and ri the collected
output up to this step, such that

si 2 S
m
; qi 2 �; ri 2 S

n

s0 = s; q0 = �0; r0 = �n

Pqisi 6= ; : take some p 2 Pqisi and some (q; v) 2 �qip

si = p+ si+1

qi+1 = q

ri+1 = ri + v

Pqisi = ; :si = si+1

qi+1 = qi

ri+1 = ri

It is in this definition that the consumption of input and the production of
output is defined, viz. in the definitions that si = p+ si+1 for the active prefix p
selected for firing, and, respectively, by ri+1 = ri+v, where the output produced
in that firing is appended to the output tuple up to that point.

This definition assumes that the actor is run on one specific input tuple from
which prefixes are successively removed. We will later embed actors into more
dynamic contexts, where input sequences become added to, for instance, but for
the moment we will consider actors in isolation, running on fixed input.

Another aspect worth noting is that runs are always infinite, even though
they ’effectively’ terminate when the set of active prefixes becomes empty (cf.
Def. 13). Note that this is not the same as the absence of input tokens—the
set f�mg is a perfectly valid prefix, so that an actor can fire without consuming
input, and even in the absence of input altogether.

A valid run of the actor in Ex. 1 with input sequences (ab; cdef) would be

((ab; cde); Q; �)! ((b; cde); Q; a)! ((�; cde); Q; ab)! ((�; de); Q; abc)

! ((�; e); Q; abcd)! ((�; �); Q; abcde)! :::
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A
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Merge Add1

B

A
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Fig. 14: A simple network of actors.

or

((ab; cde); Q; �)! ((ab; de); Q; c)! ((b; de); Q; ca)! ((b; e); Q; cad)

! ((b; �); Q; cade)! ((�; �); Q; cadeb)! :::

Note that we have omitted those steps in the run where the set of active
prefixes would be empty, as this implies the termination of the actor for the
given input sequence.

As expected, the deterministic actor from Ex. 2 has exactly one run:

((ab; cde); Q; �)! ((b; de); Q; ac)! ((�; e); Q; acbd)

! ((�; �); Q; acbde)! :::

Similarly, the deterministic variant in Ex. 3 has exactly one run, finally
computing the same output, but arriving there in a somewhat different manner:

((ab; cde); Q1; �)! ((b; cde); Q2; a)! ((b; de); Q1; ac)! ((�; de); Q2; acb)

! ((�; e); Q1; acbd)! ((�; �); Q1; acbde)! :::

2.4 Composition—networks of actors
So far, we have only looked at dataflow actors in isolation, their behavior when
they change state while consuming input tokens and producing (sequences of)
output tokens. Now we will compose these actors to form systems of communi-
cating actors, where tokens produced as output of one actor may serve as input
to another.

Consider the network depicted in Fig. 14. It contains three actors, 1, Merge,
and Add1. Assume that 1 outputs the sequence of length 1 containing only the
integer number 1 (in this case the basic alphabet A contains at least the set of
integers), Merge merges its two input streams (for the moment it is irrelevant
whether it does so deterministically), and Add1 consumes its input token by
token and for each integer n it outputs n+1. The arrows in the network indicate
that output of one actor is to be considered input to another. Obviously, in this
case, the output of Merge will be the natural numbers starting at 1. (We will of
course make the notion of a run of a network more precise below.)
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Fig. 15: Products of input/output tuples and their projections.

Note, however, that the above network is rather special in a number of ways.
For one, it does not depend on whether Merge is deterministic, because there
is always at most one token to be acted upon, anyway—so even if the Merge
actor itself would be implemented nondeterministically, the network behavior
would still be deterministic. Furthermore, the network structure is static, i.e.
the connection structure between actors, as well as the number of actors in the
network, does not change during its execution. Also, there are exactly as many
inputs as there are outputs, and all of them are connected. In the general case,
we will require none of these properties.

We define a system as a set of actors and some communication structure
between them. This structure will be one-to-one, i.e. at any given time each
output is connected to at most one input and vice versa. In the first step, this
structure is static, i.e. the connections between actors remain the same during
the execution of the system. Then, however, we will turn to the more general
case of dynamic network structures, where actors (or rather a slightly extended
version of them) may change the network structure as a result of a firing.

2.4.1 Static network structures

First, we need to abstractly characterize the communication structure between
actors, or rather their input sequences and output sequences. We will do this
in two steps using products and projections.5 In the first step, we will simply
define the product of all inputs and all outputs of a set of actors. In a second
step, we define a way to connect some of the inputs to some of the outputs.

In 14 it can be seen that the total number of actor inputs and the number of
actor outputs is three. In other words, putting them side by side, a 3-tuple of
input sequences is fed into them, and a 3-tuple of sequences comes from their
outputs. We now need to relate the individual actor inputs and outputs to the
collective input/output tuple.

5A short introduction to this is given in App. B.
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This is achieved by defining a pair of projections, as can be seen in Fig. 15.
A possible system of projections for the example in Fig. 15 might look like this:

Ex. 4: (Concrete projections for Fig. 15)

�1 :(s1; s2; s3) 7! ()

�Merge :(s1; s2; s3) 7! (s1; s2)

�Add1 :(s1; s2; s3) 7! (s3)

!1 :(s1; s2; s3) 7! (s1)

!Merge :(s1; s2; s3) 7! (s2)

!Add1 :(s1; s2; s3) 7! (s3)

Here, the (s1; s2; s3) is the collective tuples of input (for the �i-projections)
or output (for the !i-projections) sequences si, from which the projections pick
the appropriate sequences in such a way that each input sequence and each
output sequence is projected exactly once.

Obviously, we would like all input/output projections, to (a) exhaust the col-
lective input/output tuple and (b) not to overlap, i.e. we would like there to be a
one-to-one correspondence between positions in the collective input/output and
all the positions in all actor inputs/outputs taken together. This can be done by
simply requiring all the input projections, and likewise all the output projections
to form a product (together, of course, with corresponding sets of collective in-
put and output tuples)—cf. App. B for a short introduction.

We will call such a collection of actors with a corresponding set of projec-
tions a system of actors, which we define as follows:

Def. 3: (System of actors) Assume a set of actors fAi : S
mi
 Sni j i 2 Ig. Then

we have M =
P

i2I mi actor inputs and N =
P

i2I ni actor outputs. If we
picture all inputs of all actors as some M -tuple, there is for eachA i exactly one
projection �i : S

M
�! Smi from this SM onto Smi that results in the input

tuple of that actor. In other words, (SM ; f�i j i 2 Ig) form a product. Likewise,
for each actor there is a projection !i : S

N
�! Sni that yields its output tuple

from the tuple of all outputs in the system, so that (SN ; f!i j i 2 Ig) is a
product. These projections are depicted at the top and at the bottom of Fig. 16.

We call this set of actors Ai and corresponding families of projections �i

and !i a system of actors iff these families of projections define products.

Since projections define a product uniquely up to isomorphism, we may as-
sume the �i and !i to be fixed for a given set of actors without loss of generality.
This allows us to conveniently extract from the collective input tuple (which will
play an important role in the execution of a network of actors) the inputs for any
specific actor without having to keep track of the indices of the actor’s input
sequences inside the collective input tuple—and likewise for the output.
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Fig. 16: The projections identifying actor ports.

The next step is to identify individual input and output ports and to connect
them. First of all, we have to realize that each input and output port of an actor
is uniquely identified by some projection p : SM

�! S for an input port, or
p : SN

�! S for an output port, which extracts exactly the individual sequence
from the collective tuple of input or output sequences which goes to or comes
from the port in question. Obviously, no two input ports should have the same
projection, and likewise for the output ports. All we currently have, however,
are projections from the collective tuples to the full input or output tuples of
actors, not to their individual ports (which are the ones we want to connect).
The question is how to construct the projection for each individual port from
the projections for the complete actor.

The idea here is to use the same technique once again, using the standard
cartesian product projections, which are defined as follows:

�k : (a1; :::; ak; :::; an) 7! ak

In other words, �k extracts the k-th position from its argument tuple. Looking
at actor Ai, its input tuple is mi-ary, and its output tuple ni-ary, giving rise to
the corresponding number of cartesian projections, which relative to the actor
identify a given input or output port—hence we call them actor port projections.
They are, however, of course not unique inside the complete network—e.g., all
actors with two inputs will have the same two input port projections
�1 : S

2
�! S and �2 : S2

�! S.
Here we concatenate the actor port projections to the input projections of

the actor, which yield exactly the projections from the collective input to each
individual output of an actor (the system port projections) in the way shown in
Fig. 16. Fig. 17 demonstrates this for the input projections of our example
network. This way, e.g., the k-th input port of the actor Ai is defined to be
pini;k = �i Æ �k.

Def. 4: (Input/output ports of actors/a system of actors.) Given a system of actors
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Fig. 17: Identifying individual ports by concatenating projections.
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Fig. 18: Unfolding the actor network in Fig. 14—first step.

Ai : S
mi
 Sni with corresponding �i and !i. We define

P
in
i = fpini;k = �i Æ �k j 1 � k � mig

to be the set of input ports of the actor Ai and

P
out
i = fpouti;k = !i Æ �k j 1 � k � nig

as the set of its output ports.
From this, we arrive at

P
in =

[
i2I

P
in
i

as the set of input ports of the system and

P
out =

[
i2I

P
out
i

as the set of its output ports.

These projections are depicted in Fig. 16.
Note that the pini;k go from SM to S, and the pouti;k from SN to S. Obviously,

these are all distinct and uniquely identify any port in the system.
Now we can connect outputs to inputs simply by means of a relation between

these to sets. Fig. 18 shows the connections of the network in Fig. 14, and
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Fig. 19: Unfolding the actor network in Fig. 14—introducing the projections.

Fig. 19 illustrates how the individual ports are obtained and the relation �!
connecting P out and P in. Note that since �! is a relation, it allows arbitrary
n-m connections between ports (although the example only contains one-to-one
connections).

Ex. 5: (Network structure of Fig. 14.)

�!= f(�1 Æ �1; !Merge Æ �2); (�Merge Æ �1; !Add1 Æ �1); (�Add1 Æ �1; !Merge Æ �1)g

Giving a relation between P out and P in is all there is to defining the network
structure. In the general case, we do not assume all actor inputs and outputs to
be connected, neither do we require that the total number of input and output
ports be equal. Therefore, the general definition is as follows:

Def. 5: (Network of actors) Assume a system of actors fAi : S
mi
 Sni j i 2 Ig with

corresponding families of projections �i and !i, and resulting sets of input and
output ports P in and P out. Then any relation

�!� P
out
� P

in

defines a network structure in that system.
A system together with a network structure is simply called a network (of

actors).

Now we would like to define a run of a network of actors. We assume that
there is a collective input tuple of sequences, and that this need not be empty,
which essentially provides the ’initial’ input data of the system. Informally, a
step of the network will consist of one of its actors firing, transforming its own
state, consuming input and producing output. This output is then added to the
sequences of unconsumed input tokens according to the network structure—
e.g., in our example in Fig. 14, a token that is produced by the Merge actor
is added to the sequence of hitherto unconsumed input of the Add1 actor. This
means that these input sequences are part of the state of the network, in addition,
of course, to the states of all the actors.

More precisely, running a network of actors on some ’initial’ input data in
SM consists of discrete steps that
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� pick one actor that has an active prefix,

� fire it and

� add the tokens thus produced to the respective input streams, removing the con-
sumed tokens from the actor’s input stream(s).

a)

BA

b)

B

A1

A2

Fig. 20: Different ways of connecting two output ports to one input port.

When adding the tokens produced by the actor firing we have to consider
the possibility that more than one output of the firing actor might be connected
to the same input port—such as in Fig. 20a. If actor A produces tokens at both
output ports in the same firing, then, to all intents and purposes, these tokens
were produced simultaneously. However, when adding them to the input se-
quence corresponding to the input port of actor B, we have no choice but to
somehow arrange them sequentially. The way we do this is by nondeterminis-
tically choosing one of the possible permutations for the order in which we add
tokens from any of the outputs of the actor that has just fired.

Note that this situation only occurs if the same input port is connected to
more than one output port of the same actor. In a structure like the one in Fig.
20b there is no such problem, as the actors A1 and A2 never produce tokens
simultaneously, as actors are sequentially.

Def. 6: (Run of a static network) Given a network of actors defined by fAi : S
mi
 

Sni j i 2 Ig with corresponding families of projections �i and !i and a network
structure �!, we call a sequence of states

(sk; (�i;k)i2I ; rk)

a run of the network (starting from initial state (s0; (�i;0)i2I ; �N)) iff

� sk 2 S
M and rk 2 SN

� �i;k 2 �i

and each subsequent state (sk+1; (�i;k+1)i2I ; rk+1) is is related to its prede-
cessor as follows.

We need to distinguish between the case that in state (sk; (�i;k)i2I ; rk) there
is at least one actor that can fire, i.e. that has an active prefix of its part of the
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input tuple, and the case that there is no such actor. In the latter case, nothing
changes, i.e. sk+1 = sk, rk+1 = rk, and for all i 2 I , �i;k+1 = �i;k.

Now assume there is at least one actor that can fire. We compute the next
state as follows:

� First choose an actor Ai with a non-empty set of active prefixes.

� Choose one such prefix p 2 P�i;k�isk.

� Then choose some (q; v) 2 ��i;kp.

� Finally, choose some permutation of � of the numbers f1; :::; nig.

First we determine the residual tuple of input sequences s0k that is left after
’consuming’ p. This we can define by

�i sk = p+ �is
0

k

�j sk = �js
0

k for j 6= i

Now we define the N -ary output tuple r, which represents the output of the
firing in N -ary space, by ’padding’ the output produced by the actor with �:

!i r = v

!j r = �ni for j 6= i

The M -ary tuple of new inputs vk 2 SM for the �(k)-th output is defined
using the p 2 P in as follows:

p vk =

(
��(k)v for pouti;k �! p

� otherwise

So that finally the new state is

sk+1 =s
0

k + v1 + ::: + vni

�j;k+1 =

(
q for j = i

�j;k otherwise

rk+1 =rk + r

Note that the rk contain the accumulated output for the entire run. Strictly
speaking, this is a redundant part of the system state, as it does not influence its
behavior (nothing in the execution depends on it). It is included here, however,
for practical reasons, so we can later use it as part of the result of a run.

This definition allows us to ’execute’ a network of discrete event compo-
nents by firing one actor in each step. It assumes that the network structure
itself be static, i.e. that the connection structure defined by �! is given ini-
tially, and will remain the same during the execution of the system. In general,



32 Chapter 2. A discrete event model of computation

we will allow this to change, and the following section will provide a framework
for this.

Note further how the above definition isolates four potential sources of non-
determinism in the execution of a network of actors:

1. There may be more than one actor activated.

2. Each actor may be activated by more than one active prefix.

3. Firing an actor may in itself be nondeterministic in the sense that more than one
pair of next state/output tuple may be returned.

4. Finally, overlap inside the connection structure of a network may make the
choice of the order in which output sequences are added to the result a rele-
vant one.

This classification can be used to distinguish implementation and scheduling
strategies of this semantics. For instance, in the implementation in the Moses
Tool Suite [1] (see Appendix E), when executing networks of actors, the first
choice is made by the environment (a scheduler cf. section 2.6), while the other
three are made by the actors themselves.

2.4.2 Dynamic network structures

The assumption of a static connection structure between the actors may often be
good enough, but it turns out to be too restrictive in many modeling situations.
Specifically, there are three kinds of situations where a more general approach
is needed:

� New actors are generated and connected to other actors in the network.

� Actors are removed and disconnected from the network.

� Actors are moved through the network, possibly disconnecting them from some
actors and connecting them to others.

We have developed visual notations providing constructs for these situations
(e.g. [68]) and demonstrated their utility in specific modeling tasks (for instance
to develop generic simulation frameworks [45]). This section will extend the se-
mantical framework of static network structures to accommodate the semantical
description of these languages.

The creation of actors can be handled by providing a sufficiently large base
set of ’fresh’ actors, from which we always take a new one when we conceptu-
ally ’create’ an actor. Sufficiently large here usually means denumerably many,
making I (the index set for our actors) denumerable, and also N and M (the
number of output and input ports, respectively). This does not pose a problem,
as none of our definitions above relied in any way on their finiteness. So what
remains is to be able to modify the network structure among all these actors dur-
ing a run. However, we obviously only want to execute those actors that have
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already been created in this sense, therefore we need to keep track of the set of
actors that we are actually running, which will be indexed by a subset J � I of
the set of all actor indices.

As shown above, for a given system of actors (including their �i and !i

projections), the network structure is completely defined by the �! relation
between ports. In general, the structure of a system of actors may change dur-
ing its execution, therefore this relation must be part of the overall state of the
system, in addition to the states of the individual actors and the tokens which
have been produced but not yet consumed by an actor.

However, the actors defined in Def. 1 are not related to any notion of net-
work structure, and therefore there is no way they could modify it. What we
therefore need is a concept of an extended actor, that not only consumes and
produces tokens, but is also aware of the structure of the network and is able to
modify it. Hence an extended actor can form new connections between ports
and remove old ones, by simply returning (from its transition function ��) re-
lations between P out and P in that are added to and subtracted from the current
network structure. Furthermore, an extended actor also can create new actors
by returning their indices.

Def. 7: (Extended actor, system of extended actors) We call a structure

(�; �0; (P�)�2�; (��)�2�)

with �, �0 and the P� as in Def. 1 and a transition function

�� : D� �!
}(�� S

n
fin � (P out

� P
in)� (P out

� P
in)�}(I)) n ;

an extended actor, assuming a system of such actors with corresponding pro-
jections and sets of input/output ports defined analogous to Def. 3 and Def.
4.6

Note that an extended actor depends on the system it runs in, which of course
makes sense since it can modify its structure. Intuitively, the two additional
return values of the �� contain the new connections between ports and those
that are to be removed, respectively.

Before we come to the definition of a run of a system of extended actors, we
need to define the structure of the state of such a system.

Def. 8: (State of a system of extended actors) Assume a system of extended actors
fAi : S

mi
 Sni j i 2 Ig with corresponding families of projections �i and !i,

and sets of input and output ports P in and P out.
We call a tuple (J;�!; s; (�i)i2I; r) a state of this system iff

6This definition might seem somewhat circular due to its reliance on a given system of ex-
tended actors which is needed to identify the set of ports. However, the definition of a system of
(extended) actors really only needs their input/output signature, which could easily be factored
out.
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� J � I

� �!� P out
� P in

� �i 2 �i, and

� s 2 SM and r 2 SN .

The relation�! defines the current network structure, while J contains the
indices of the active actors—as we will see, only actors that are active in a given
state may be fired in the corresponding step of the run.

This allows us to define a run of such a system. Intuitively, we start with
some initial network structure �!0 and some initial input, and then each step
consists of picking an actor that has an active prefix, firing it on this prefix,
and updating the connection structure as well as the state of the actor and the
currently unconsumed tokens.

Def. 9: (Run of a system of extended actors.) Assume a system of extended actors
fAi : S

mi
 Sni j i 2 Ig with the usual projections. We call a sequence of

states
(Jk;�!k; sk; (�i;k)i2I ; rk)

a run of the system (starting from initial state (J0;�!0; s0; (�i;0)i2I ; �N)) iff

� Jk � I

� �!k2
}(P out

� P in)

� sk 2 S
M with M =

P
mi

� �i;k 2 �i

and for each k its successor state (Jk+1;�!k+1; sk+1; (�i;k+1)i2I) is defined
as follows:

We need to distinguish between the case that in state (Jk;�!k; sk; (�i;k)i2I)
there is at least one actor that can fire, i.e. that has an active prefix of its part
of the input tuple, and the case that there is no such actor. In the latter case,
nothing changes, i.e. Jk+1 = Jk, �!k+1=�!k, sk+1 = sk, and for all i 2 I ,
�i;k+1 = �i;k. Now assume there is an actor that can fire. We compute the next
state as follows:

� First choose an actor Ai with i 2 Jk with a non-empty set of active prefixes.

� Now choose one such prefix p 2 P�i;k�isk.

� Then choose some (q; v; c+; c�; N) 2 ��i;kp.

� Finally, choose some permutation of � of the numbers f1; :::; nig.
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First we determine the residual tuple of input sequences s0k that is left after
’consuming’ p. This we can define by

�isk = p+ �is
0

k

�jsk = �js
0

k for j 6= i

Now we define the N -ary output tuple r such that

!jr =

(
v fori = j

�nj otherwise

The M -ary tuple of new inputs vk 2 SM for the �(k)-th output is defined
using the p 2 P in as follows:

pvk =

(
��(k)v for pouti;k �!k p

� otherwise

So that finally the new state is

Jk+1 = Jk [N

�!k+1=(�!k [ c
+) n c�

sk+1 =s
0

k + v1 + ::: + vni

�i;k1 =q

�j;k+1 =�j;k for i 6= j

rk+1 = rk + r

Of course this definition parallels the one for static network structures, but
there are two things worth noting. First, every output of the firing actor is dis-
tributed using the existing network structure. Second, when changing the net-
work structure, the new connections are first added and then the connections
to be removed are removed, so that removal takes precedence over addition of
connections in cases of conflict.

2.5 Single-token actors
So far, we have developed our notions for the very general class of actors pre-
sented in section 2.2. In the following, we will specialize this general notion and
will thus arrive at a subclass of actors that will form the basis for our definition
of visual language semantics.

The dataflow actor as defined above is a very powerful and general entity.
In particular, the family of functions P� determining the active prefixes of its
input can perform arbitrarily complex operations on the input sequences, in
other words the property of being an active prefix may be a far from trivial one,
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and may depend on the values of input prefixes from any number of input ports.
In many cases, however, one would like actors to act on minimal amounts of
information.

Another aspect of the way active prefixes are determined is that this effec-
tively means that an actor may look at data, and then choose not to process
it—without ’consuming’ it. It is the actor that grabs a piece of data and then
does something with it—or refuses to act on it, leaving the input as it is. In
many applications, however, one would like to model a notion of asynchronous
sending of data, i.e. the receiver (the actor in our model) has nothing to say
about whether it accepts the data, its job only consists of handling any input that
is sent to it. This is the basic communication mechanism that our model will be
based on, and we will now embed this into our actor framework.

In this section we show how the actor definition can be specialized to char-
acterize a subclass of actors that never refuse data. The easiest way to do this
is to have them accept every possible single piece of data, i.e. every possible
(available) token. We will call this kind of actor a single-token (dataflow) ac-
tor and we define it by requiring that the set of active prefixes be exactly those
tuples of sequences, where one element is a single-token prefix of one of the
input sequences, and all other elements are �, which we write for the i-th input
sequence as (�i�1; a; �m�i), assuming of course that the i-th input sequence is
not empty, and that a is its first token.

Def. 10: (Single-token dataflow actors) A dataflow actor

A = (�; �0; (P�)�2�; (��)�2�; )

is called a single-token (dataflow) actor iff

8� 2 �; s 2 Sm : P�s = fp j p = (�i�1; a; �m�i); a 2 A; i = 1::m; p v sg

Note that this definition in particular implies that the set of active prefixes
is the same for each state, i.e. the property of whether some input activates an
actors does not depend on the actor’s state. Also, an actor always consumes
exactly one token per firing (we will say that it ’fires on’ that token), which in
particular means that it cannot fire in the absence of tokens.

Fig. 21 shows the relation between actors, extended actors and single-token
actors. Note that single-token actors are a proper subclass of actors. This is in
contrast to extended actors, where the actor definition was modified by adding
a notion of network structure to it and the ability to change it. One important
property of a single-token actor is that it is not selective on its input—as long
as tokens are available, it is completely indifferent as to which of its input se-
quences it takes the token for the next firing from. This means that, e.g., the
non-deterministic merge actor in Ex. 1 is a single-token actor, while neither of
its deterministic versions is.

A consequence of this lack of selectivity on input tokens is the fact that
single-token actors cannot ’recognize’ the end of an input sequence—as would
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Fig. 21: Single-token actors, actors, and extended actors.

be necessary to realize the deterministic merge actors above. As can be seen
below (we repeat the prefix function from Ex. 3), the active prefix function,
in e.g. state Q1, only selects a non-empty prefix of its second input sequence
(i.e. some (�; x)) if the first was empty. This in turn means that if the transition
function �Q1

is fired on this prefix it can ’assume’ that the first input sequence
is empty and act accordingly.

PQ1
: (s1; s2) 7!

8><
>:
f(x; �)g with s1 = x+ s0; x 2 A; s0 2 S

f(�; x)g with s1 = �; s2 = x+ s0; x 2 A; s0 2 S

; s1 = s2 = �

PQ2
: (s1; s2) 7!

8><
>:
f(�; x)g with s2 = x+ s0; x 2 A; s0 2 S

f(x; �)g with s2 = �; s1 = x+ s0; x 2 A; s0 2 S

; s1 = s2 = �

So clearly, not every actor can be expressed as a single-token actor. What
do we gain from restricting the more general actor class in this way?

Obviously, single-token dataflow actors effectively relinquish this kind of
control over the consumption of their input, thus introducing a degree of nonde-
terminism and making their functioning dependent on the (undetermined) order
in which they consume their input tokens. However, a different way of looking
at this is that single-token actors accept any input at any time, and can thus be
viewed as units that can be driven from the outside by sending them tokens in
an asynchronous fashion, inducing them to make state transitions or to produce
output tokens. This is a salient feature of our model of computation, viz. the
fact that in a network of actors, the order of token consumption is beyond the
control of an actor and is only constrained by the availability of tokens. We will
use this property by controlling the availability of tokens for actors and thus
driving the computation according to some notion of schedule (cf. section 2.6).

Another property of single-token actors is that their prefix function P� ex-
hibits a kind of monotonicity in the sense that if for any two tuples of input
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sequences s1; s2 we have s1 v s2, then in every state � we have

P� s1 � P� s2

This implies that adding new tokens to the input never removes active prefixes.
This is not so for general actors. Consider for example the deterministic merge
actor in Ex. 2: The input sequences (ab; �) result in the active prefix set

PQ (ab; �) = f(a; �)g

Adding a token, say c, to the second input sequence, however, gives the input
tuple (ab; c) w (ab; �), and here we have

PQ (ab; c) = f(a; c)g

which does not contain the formerly active prefix (a; �).
This monotonicity of the prefix function applies to the actor behavior (in

terms of state transitions taken and output produced) as well: adding more to-
kens to the input streams allows the actor to make additional steps, thereby
possible producing additional output. Note, however, that this does not imply
the simple monotonicity of deterministic actors, because adding tokens may not
only add to output produced for some shorter input, it may start off completely
new branches in the tree of possible firing sequences, possibly leading to output
sequences for which the shorter input produced no prefix. The non-deterministic
merge actor from Ex. 1, for instance, produces the unique output (ab) when run
on the input tuple (ab; �). Running it on (ab; c) produces, e.g., (abc) (which the
former output certainly is a prefix of), but also (cab) and (acb), none of which
has a prefix in the output of the actor for the shorter input tuple.

In other words, we have two dimensions of monotonicity in single-token
actors when adding tokens to their input. First, all existing output may be ex-
tended, and second, the set of all possible outputs might increase in size and
be augmented by output tuples that have no prefix in the output generated from
shorter inputs.

Actors in general need not exhibit this kind of monotonicity. Consider the
outputs of the deterministic merge actors in Ex. 2 and Ex. 3. For the input tuple
(ab; �), their output, too, is the unique (ab), while for the longer input (ab; c)
both produce the unique (acb). The former output sequence is obviously not a
prefix of this.

2.6 Scheduling and a notion of time
So far, execution within the network was driven exclusively by the availability
of data tokens. The basic feature of our model of computation so far was that
the ’consumption’ of a token from some input stream triggered the state tran-
sition inside an actor and also possibly led to the production of new tokens. In
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Fig. 22: A timed actor.

the definition of run (Def. 9) we identified several sources of potential non-
determinism, leading, in general, to a set of different runs from a given initial
state.

Often one would like to constrain these sources of nondeterminism by spec-
ifying a schedule in which potentially concurrent activities (concurrent at least
as far as the availability of data is concerned) are executed in order to model
scheduling policies of some system.

Another very common area were the initiation of activities (read: the firing
of actors) may depend not only on the availability of data are discrete event
simulation models [113]. Here, activities often conceptually consume (virtual)
time and thus need to be executed in some order that depends on their relative
’speeds’ in addition to the availability of data to be processed. A salient feature
of these kinds of models is that coordination between actor activities in principle
needs to be global in the sense that no part of the system may be ignored when
deciding which actor is to fire next. Naturally, the network structure may be
used to impose a hierarchy onto the set of communicating actors and thus make
the scheduling hierarchical. This section will introduce a technique that allows
us to construct these kinds of models based on the framework outlined above.

2.6.1 The scheduling problem

First consider the actor in Fig. 22. We will think of it as producing the Fibonacci
numbers in proper sequence, one per firing. However, in addition to this it has a
temporal aspect in that before each firing it has a conceptual delay of 3 (virtual)
time units.7 We will, n this example for the sake of simplicity, assume time to
be ’measured’ by real numbers, as well as that the system starts to run at time 0.

Thus, if we write a@t to denote that value a was produced at time t, the
sequence of outputs produced by that actor would be

1@3; 1@6; 2@9; 3@12; 5@15; 8@18; 13@21; :::

More accurately, this means that there were firings at times 3, 6, 9, etc. and
that these produced the indicated outputs (so it would really be more accurate

7We will henceforth omit the qualification ’virtual’ for time, since in the context of a model
of computation this will be the only concept of time we will be concerned with.
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to list the actor firings and the time when they happened). Of course, with
just a single actor, time has little influence on the order in which things hap-
pen (although it might still be an interesting measure from an evaluation point
of view—e.g. to answer question about the speed/throughput/latency etc. of
an actor). With more than one actor, the temporal behavior of the actors may
influence the functional aspects of the system.

C
MergeB

A

Nats
A

Delay = 5

Fibs
A

Delay = 3

Delay = 0

Fig. 23: A small network of timed processes.

Consider for example the system in Fig. 23. It contains the actor from Fig.
22 and another, similar one, which produces the natural numbers in sequence,
each with a delay of 5 time units. Both outputs are merged by a Merge actor,
which is instantaneous. Obviously, if the delays attributed to the Fibs and Nats

actors are taken to model their behavior in physical time, we would expect the
output of the Merge actor to be something like

1@3; 1@5; 1@6; 2@9; 2@10; 3@12; 5@15; 3@15; 8@18; :::

This sequence results by merging the underlined outputs of the Nats actor
into the appropriate places (as indicated by the timestamps) of the previous out-
put sequence of the Fibs actor. Note, incidentally, that at time 15 both actors
fire, and thus Merge can choose between two tokens at that point.

However, our current concept of executing networks of actors (as defined in
section 2.4) does not provide us with any way of controlling the sequence of
firing of the actors in the way outlined above. Consider, for example, the Fibs
actor. A possible definition of the Fibs actor might be the following:
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Ex. 6: (The Fibs actor, without a concept of time)

� = N � N

�0 = (1; 1)

P(a;b) : () 7! f()g

�(a;b) : s 7! f((b; a+ b); a)g

This actor has no input ports, and it never reaches a state in which it could
not fire. This means that in all its states (a; b), its set of active prefixes is
P(a;b) () = f()g 6= ;. This in turn means that one possible run of the above
network according to Def. 6 or Def. 9 would be to simply fire it an infinite
number or times, without any other actor firing in between. Of course, the tem-
porally ’well-behaved’ run giving rise to the sequence above is also a possible
run under these definitions, but the problem is that our concepts so far provide
no mechanism to select runs that respect the temporal properties of the actors,
and in fact we have no way to even formulate temporal aspects of actors.

So what is required is a way of expressing temporal properties of actors and
a mechanism that allows us to coordinate the firings of the actors in a network in
such a way that the temporal order is respected. In the following we will present
an approach that allows us to do this. Specifically, it consists of the following
parts:

� the concrete notion of time that we are dealing with,

� some requirements on the behavior of the actors as well as on the system struc-
ture,

� how to enforce a scheduling among the actors that respects the firing times they
are scheduled for.

The pivotal concept of this mechanism will be the schedule which contains
actors that are ready to fire at some future point in time. The execution of the
system will be done in two alternating phases:

1. Choose one actor which to fire next, i.e. an actor which is scheduled at a point
in time such that no other actor is ’earlier’, and fire it.

2. The actor may have produced tokens, which activate other actors. Fire them, in
the usual manner, until the system is ’dead’, i.e. no actor can fire (we require
this procedure terminates after a finite number of steps). See, if any actors have
scheduled themselves for future firing (again, this will be made explicit below),
and update the schedule accordingly. Then go to step 1.

Conceptually, the firings in step 2 all happen at the same time, i.e. whatever
happens in step 2 is instantaneous. Time is only (potentially) advanced in step
1, when the next actor to be scheduled is chosen.8

8Out model of time has been inspired by the time concept of Colored Petri Nets [70].
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2.6.2 Scheduled actors and systems

Before we come to the scheduling technique proper we need to be somewhat
more precise about our concept of time. Although the term ’time’ suggest ’phys-
ical time’, which (at least in its Newtonian conception) is totally ordered and
continuous, the following definitions will not commit us to any specific notion
of time, except that ’points in time’ (which we will call ’tags’, see below) be
partially ordered. There are several reasons for this decision:

� The central function of the notion of time is to coordinate actions (the firing
of actors) in the system. Using a totally ordered concept of time might lead
to overspecification of a system in the sense that it unnecessarily forces order
among actions that we would like to model as unordered.

� Many existing system models use partial orders to describe the coordination of
actions, e.g. in distributed systems [75], or in Petri nets [89], others are based
on a totally ordered but discrete time concept [16]. If possible, we would like to
be able to incorporate these models into our actor framework.

� Totally ordered notions of time remain available to us if we need them, since
they constitute a special case of our model.9

So, following [78], in this framework, time will be represented abstractly
by a partially ordered set of tags. As a consequence each token will have a tag
component as follows:

Def. 11: (Tag, tagged value) A tag is an element of a partially ordered tag set (T;�). If
t1 � t2 we say that t1 is (strictly) before t2.

A set of tagged values is some set A and a function � : A �! T , assuming
(T;�) is a tag set. Furthermore, there must be a function � : A �! V to some
non-empty set of values V such that (A; �; �) is a product.

The scheduling mechanism outlined above depends on two interactions with
the actors: When its time has come, it must be able to fire an actor, and actors
must be able to communicate their scheduling requests to it. The usual way to
fire an actor is to provide it with input tokens that activate it (and then, of course,
fire it on those tokens), while the normal way to get information from an actor
is by one of its output ports. Thus for an actor to able to be scheduled it must
fulfill the following requirements:

� The actor must have two designated ports used to initiate firing it and to send
scheduling requests. Fig. 24 shows two actors from the system in Fig. 23,
exhibiting their additional ports needed to schedule them (the input used for
firing them is labeled fire, the output where they produce scheduling requests
is labeled sched).

9In fact, our implementation of these concepts is based on a totally ordered time concept.



2.6. Scheduling and a notion of time 43

a)

Fibs

Delay = 3

fi
re

A

s
c
h
e

d

b)

Merge

A

B

C

fi
re

s
c
h
e

d

Delay = 0

Fig. 24: Actors exhibiting their scheduling ports.
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Fig. 25: Schedulable actors and their relation to other kinds of actors.

� In addition, the input/output behavior of the actor must be consistent with the
order of the tags that denote temporal progress. In particular, all tags except
those of tokens produced at the scheduling output must be equal to the one that
was used to fire the actor. Also, the actor must be firable by any single token
along the fire input. The tag of tokens produced at the sched output must
be greater than or equal to the tags of the tokens it fired on. In order to reduce
possible inconsistencies with different time stamps of simultaneously consumed
tokens, we will require schedulable actors to be single-token actors in general.

Fig. 25 shows how this new kind of actor, which we call schedulable actor,
fits into the concepts introduced so far. It is really a special kind of extended
actor, that behaves in a single-token fashion, i.e. always consumes exactly one
token per firing.
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Def. 12: (Schedulable actor, schedulable system) Given a system of extended single-
token actors and a set of tag values (T;v). We call a structure

(�; �0; (P�)�2�; (��)�2�; pfire; psched; t0)

such that (�; �0; (P�)�2�; (��)�2�) is an extended single-token actor Ak, pfire
and psched are two functions and t 2 T [ f1g a schedulable actor with starting
time t0 iff

� pfire 2 P
in
k

� psched 2 P
out
k

� If a is the token on which the actor fires (i.e. (�i�1; a; �nk�i) is an active prefix
which the actor fires on), then any token v produced at any output port p 6=
psched must be such that �a = �v, while for any token r produced at psched we
require �a � �r.

� Furthermore, if N is the set of actor indices of actors created in that firing, then
the following must hold:

8i 2 N : �a � t0;i

� If m;m0 are two tokens such that �m = �m0 and s; s0 two input tuples such
that pfire s = m and pfires

0 = m0 and for all input ports p 6= pfire we have
p s = p s0 = �, then for any state � the following must hold:

���is = ���is
0

A system consisting exclusively of schedulable actors is a schedulable sys-
tem.

The first two conditions require pfire and psched to be an input and an output
port of the actor, respectively. The third condition states that the actor be tem-
porally well-behaved in the following sense. Since it is a single-token actor, it
consumes one token, say a, in every firing. All its output tokens are required to
carry the same tag as the token is consumed, that is �a, except for tokens coming
from it scheduling output: their tags are required to greater than or equal to the
tag of a. The fourth condition requires something similar for the actors created
in the firing: their starting time tag must be greater than or equal to the current
firing time tag, i.e. the tag of the token the actor fired on.

The last condition simply states that the actor must not depend on the value
component of the tokens arriving at its firing input: any two tokens at the pfire
input port with the same time stamp should produce the same value when fed to
the transition function.

The starting time t0 is a tag that identifies when the actor schedules itself
for first firing—this does not necessarily imply that it will not fire before t0. In
particular, if it receives any data from other actors it is connected to before this
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time, it will fire on it, and even may change its scheduled firing time. Note that
t0 can assume the special value 1 62 T , which denotes an unscheduled actor
that remains inactive unless it receives input from other actors in the system.
We will discuss this in more detail below.

Coming back to the Fibs actor, a version of which we modeled without a
notion of time in Ex. 6, we are now able to modify it so that it is schedulable
and correctly behaves in time.

Ex. 7: (The Fibs schedulable actor, including its delay)

t0 = 0

pfire : (s) 7! s

psched : (s1; s2) 7! s2

� = N � N

�0 = (1; 1)

P(a;b) : (s) 7!

(
f(x)g for s = xw; x 2 A

; otherwise

�(a;b) : (x) 7! f((b; a+ b); (a0; y); ;; ;; ;)g

such that �a
0 = a; �a

0 = �x

and �y = �x + 3

By defining psched we have identified the second output port of the actor as
the one scheduling messages are sent from.10 It has only one input port, which
therefore must be the pfire port. The firing function produces two output tokens,
(a; y): the first is the data token, the next Fibonacci number in the sequence
(here we have to construct a token a0 such that a is its value projection, and
�x (the tag of the fire message) its tag, but the second is the schedule message,
scheduling the actor at � x+ 3, i.e. 3 time units in the future.

2.6.3 Executing schedulable systems

At this point we come to the execution of a schedulable system. As mentioned
above, this happens in two phases:

1. Inject a token into the fire port of an actor. Of course, this actor is chosen as
the next to be fired according to the current schedule.

2. This activates this actor. Now run the system until no actor is activated. Then
repeat the cycle.

This obviously assumes that the run in the second step terminates (when no
actor is activated any more). So far, however, our definition of run (Def. 9) is
an infinite one. Therefore we must define a finite run.

10To simplify the notation we have taken the liberty of defining these ports relative to the
actor, rather than relative to some imaginary system.
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Def. 13: (Finite run, result of run) Given a system of extended actorsAi, and an initial
state (J0;�!0; s0; (�i;0)i2I ; �N). We call a run finite if there is a k such that
in state (Jk;�!k; sk; (�i;k)i2I ; rk) the set of activated prefixes of all actors is
empty, i.e. no actor is can fire.11

In that case, we call (Jk;�!k; sk; (�i;k)i2I ; rk) the result of the run.
A run that is not finite has the result ?, which is distinct from any state of

the system.

It is important to realize that running a system from a given state may yield
any number of results, including ’none’, denoted by ?. Therefore when we run
a system from a particular state we are in effect selecting one of possibly many
runs and looking at the result. If the result is ?, then the run never finished,
and hence the system does not terminate. It is of course perfectly possible for a
system (in a given state) to have both, runs that terminate and those that do not.

Now it is necessary to define the state of a schedulable system. This will be
the state of the system as defined in Def. 8, plus a schedule. This schedule will
be defined as a function from I (the index set of the actors) to T [f1g, the tags
plus an ’unscheduled’ special tag not in T .

Def. 14: (Schedule, firable actors) Assume a schedulable system of actors Ai, with i 2
I . We will call a function � : I �! T [ f1g a schedule. Extend the partial
order on T to T [ f1g such that for all t 2 T , t � 1. The set

Ifirable = fi 2 I j �i 6=1^ :9j 2 I : �j < �ig

is called the set of firable actors.

The state of a schedulable system then becomes essentially the combination
of a schedule with a state of system of extended actors. Additionally, we will
allow the state to be undefined, denoted by the special value ?. The scheduled
system will go into this state if any of its runs do not terminate.

Def. 15: (State of a schedulable system)
For any schedulable system of actors, if (J;�!; �M ; (�i)i2I ; r) is a state of

the system of actors according to Def. 8, J � I , and � is a schedule, then

(�; J;�!; (�i)i2I ; r)

is a state of the schedulable system of actors, iff

8i 2 I n J : � i =1

Additionally, that system can be in a state written as ?, different from any
of the previously defined states.

11This obviously implies that each following state is identical to the k-th state.
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This definition demands that the scheduled time for each non-active actor is
1, which implies J � Ifirable, i.e. every actor that is not active is not firable
and thus will not be fired by the scheduling mechanism that we will describe
below.

As a consequence of the assumption that all actors are single-token and that
no actor has an active prefix, we can assume that our input sequences are all
empty, which is why we need not keep the input sequences as part of the system
state.

The execution of a schedulable system starts with a schedule that is con-
structed from the starting times of all actors. The execution then proceeds as
follows:

Def. 16: (Execution of a schedulable system)
Assume a schedulable system (Ai; pfire;i; psched;i; t0;i) with i 2 I and an

initial state
S0 = (�0; J0;�!0; (�i;0)i2I ; �N)

such that for all i 2 I ,

�0 : i 7!

(
t0;i if i 2 J0

1 otherwise

An execution of the schedulable system is a sequence of states Sk such that
for any Sk its successor state Sk+1 is computed as follows:

� If Sk = ?, then Sk+1 = ?.

� Otherwise, Sk = (�k; Jk;�!k; (�i;k)i2I ; rk). If Ifirable = ;, Sk+1 = Sk.

� Otherwise, there exists a firable actor. Now we perform the following steps:

1. Choose some i 2 Ifirable. Let s 2 SM be defined by pfire;is = a, for some
a such that �a = �i, ps = � for any port p 2 P in

n fpfire;ig.

2. Run the system of actors on state (Jk;�!k; s; (�i;k)i2I ; �N). If the result
of that run is ?, Sk+1 = ?.

3. Otherwise, the result is a state (J 0;�!0; s0; (�0i;k)i2I ; r). Since all actors
are single-token actors, s0 = �M . The set N of newly created actor indices
is N = J 0 n Jk. Now define

�k+1j =

8><
>:
�kj if psched;jr = � ^ j =2 N

t0;j if psched;jr = � ^ j 2 N

�a withpsched;jr = wa;w 2 A�; a 2 Ag

Jk+1 = J
0

�!k+1=�!
0

�i;k+1 = �
0

i;k

rk+1 = rk + r
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The key to this definition is the way that the new schedule, �k+1 is defined.
If no scheduling token is received by an actor, its next firing time remains un-
changed if the actor was active before. If it was created during this iteration, its
starting time is taken instead (note that temporal well-behavedness of schedu-
lable actors ensures that this is not smaller than the current firing time). Other-
wise, i.e. if a scheduling token came from the actor, we take the last scheduling
token, and its time stamp will become the actor’s new next firing time. Here the
monotonicity condition of the scheduling output of schedulable actors ensures
that this time will not be in the past.

2.7 Summary—scheduled systems of discrete event com-
ponents

This completes our model of computation. The systems we will be looking
at will be schedulable systems of actors. We will also refer to a single actor
in such a system as a discrete-event component, for its discrete-event behavior
(due to discrete firings) and its component-like interface (e.g. [31]) to its envi-
ronment. In the remainder of this work, this will be the only kind of actors we
will be concerned with, hence we will use the terms ’discrete-event component’,
’actor’, and ’component’ interchangeably, unless stated otherwise.

As mentioned at the beginning of this chapter, these discrete-event compo-
nents will be the central concept in our semantics description. The following
chapters will describe a technique for constructing an actor from a visual pro-
gram, or picture. One of the consequences of this approach is that once that
visual program is mapped into an actor it becomes abstract in the sense that the
the program itself, i.e. its syntax, becomes invisible, thus allowing us to com-
bine any kind of visual program with any other kind, as long as there exists such
a mapping into the domain of discrete-event components.

As we will see by studying a few applications, there is a large variety of
visual languages for which this is the case, including those mentioned in the
introduction. However, first we need to describe pictures in a form that allows
us to manipulate them by an automaton, i.e. we must define them as a formal
structure.

2.8 Discussion and related work

The main purpose of our model of computation is the representation of struc-
tured, concurrent systems—in a way that facilitates operational modeling of
individual actors. In this section we will discuss features of our model and
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important design decisions, and contrast it with the choices made in other ap-
proaches. We will in particular focus on dataflow actors as defined in [77], the
class of approaches we will sum up here as ’process algebraic’ (most notably
CCS [81], CSP [61], and the �-calculus [82]), DEVS [113] and Agha’s actors
(sometimes referred to as ’agents’) [4, 5].

As mentioned at the beginning of this chapter, the concept of actor presented
here has its origin in the dataflow actors in [77], which it extends by a notion of
state. Key concepts have been borrowed from dataflow actors, most notably the
firing concept and the notion of ports. However, we have generalized the notion
of network structure, which in our model is an n-m relation between output ports
and input ports, as opposed to dataflow networks, where the network structure
allowed at most one input port to be connected to any one output port and vice
versa. For static networks, this is not particularly limiting, as one can always
conceptually insert fork or merge actors to distribute output from or collect input
to a port. In the case of dynamically changing network structures, however, this
would lead to artifacts which seem intractable. In particular, when establishing
a new connection, one might need to implicitly create a new actor and wire it
up to achieve the desired effect. The price for allowing n-m relations between
ports is that this produces a new source of non-determinism in the execution
of a system (cf. Def. 9), viz. the simultaneous output of tokens at different
ports in the same firing of the same actor. When these outputs are merged, their
order is not determinate. It is our view, however, that this is, in a sense, a real
indeterminacy of the model itself, that a general model of computation should
not resolve. If at all, it would be the responsibility of the model to make this
behavior determinate, e.g. by explicitly inserting a merge actor.

One of the novel features of our approach is the way we model system com-
munication structures. We adopt the common notion of ports (occurring in sim-
ilar forms in such diverse approaches such as dataflow actors, DEVS, but also
in denotational frameworks [3, 30, 32, 78]) as the interface between actor and
environment. Unlike other approaches, ports as well as actors themselves are
first-class entities, connected by an arbitrary relation between output and input
ports. Actors need to be able to identify ports and connect and disconnect them.
However, actors do not have read-access of the communication structure itself,
i.e. they cannot inquire about the presence or absence of a connection. The
rationale behind this design was to decouple the behavior of an actor from who
it was communicating with, allowing an actor to be written in full ignorance of
the ’outside’ world but still interchanging information with it. For an actor, its
ports form its view of the rest of the system. Likewise, from the outside an actor
is exclusively viewed in terms of the communication that happens via its input
and output ports. Disallowing an actor to obtain knowledge about the commu-
nication structure is necessary to maintain strict encapsulation and separation of
the states of the actors from one another. Otherwise, the communication struc-
ture would become a ’global’ state, and actors could influence each other by
other means than just communication (i.e. they could exchange information by
establishing or removing connections).
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In static networks, the communication structure, or ports, need not be repre-
sented to the actors at all, neither need the actors themselves be first-class—
which is why the work on dataflow actors [77], focusing on static network
structures, does not address these issues. Process algebraic approaches have
an abstract concept of their communication medium in the form of ’channels’.
This is not equivalent to ports or connections, because a channel does not nec-
essarily belong to an actor/a process, nor does it constrain the set of processes
communicating via the channel, allowing in general any number of processes
to read and write to a channel. Also, they need not be first-class objects—the
�-calculus extends CCS by first-class channels, which means they can be dy-
namically created and passed as values inside of messages. Although process
algebras support the dynamic creation of processes, they are not data values that
may be passed as messages to other processes.

Agha’s actor model, on the other hand, makes actors ordinary data objects.
However, it does not formalize a notion of network structure, so that actors need
to explicitly address (and therefore know) any actor they are sending a message
to. DEVS builds models hierarchically from components that are connected at
ports to form a ’coupled model’, which in turn represents a component that can
be integrated into other models. The connection structure is explicitly repre-
sented as part of the coupled model, but it is not first class, and neither are ports.
This implies that models may not change the connection structure—it is static.

Like dataflow actors, our communication model is an asynchronous one.
Actors can always produce output, and the inputs of actors can be thought of
as being equipped with unbounded buffers. On the other hand, actors need
not, indeed cannot, ’wait’ for some specific input to arrive. An actor has no
control over the order in which input is delivered to it. Other models of com-
putation (e.g. most that could be called ’process algebras’ such as CSP and
CCS) choose synchronous communication as the underlying communication
paradigm. Synchronous communication can be simulated by asynchronous
communication primitives [6, 31], so in principle the latter should suffice in a
semantical model. Many practical modeling tasks, however, are best dealt with
using a synchronous communication model, so a practical modeling language
might usefully include both, in spite of the conceptual redundancy [5].

The notion of time used in our model of computation was inspired by the
tagged signal model in [78]. However, while there a signal (roughly corre-
sponding to our sequences of tokens) is a function from (time) tags to values,
we allow any number of values to carry the same time stamp in any one se-
quence. Furthermore, the order of tokens in a sequence and the time stamps
attached to these tokens are only loosely related, especially in scheduling mes-
sages. In fact, the relation between the order of tokens in a token sequence and
their time stamps is a derived property, following from the temporal behavior
of a schedulable actor (Def. 12 on page 44) and the mechanism of executing a
schedulable system (Def. 16). The notions of causality and temporal order are
realized in these definitions.

Simulation modeling languages and formalisms are a usually operational
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description techniques that involve some notion of time, most often a model
of continuous physical time. The most important example is DEVS. DEVS
components have a built-in notion of continuous time, which is realized by a
function computing the time of the next internal state transition. Internal tran-
sitions are those happening without external input, just due to the passage of
time. External input, on the other hand, is processed immediately. Both kinds
of transitions may lead to a new state and output.

By contrast, the temporal behavior of our actors is simply a specialization
of atemporal behavior (Def. 12). Every schedulable actor is a valid ’atem-
poral’ actor. The scheduling and firing of an actor is realized in our model of
computation by using the communication mechanisms—port, passing of tokens,
firing. In a sense, our actor model reflects the dichotomy between DEVS’ time-
consuming internal and instantaneous external events in the distinction between
input on the fire input put and input on other input ports. The big difference
is simply that once again, the concept of time-consumption and the scheduling
of state transitions is a derived notion, a notion being associated with a way of
executing a system. Actors themselves have no notion of time.
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3
Visual language syntax and semantics

This chapter will present our general approach to specifying the syntax and
semantics of a visual programming language by an automaton that is param-
eterized by a representation of a particular visual program, or picture. This
representation will be referred to as its abstract syntax, and the automaton is
consequently an abstract syntax interpreter. We will subsequently embed this
notion into the actor framework outlined in the previous chapter. As a first step,
we will address the representation of pictures as abstract mathematical struc-
tures, which is then used as the basis for the interpretation process.

Delay: [0,1]

Fig. 26: A picture representing an actor.
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3.1 Abstract syntax of pictures

3.1.1 An example

To illustrate the relation between concrete and abstract syntax that we will base
out interpretation on consider the picture in Fig. 26, incidentally depicting a
time Petri net [80]. The basic structure of this picture is that of a graph, i.e. a
set of vertices and (directed) edges connecting them. Although this is not the
case in this simple example, we will allow for more than one edge connecting
the same two vertices (in the same direction), thus more generally the basic
abstract structure of our pictures is that of a multigraph, which can be defined
by a tuple

(V;E; s; d)

such that V and E are the disjoint sets of vertices and edges, respectively, and
s; d : E �! V map an edge to its respective start or destination vertex.

However, this structure is clearly not sufficient to represent all relevant in-
formation1 contained in the picture. For instance, we have vertices of different
kind (representing the concepts of places and transitions in Petri nets [84, 88]),
and vertices as well as edges can be inscribed with (different kinds of) textual
annotations. 2

These pieces of information we will consider as attributes of the multigraph
structure, and it is ’connected’ to it by means of an attribution function � :
(V [ E)� A �! U , where A is the set of attribute names and U the set of all
possible attribute values. A useful candidate for this set will probably contain
the character strings, numbers, but maybe also more structured data such as
lists etc.—and often also V and E themselves. To make the attribution function
total, we assume that U contains an element? denoting an ’undefined’ attribute
value. We will refer to edges and vertices collectively as graph objects, and
we will say that some graph object x has an attribute value v for attribute a iff
�(x; a) = v. Often it is convenient to talk about the complete attribution of
some graph object x as a function �x : A �! U .

Fig. 27 shows the structure of an abstract syntax for the picture in Fig. 26
(leaving out all ’undefined’ attribute assignments). The items on the left are the
edges, those on the right the vertices. Note that each graph object has at least
one attribute called type, which in the case of the vertices distinguishes between
Places and Transitions. Since we have only one edge type, Arc, this is the same
for all edges. Some edges have an additional Weight attribute, some vertices

1We will pretend, for a moment, that this notion is actually an objective one, i.e. that we
would know for any given picture what exactly this relevant information is, and which infor-
mation is incidental, implying that the latter need not be represented in the abstract syntax. Of
course, in general this depends on the semantics of the picture, and since our abstract syntax
representation is a generic one, we will usually have a lot of structure represented in the abstract
syntax that is not interpreted and thus irrelevant semantically.

2Additionally, there are of course graphical and geometrical informations (position, size,
color, orientation, ...) that we will gloss over for a moment. It will become clear how these fit
into the structure we propose here.
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type Transition

Delay [0, 1]

type Place

nTokens 1

type Place

type Place

nTokens 2

type Transition

type Arc

type Arc

Weight 2

type Arc

Weight 2

type Arc

type Arc

type Arc

s

d

verticesedges

Fig. 27: An abstract syntax of the picture in Fig. 26.

have an nTokens attribute, and there is one that bears a Delay attribute. Finally,
the arrows indicate the way the edges connect the vertices, distinguishing for
each edge between the vertex it ’starts’ from and the vertex it ’ends’ at.

Incidentally, for representational purposes we broke the � attribution func-
tion into its �x components for each graph object x, which is displayed as the
little table representing the graph object. It is often conceptually convenient to
view the attribution in this way, because the way some �x looks often depends
on the specific graph object, in particular on its type. For instance, in the above
example, only vertices of type Place (i.e. for which their �x(type) = "P lace")
could have an nToken attribute, while a Delay attribute only makes sense for
Transitions. This kind of property, which is somewhat analogous to the static
semantics of textual programming language, will be discussed in greater detail
below.

3.1.2 Abstract visual syntax

As we have seen above, our abstract syntax is an attributed multigraph, where
an attribution function attaches additional information to each graph object. The
subsequent definition will also allow the graph itself to carry attributes. We will
see an application of this in chapter 5. We adopted the concept of abstract visual
syntax outlined in [41].

Def. 17: (Abstract syntax of a picture/attributed graph.) Assume a set A of attribute
names and a set U of attribute values, containing an ’undefined’ value ?. We



56 Chapter 3. Visual language syntax and semantics

define the abstract syntax of a picture as an attributed graph, i.e. as a structure

(V;E; s; d; �; �)

such that V and E are disjoint sets of vertices and edges, respectively (collec-
tively called graph objects), and

s; d : E �! V

� : (E [ V )� A �! U

� : A �! U

The set of all attributed graphs for a given A and U is written as �(A;U).

As mentioned above, we will also write �x for the function defined by
�x a = � (x; a), for any graph object x.

Obviously, by choosing A and U as needed we can make the structures
attached to the edges and vertices of an attributed graph arbitrarily simple or
complex.

However, not all such graphs are ’meaningful’ as representatives of a given
visual notation. For instance, in the Petri net language we used in the example
above, it does not mean anything for a Transition type vertex to have a Weight
attribute. Furthermore, the actual attribute values attached to graph objects may
have to conform to certain syntactical rules—they are usually described by some
textual grammar themselves. For example, we would like to exclude a Weight
attribute value of ”-4”, since arc weights need to be positive integers.

Thus, for an attributed graph to be considered a representative of some visual
language it needs to satisfy a set of predicates, say P. An element P 2 P then
is a predicate, and some graph G is said to satisfy this predicate if P (G) holds.
If a graph satisfies all predicates in the P, we will call it well-formed. A visual
language is simply the set of all well-formed attributed graphs.

Def. 18: (Visual language) Given a set of attributed graphs �(A;U) and a set of predi-
cates over these graphs P, these define a visual language L(P) as follows:3

L(P) = fG 2 �(A;U) j 8P 2 P : P (G)g

Here are some predicates describing well-formedness requirements for at-
tributed graphs representing Petri nets in the way we sketched above. Of course,
the collection is incomplete.

Ex. 8: (Some Petri net syntax predicates)

P1(V;E; s; d; �; �) : 8e 2 E : �(se; type) = "P lace") �(de; type) = "Transition"

P2(V;E; s; d; �; �) : 8e 2 E : �(se; type) = "Transition") �(de; type) = "P lace"

P3(V;E; s; d; �; �) : 8e 2 E : �(e;Weight) 2 N [ f?g

P4(V;E; s; d; �; �) : 8v 2 V : �(v; type) = "P lace") �(v; nTokens) 2 N [ f?g

3Obviously, this is formally equivalent to just one predicate that is simply the conjunction
of the P 2 P. We chose to present it in this way because it mirrors more closely the actual
implementation and also allows us to talk about a graph violating a specific syntax predicate.
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The first two predicates ensure that places are always connected to transi-
tions and vice versa. The third requires arc weights to be positive (or undefined),
and the fourth makes a similar requirement for the nTokens attribute of places.

From a practical perspective, these syntax predicates can be considered pre-
conditions for the interpreter—graphs that are not well-formed need not be in-
terpreted in any meaningful manner, thus an interpreter may assume that the
syntax predicates hold for the structures it has to deal with.

We will now turn to the problem of, given such a graph G 2 L(P), how to
define what it means by what it (or rather the computational structure denoted
by it) does.

3.2 Abstract syntax interpreters

We will define the semantics of a visual language such as Petri nets by giving
an interpreter for it, its abstract syntax interpreter. However, defining such an
interpreter is not equivalent to specifying a concrete actor—such an actor has a
fixed number of input and output ports, it has a specific initial state, a specific
state space and so on. All these are things that may, in general, depend on the
specific visual program (represented by an attributed graph) that an interpreter
will execute. The situation is roughly equivalent to the relation between an ob-
ject and its class in object-oriented programming languages. There, the class
represents a general description of the structure and the behavior of objects, and
the programmer is concerned with describing the class, rather than the individ-
ual objects themselves. These are then created from the class description by
a process called instantiation, which typically involves parameters describing
specific details of the object’s initial setup.

Similarly, when describing an interpreter for a visual language, it is obvi-
ously generic in that we would like it to be a description of the behavior of all
actors that are defined by a graph belonging to a visual language. Therefore,
strictly speaking, we do not define each of these actors, or any of them, we de-
fine something that, given a graph in a visual language, creates an appropriate
actor.

We will call an entity that generates actors in this manner an (actor) schema,
and in this work we will only be concerned with one particular kind of schema,
viz. with those that generate actors that interpret visual languages, or interpreter
schemata.

Such a schema will be parameterized by the particular abstract syntax struc-
ture, as well as possibly other parameters of the discrete event component, and
the current point in time (a tag in the sense of Def. 11, i.e. an element of T ),
and it constructs a ’fresh’ interpreter for the given syntax structure.4

4Of course, we will formally assume all possible components to be already ’present’, so that
the schema only needs to identify one that is unused so far.
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A schema must, in general, produce more than just an actor identifier. Since
components may contain embedded subcomponents, constructing an actor may
involve constructing other actors and connecting them to each other and to the
main actor. Also, the creation procedure may itself be non-deterministic, i.e. it
may return a set of more than one result.

Note that we allow our components to be ’parametric’, i.e we can pass a
number of values to the schema that may influence the construction of the com-
ponent. Parameters could influence the initial state of the component to be
created, or delays inside it, or we could want to pass functions into the actor
which affect its computations. For simplicity, we will assume that these values,
like the values of graph attributes, are elements of U , and since we want to leave
open exactly how many parameter values we pass to the schema, we just assume
the component parameter list to be in U �.

Def. 19: (Interpreter schema) Assume a schedulable system of actors. We will call a
function

I : T � L(P)� U
�
�! }

�
I �}(I)�}(P out

� P
in)�}(P out

� P
in)
�

that identifies for a given abstract visual program P 2 L(P) and parameter
structure of an appropriate set of possible component parameters U � an inter-
preter schema for the language L(P) a set of structures

(i; N; c+; c�)

where i is the index of the new actor, N is a set of indices of other actors created
in the process of creating Ai, and c+ and c� are connection sets.

Each resulting Ai of the application of the abstract (visual) syntax inter-
preter schema is then expected to realize the behavior of the entity denoted by
the corresponding abstract syntax structure. Of course, in general this is neces-
sarily an informal notion, as we will not assume pictures to come with a given
semantics, but rather that their semantics is defined by this interpreter schema.

In this sense, languages such as Petri nets are an exception, because these
do have a ’predefined’ formal semantics that the interpreter schema can be for-
mally compared to. In such a case, it is of course necessary to show, or make
reasonably plausible, that the operational semantics defined by the abstract syn-
tax interpreter is in fact compatible with the original semantics of the language
in question. We will come back to this issue in chapter 5.

3.3 A simple example
Let us now illustrate the construction of an abstract syntax interpreter using
the small finite-state machine notation from the introduction as an example.
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First, we need to make explicit the abstract syntax of this notation. We will
assume two types of vertices, one with type tag InitMarker and another one with
tag State, corresponding to the marker of the initial state and the actual states,
respectively. We will only allow for one kind of arc, whose type thus becomes
irrelevant. The arcs are inscribed by objects denoting the input consumed in
the state transition and the output produced, where the latter may be a string of
characters of the alphabet.

If we fix the alphabet to be fa; b; xg as in the example of Fig. 2, we can
formulate the following predicates to describe admissible abstract syntax struc-
tures:

Ex. 9: (Syntax predicates for a simple FSM-notation)

P1(V;E; s; d; �; �) : 8v 2 V : �(v; type) 2 f"InitMarker"; "State"g

P2(V;E; s; d; �; �) :j fv 2 V j �(v; type) = "InitMarker"g j= 1

P3(V;E; s; d; �; �) :j fe 2 E j �(se; type) = "InitMarker"g j= 1

P4(V;E; s; d; �; �) : 8e 2 E : �(de; type) = "State"

P5(V;E; s; d; �; �) : 8e 2 E : �(e; Input) 2 f"a"; "b"; "x"g

P6(V;E; s; d; �; �) : 8e 2 E : �(e; Output) 2 f"a"; "b"; "x"g�

Now we must specify an actor that interprets any given graph structure that
conforms to these predicates, or rather a schema producing such an actor for
a given abstract syntax structure. The actors generated by it will all have the
same number of input and output ports: They have two input ports, one for the
actual data coming in and the fire input port, and likewise they have two output
ports, one for the output data and one the schedule requests. For simplicity, we
will assume our actors to be instantaneous, so we do not have to consider firing
inputs or produce scheduling requests. Furthermore, they do not change the
network structure, so the corresponding results of the transition function will
always be empty.

For simplicity, we will in the following assume some comprehensive set U
containing all possible data objects, all actors indices, the set of all tokens A, all
graphs, graph objects, attributes and attribute values—in short, everything, that
we can manipulate. We also assume that some special value ? be contained in
U .5

The states of our actors must contain information about the graph structure,
as well as the particular state (which for simplicity we represent by the corre-
sponding vertex of the graph) it is ”in”. Because in general the state spaces
of our actors will be very large and their structures very complex, we will also
assume them to be in U .

The following actor definition is further simplified by the requirement that
the actor be single-token which implies that the set of active prefixes is fixed
for all s by Def. 10. This allows us to focus on the transition function in the

5We will talk more about this set in chapter 4.
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definition of the actor. To make it somewhat shorter, we will first define the
following functions:

I(E; s; d; �) = v

with 9e 2 E : �(se; type) = "InitMarker" ^ de = v

T (v; a; E; s; �) = fe 2 E j se = v ^ �(e; Input) = ag

Obviously, the first function produces the initial state of the finite state ma-
chine, while the second computes the transitions possible from a given state
with a specific input (more precisely, it computes the set of edges that represent
these transitions, of course). Note that I is well-defined for graphs that comply
with the syntax predicates above—the syntax predicates effectively acting as
preconditions in this case.

The actors generated by this schema all have two input ports and two output
ports. The input ports are the actual data input port and the firing input pfire,
similarly the output ports are the data output port and the scheduling output port
psched. We will define psched and pfire to correspond to the second position in
the respective (output/input) sequence tuple. They will have no effect in this
simple interpreter.6

As discussed above, the states must contain the relevant structural informa-
tion of the graph, as well as the vertex that represents the current FSM state.
Thus, the states of our FSM interpreter are structures of the form

(V;E; s; d; �; v)

where V , E, s, d, and � are the relevant parts of the graph structure, and v is the
vertex that represents the current FSM state.

Our actor schema does not take any component parameters, therefore we do
not use the pars parameter.

6Here, in contrast to the Fibs actor from Ex. 7 we specified the ports relative to the network,
since we conveniently have the actor index (and thus the input/output projections � i and !i)
available.
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Ex. 10: (FSM interpreter schema)

IFSM(t; (V;E; s; d; �; �); pars) = f(i; ;; ;; ;) j

such that Ai = (�; �0; (P�)�2�; (��)�2�; pfire; psched; t0)

with

t0 =1

pfire = �i Æ p
0

fire

where p
0

fire : (s1; s2) 7! s2

psched = !i Æ p
0

sched

where p
0

sched : (s1; s2) 7! s2

�0 = (V;E; s; d; �; I(E; s; d; �))

�(V;E;s;d;�;v) :

(a; �) 7!

8>>>>>><
>>>>>>:

f((V;E; s; d; �; v0); (w; �); ;; ;; ;)g

forall e 2 T (v; �a; E; s; �)

with �w = �(e; Output); �w = �a; v0 = de

if T (v; �a; E; s; �) 6= ;

f((V;E; s; d; �; v); �2; ;; ;; ;)g otherwise

(�; a) 7! f((V;E; s; d; �; v); �2; ;; ;; ;)gg

Note that we have omitted the definition of the state space (because it con-
tains little information and could be inferred from the transition function and
the initial state) and the prefix function (because this is fixed since our actor is
required to be single-token).

While this kind of definition seems just about manageable for the finite state
machine example, it seems clear that for more complicated semantics descrip-
tions this soon becomes somewhat cumbersome. This problem will be ad-
dressed in the next section, where we will develop a more concise and better
structured description language, without compromising the formality and exe-
cutability of the resulting descriptions.

3.4 Related work
There is a substantial body of work on the syntactical aspects of visual languages—
cf. [79] for a comprehensive survey. While most of these approaches are con-
cerned with aspects of the concrete syntax of specific visual languages, there
are some that suggest to separate the notion of abstract visual syntax from the
concrete representation [7, 90, 91], though there the former is still very closely
modeled on the latter.

Dropping these restrictions, [41, 42, 43] propose a much more abstract and
general structure for the abstract syntax of a visual language, which our work is
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based on. Though there still may be a strong structural correspondence between
abstract and concrete syntax (as is the case for the kind of languages that we are
looking at in this work), this is in general not necessary.

Much less work has been done on the semantical aspects of visual lan-
guages. Often, especially for visual languages that are not visual programming
languages, the term semantics has a different meaning, which we will not be
concerned with here, viz. that of a static structure it describes or a set of pic-
tures satisfying a set of constraints [28, 60]. The concept of semantics that is
the topic of this paper is one of a picture representing a computational structure
and the computations performed by this structure.

A general approach to this latter concept of semantics of visual program-
ming languages can be found in [42, 43]. It builds on the abstract visual syntax
mentioned above, and proposes a method to define the denotational semantics
on this basis. Our work can be seen as supplementing this approach with an
operational specification technique.

Most other work on visual language semantics is based on graph grammars
[12, 11, 44, 101], sometimes augmented with algebraic specification techniques
to model data manipulation. While these technique are certainly appropriate
to describe a certain class of visual languages, it becomes somewhat artificial
or even cumbersome and impractical in those cases where the execution of a
component is not best described by a syntactical transformation of its abstract
syntax. This is especially true for languages that manipulate other components
(cf. the examples in Sections 5.3 and 5.4) and in which directing the flow of
data, rather than performing modifications of their own local state, is a major
part of their activity.
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Specifying actors using Abstract State Machines

In principle, we are now able to specify visual notations in terms of the syntacti-
cal properties of their abstract syntax (assuming we have some environment pro-
viding a useful mapping between this and some concrete representation) as well
as their semantics as defined by some discrete event component acting as its ab-
stract syntax interpreter—both using simple mathematical notation, as has been
done at the end of the previous chapter. However, this approach—while appar-
ently appropriate for the definition of syntactical constraints—seems somewhat
awkward when used to define the execution of a visual program.

In this chapter we will show that this kind of semantics definition is un-
wieldy, and propose a different way of structuring definitions, based on a well-
known operational description technique known as Abstract State Machines
[51, 53]. We will embed the resulting specifications into our actor-based model,
effectively using it to define discrete-event components that interpret abstract
syntax structures of visual programs.

4.1 Motivation

Looking at the specification in Ex. 10, we see that it consists of two parts: a
comparatively short definition of the initial state of the actor, and one defining
the transition behavior. The latter is structured according to which input port
a token may arrive at (denoted by the active prefixes (a; �) and (�; a)). Each
rule computes a 4-tuple consisting of a full description of the new state, a full
description of the tuple of output sequences, as well as the set of connections
to be added to or removed from the relation between ports defining the network
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structure of the system.

This style of specification is barely adequate for an interpreter for our FSM
notation, despite the state being very simple and unstructured. For systems with
more structured states it becomes rather redundant, because the complete state
has to be described when defining the transition function, where it might be
more adequate to simply specify which parts of the state change with respect to
the previous state.

As an example of a language with simple structured state consider Petri
nets. Here each firing corresponds to one Petri net transition occurrence (until
there are no activated transitions). Let us further assume that each arc carries
an attribute Weight, which is a positive integer, and each Place vertex has an
attribute initialTokens.

The state of such a Petri net is simply a map, called a marking, from the
places (represented by the Place vertices) to the non-negative integers—a very
simple structured state. A transition (represented by Transition vertices) may
fire if all incoming arcs come from places whose marking is greater than or
equal to the weight of the respective arc. When a transition fires, the weight
of incoming arcs is subtracted from the marking of the corresponding places,
while the weights of all outgoing arcs are added to the markings of the places
they point to.1

Note that the style of the above formulation is different from the one used for
defining the state transition of an FSM in Ex. 10 in that it assumes a certain state
structure (the marking in the case of Petri nets) and describes local modifications
of it (the change of the marking at certain points in its domain, the places). For
many discrete-event languages, especially when the state of a component has
some structure, this is often the more natural way of defining the transition.

Using our current technique for defining interpreter schemata, a schema for
simple Petri nets would look like this:

1We assume the Petri nets to be loop free, i.e. no transition has an arc coming from and
another one going to the same place. Without this assumption, we would have to handle this as
a special case.
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Ex. 11: (Petri net interpreter schema)

IPN(tm;(V;E; s; d; �; �)) =8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(i; ;; ;; ;) j

Ai = (�; �0; (P�)�2�; (��)�2�; pfire; psched; t0);
�0 = MV ;

t0 = tm;

pfire = �i Æ p
0

fire;

where p0fire : (s) 7! s

psched = !i Æ p
0

sched;

where p0sched : (s) 7! s

�M :

(a) 7!

8>>>><
>>>>:

f(M 0

(V;E;s;d;�;M)(t); (a); ;; ;; ;)g

forall t 2 T (V;E; s; d; �;M)

if T (V;E; s; d; �;M) 6= ;

f(M;�; ;; ;; ;)g otherwise

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

We assume that the initial state is defined by a function

MV :U �! U

a 7!

(
�(a; initialTokens) if a 2 V ^ �(a; type) = "P lace"

? otherwise

and that the set of activated transitions T(V;E;s;d;�;M) is defined as follows:

T (V;E; s; d; �;M) = ft 2 V j�(t; type) = "Transition"

^8e 2 E : d(e) = t)Mse � �(e;Weight)g

Finally, the marking M 0

(V;E;s;d;�;M)(t) resulting from firing t in state
(V;E; s; d; �;M) is defined as

M
0

(V;E;s;d;�;M)(t) : p 7!

8><
>:
Mp + �(e;Weight) if 9e 2 E : se = t ^ de = p

Mp� �(e;Weight) if 9e 2 E : se = p ^ de = t

Mp otherwise

As can be seen from this description, our specification technique does not
scale very well. As mentioned above, the need to always constructively describe
the full state structure M (as opposed to only those things that actually change)
leads to some redundancy. Also, the need to explicitly construct a set of possible
successor states in the definition of �M requires some notational overhead.

Furthermore, the specification is not very well-structured. The structure of
the state is implicit: We know that M is the state because of its use as an index
of � , and we know its structure because of the way M 0

(V;E;s;d;�;M) is constructed.
The sequentiality of the computation of the set of activated transitions (in the
’forall’ clause in the definition of �M ), the selection of the next to fire (implied
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by the choice of one t in that ’forall’ clause), and the computation of the next
state (the call to M 0

(V;E;s;d;�;M) in the first case of tM )is also not represented
explicitly—in fact, the call to M 0

(V;E;s;d;�;M) appears textually before the other
two. Looking at this definition, it is not immediately obvious at which point the
actor behaves nondeterministically and why.

One can easily imagine cases where this kind of specification scheme is
even less adequate. For instance, if the actual computation of the next state is in
itself somewhat more ’algorithmic’, more iterative (instead of, as for Petri nets,
essentially one quantification over one variable—the places in the definition of
M 0

(V;E;s;d;�;M)(t)) the above way of writing this down soon becomes impractical.
Therefore, although the semantics framework as such seems to be suffi-

ciently general and powerful to cover many different kinds of visual notations,
we are still lacking a proper specification language that can be used to specify
actors in. From our discussion above we can see that this language should have
the following characteristics:

� It should allow the representation and manipulation of structures representing
an actor state.

� It should be possible to define a new structure by locally changing an old one
in a number of places, i.e. the next state should be defined ’differentially’ by
specifying its differences to the previous state.

� The language should support iterative computations on that structure.

� The language should have a natural concept of non-determinism with as little
notational overhead as possible.

Note that compositionality is not a requirement for our specification lan-
guage. Indeed from the current state of our discussion we are not even able to
say precisely what it would mean for the specification of an interpreter schema
to be compositional. Of course, by virtue of being embedded into our actor
framework, it automatically inherits its compositionality as far as individual ac-
tors/abstract syntax interpreters are concerned, but that does not imply that the
specification of these interpreters themselves is compositional. We will come
to this point later, after we have applied our language to some example applica-
tions.

Fortunately, a specification language already exists that addresses these is-
sues: Abstract State Machines (ASM) [51, 53, 52]. ASM have a proven track
record as a specification technique for many programming languages, focus-
ing primarily on languages that lend themselves very well to an operational
semantics description (e.g. Java [27, 26], Oberon [73], Modula-2 [83], C++
[109])—even though one of the first programming language semantics (after
that of Modula-2) given as an ASM was, in fact, that of Prolog [19, 20, 24].
This makes ASM an interesting platform for our actor semantics, since actors
are, by definition, state-based, ’operational’ entities.
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In this chapter we will present our approach of how to use concepts devel-
oped in the context of ASM to describe the behavior of an actor. Also examples
of ASM descriptions for the Petri net example and the FSM example will be
given. The next chapter will then show applications of this technique to some-
what larger examples.

Our main focus will now turn to developing a language to describe a state
transition of the form

�� : (�; :::; a; :::; �) 7! (�0; w; c+; c�; N)

which is an entity that, in a state �, maps a single-token input a to a new state
�0, some output w 2 Sn, possibly some changes to the connection structure of
the system (by connection sets c+ and c�), and new active actors N . But before
we can discuss the definition of a state transition function, we need to elaborate
a few preliminary concepts.

4.2 Preliminaries
This section discusses some of the basic concepts needed to define a language
that allows the differential specification of states by ’changing’ an existing state.
First we elaborate the concept of state of an actor, presenting a simple formal
model we claim will be rich enough to capture all cases of interest to us. We
then introduce a few notions needed in discussing the definition of differential
state changes. We also define a simple concept for modeling side-effect-free
computation on the data items we want to manipulate, which allows us to ab-
stract from any manipulation of the objects of our universe themselves, as long
as our actors do not change state.

Then we describe a simple concept of ’structuring’ objects and defining re-
lationships between them, which together with the interpretation of symbols
(in Section 4.5) provides a simple foundation for incorporating functional (i.e.
side-effect free) computation into our model.

4.2.1 The universe

We assume a universe U that contains all possible objects of our computation
(we will refer to the elements of U technically as objects from now on). In par-
ticular, it includes not only those that are ’used’ at any point in time, but also all
’past’ and ’future’ ones. This allows us to talk about a static collection of things,
and ’creating’ new objects (such as new data structures, or new actors) essen-
tially amounts to gaining access to objects that were previously not accessible
(we will refer to them as fresh objects). This will be discussed below.

Obviously, for most practical applications, the universe will be a rather large
one—it could contain (at least) one object for each of the usual ’atomic’ data
items (possibly different kinds of numbers, strings, boolean values, ...), as well
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as structures among them (lists, sets, tuples, ...). Specifically, it is required to
contain a ’special’ object ?, which is understood as the ’null’ object, used by
us to denote the absence of a ’proper’ object, but otherwise a perfectly normal
member of U.

These requirements are the same as those introduced in section 3.3. As we
will see, this is convenient because it facilitates a direct representation of the
abstract syntax of a picture inside the state of the system.

4.2.2 The structure of the state of an actor

In this section a structure will be given to the states of an actor, i.e. the � that
the transition function �� depends on, and thus the state space of an actor, �.
We adopt the concept developed for Abstract State Machines [51, 53], which is
based on Tarski’s notion of structure [102].

The essential elements of a state can be illustrated by the state descriptions
we used in the examples so far. In the finite state machine semantics of the
previous chapter, states looked like this:

(V;E; s; d; �; v)

where V and E were sets of objects, s and d were unary functions, � was a
binary function, and v was just one particular object (a state in V ). Similarly, a
Petri net state in the example above had the following layout:

(V;E; s; d; �;M)

Most components were very similar, except the last, which was a unary function.
So it seems as though in specifying states we should provide a facility to

include sets, functions of various arities, and simple variables. However we
can simplify our definitions if we regard sets as unary functions and employ the
convention that

a 2 s, (sa) 6= ?

If furthermore we see variables (such as the v component in the FSM state) as
nullary functions, we are left with states being simply composed of a collection
of functions of various arities, including zero.

However, there are two aspects of a state of an actor—there are the symbols,
and their associated arities. In a sense, these are the ’syntactical’ aspect of a
state, which we will use to specify the actor behavior, and which at any given
moment ’stands for’ a concrete realization of the state, actual functions of the
corresponding arity. Following standard ASM terminology, we will call the
symbols and their arities a vocabulary, the functions they are associated with an
algebra.

Def. 20: (Vocabulary) Assuming a set of (function) symbols S, a vocabulary V is a func-
tion

V : S �! N0 [ f?g
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We will call the set
dom V = fs j Vs 6= ?g

the set of defined (function) symbols and require it to be finite for the vocabulary
to be valid. For any defined function symbol s, the natural number Vs will be
its arity.

Ex. 12: (Vocabulary of FSM interpreter schema) The fragment of our specification
language defining the vocabulary of the FSM interpreter schema looks like this:2

function V;E arity 1 ;
function s; d arity 1 ;
function � arity 2 ;
function state arity 0 ;

To enhance readability, we feature the keywords set and attribute for unary
functions that are intended to be used as sets, and functions of arity 0, respec-
tively. This makes the above vocabulary somewhat more readily understand-
able:

set V;E ;
function s; d arity 1 ;
function � arity 2 ;
attribute state ;

The carrier set of all our algebras (they will only have one) will always be
U, so that an algebra will be defined by its functions only. A state of an ASM
consists of binding such an algebra to a vocabulary by interpreting the symbols
of the vocabulary as functions of the corresponding arity. Such a binding will
be called a valuation.3

Def. 21: (Valuation, compatibility with vocabulary) A valuation V is a function

V : S �!
[
n2N0

hU
n
�! Ui [ f?g

assigning to each symbol either a function over U of some arity, or ?.
A valuation V is compatible with a vocabulary V iff

8s 2 dom V : Vs 2 hUVs
�! Ui

^8s 2 S n dom V : Vs = ?

The set of a valuation compatible to a vocabulary V will be written as �V.

2For better readability, the examples in this section may include characters, such as �, which
might not be accepted in an implementation.

3The more common term ’interpretation’ will be used for something different below.
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In other words, a valuation is compatible with a vocabulary if it assigns only
the defined symbols a function, and if that function is of the proper arity defined
by the vocabulary.

For each interpreter schema we will define a vocabulary, and then a state of
an interpreter of that schema is simply a valuation that is compatible with this
vocabulary.

4.2.3 Basic concepts of state transitions

So far, we have simply formalized the concept of actor state we had already
used in the examples. Remember that one of the issues we wanted to improve
on was the way we described the new state—instead of providing a complete
new valuation (to use the new terminology), we wanted to specify only those lo-
cations in the state that actually changed, and of course the values they changed
to. This then, together with the current state, would define exactly the next state.

So first we need to define this concept of location. For instance, if in the Petri
net semantics, the marking is denoted by the symbol M , and we would like to
add w to the marking of the place p, then we would like to write something such
as

M(p) :=M(p) + w

with the intention that in the next state, the M symbol will be bound to a func-
tion that is like the current M function, except that at point p its value has been
updated to the sum of the current value and w (of course, there may also be
other changes to M ).

The location we are changing in the above line would be uniquely identified
by the function symbol (M ) and the point of the function given by the object p
evaluates to. In other words, a location is a symbol and the respective parameter
tuple identifying the point of the associated function:

Def. 22: (Location, compatibility with vocabulary) A set of locations is defined as

L = S�

[
n2N0

U
n

A location (s; a), where a is some tuple in some Un is compatible with a vocab-
ulary V iff

s 2 dom V ^ a 2 U
Vs

In other words, the symbols s must be defined in V and its arity must be n. The
set of all locations compatible with V is written as LV.

In the above example, the term M(p) on the left-hand side of the assign-
ment would denote a location—with p̂ being the object that results from p, the
location would be (M; (p̂)).

The basic construction that we will write to change the state of an actor will
be a rule. The result of such a rule will be a number (any number) of locations
and their new values. Such a pair of location/new value we will call update, and
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a collection of these an update set. When describing the semantics of an ASM
rule, we will do these in terms of the update sets generated by them (as well as
a few other things, cf. below).

Def. 23: (Update, update set, compatibility with vocabulary) An update is an element
in L� U, an update set is a set of updates.

A specific update (l; v), where l is a location and v its new value, is compat-
ible with a vocabulary V iff its location l is. An update set is compatible with V
iff all its updates are.

In the example above, if x is the value of the right-hand side of the assign-
ment, i.e. x is M(p) + w, the update denoted by this rule would consequently
be ((M; (p̂)); x).

Obviously, in order for the next state to be well-defined, an update set should
at most contain one new value for any given location. This gives rise to the
notion of consistency:

Def. 24: (Consistency of update set) An update set U is called consistent iff

8(l1; a1); (l2; a2) 2 U : l1 = l2 ) a1 = a2

Obviously, if we had a rule

M(p) := M(p) + w;

M(p) := M(p)� w

and w would be non-zero, then having the updates generated from these two
rules in the same update set would essentially mean that in the next state we try
to assign the location (M; (p̂)) two different values. Consistency means that an
update set does not do this.

Now we are at a point where we can define what it means to have a state
(valuation) V changed by a set of pointwise updates, say U .

Def. 25: (Updating a valuation) Assume we have a vocabulary V and a valuation V

that is compatible with it. Updating V with an update set U (also compatible
with V) yields a new valuation which we will write as V[U ]. If U is consistent,
then V[U ] s for any defined symbol s is defined such that

V[U ] s a =

(
v if ((s; a); v) 2 U

V s a otherwise

If s is not defined in V, V[U ] s = ?, ensuring that V[U ] is also compatible
with V

If U is not consistent, V[U ] = V.
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So for a consistentU , V[U ]s is the function that maps any tuple a (of correct
arity) either to the value v , if the update ((s; a); v) is contained in U (with (s; a)
being the location and v the value), and simply the original value V s a if there
is no such update.

Note that applying an inconsistent update set to a state produces no change,
and that in any case V[U ] will always be compatible to V if V and U are. Now
we will turn to defining a language (and its evaluation) that will be based on
these concepts of differential computation of a state.

4.2.4 Structuring the universe

So far, we have focused on the way the state of an actor defines relationships
between objects. However, since we require actor states to be separate from
each other4, this might lead to the following problem when they want to ex-
change data. Say an actor sends another actor an object, i.e. an element of U.
As we defined it above, this object is essentially unstructured, it is ’featureless’.
It has no relation to other objects, except being distinguishable from them. It
doesn’t help the receiver that the valuation of the sender puts the object into
some context, because it has no access to that valuation.

Actors therefore need access to a structure that is not part of their own valua-
tion, nor that of any other actor, but accessible to all actors in the same way. It is
important that this structure never changes, because then actors could influence
each other by changing that ’global’ structure, which would thus become part
of the state of the system.

For this structure, we will choose one binary function, �:

Def. 26: (Structure of the universe) Given a universe U, a function

� : U� U �! U

creates a structure in it.

We assume this � to be fixed for a given system. We may consider it to be
bound to an ’invisible’ binary function symbol in the vocabulary. It is invisible
in the sense that may not be assigned to, since � must be constant. We will
discuss this in Section 4.6 on terms.

One way of looking at this function is as a table indexed on both axes by U,
with objects contained in the cells. Another interesting interpretation, however,
results from realizing that for each �, we can define a function � as follows:

� : U �! (U �! U)

�(a)(b) = �(a; b)

4This is a necessary condition, since otherwise the transition of one actor could change
the state of another, which is something we do not allow in our model of computation—the
execution of a schedulable system (Def. 16 on page 47) changes at most one actor state per
step.
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This means that � associates with to each object x a unary function �(x),
which we call the structure of x. This very simple notion captures all important
data structures: an array/a tuple is a map from indices to objects, a record is a
map from record tags to objects, a linked list might be construed as a map of
two special tags (”data” and ”next”, say) to objects and so on. Maps of more
than one argument (multi-dimensional arrays, for example) may be constructed
as either cascaded unary maps, or as one unary map of lists.

Data structures may be ’built’ up from this simple concept in the following
manner. For instance, assume we have an object representing (by convention)
the empty list, let us call this object �. Then, the object, say l1 representing
the list [a] (with a being another object) may be defined as an object that has
the following properties: 1. �(l1)("first") = �(l1; "first") = a, and 2.
�(l1)("rest") = �(l1; "rest") = ?. Here, "first" and "rest" are names for
other objects. Likewise, an object l2 representing [b; a] has the property that
�(l2)("first") = b and �(l2)("rest") = l, for any object l that represents (a).5

We need to pay special attention to functions operating on more then one ar-
gument. Performing an addition such as 3+4 is usually understood as applying
an addition function to two arguments, 3 and 4. In our context, this will be in-
terpreted as the expression (+3)4, where +, 3, and 4 are names of objects such
that the object named by + is associated to a function that maps any number
(and whatever else it may be defined for) to some object that is associated to a
function that adds just that number to any other number. So the result of (+3) is
an object associated to an add-three-map, which is then applied to 4, resulting
in 7.6 For notational convenience, we will take the liberty to use infix-notation,
and also to apply a function to more than one argument, as in f(a; b), when this
is understood to mean (fa)b. We will make this more precise below.

Of course, the precise structure of the universe is something that will be
defined by a specific implementation, though we will assume the ’usual’ envi-
ronment of numbers, strings, and lists as well as the usual operations on them.
So from now on, if we talk about the universe U, we will assume the presence
of a ’useful’ �.7

In order to make this work we need to be able to actually name objects in the
universe and then somehow ’apply’ � to them. We will discuss how we name

5Note that we do not assume that there is exactly one object representing a given data struc-
ture, thereby distinguishing between the notions of (value) equality and identity. Of course, an
implementation might in fact choose to identify these notions, so that identical structures will
always be represented by identical objects. From our perspective here, this is merely a choice
of choosing � and the global interpretation we will introduce in Section 4.5.

6This interpretation of functions of more than one argument is called currying in �-calculus
[13] and functional programming. This view of functions of more than one argument has been
introduced by Schönfinkel [97] and used by Curry [38].

7Note that although the table-view of the structure suggests this, the structure of U need of
course not be represented by actual data, but can be implemented as code computing the required
functions—as long as it has no side effects as far as the view of the actors on the universe is
concerned. More specifically, this definition creates a place to plug a functional language into,
such that these computations might in fact be user-specified—cf. Section 4.6.4.
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objects in Section 4.5, the application of � to (pairs of) objects is discussed
in the context of how we write terms in Section 4.6.1. This structure of the
universe is what we will use for computing with individual objects. Our model
of actors and their behavior is largely orthogonal to the structure of the universe
in that it makes very few assumptions about the presence of certain mappings
(e.g in Section 4.7.1).

4.3 Defining an actor schema
The language we are about to present will allow the definition of general actor
schemata. An actor schema, which we will also call a (actor) class, has the
following structure:

class name[par1; :::; parn] is
input/output ports
vocabulary
initialization rule
rules

end

In section 4.2.2 we have already presented the syntax for specifying the vo-
cabulary, which is a straightforward enumeration of symbols and their arities.
In the following sections we will discuss the syntax and semantics for defining
state transition rules, and then the initialization of an actor from a class specifi-
cation, as well as how to specify its input and output ports.

Note that the actor schema has parameters, as we would expect from the
discussion of interpreter schemata in the previous chapter. When a new actor is
constructed from this schema, its parameters are visible throughout its defini-
tion. We will come to actor setup and related issues in Section 4.9.

4.4 Overview of the rule language and its interpretation
The dynamic behavior of an ASM-defined actor is specified in a number of rules
that eventually define the transition function. Recall that the transition function
of a single-token actor has the following form:

�� : (�; :::; a; :::; �) 7! (�0; w; c+; c�; N)

Obviously, the value of this function (new state, output, port connections to
be added, port connections to be removed, new actors created) depends on the
state of the actor, but also on the input token consumed from one of the actor’s
input streams. We will specify the input token using three pieces of information:
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� the port from which it came

� its time tag �a

� its value projection �a (cf. Def. 11 on page 42)

A rule that calculates the next state is therefore written in the following
format:

rule ruleName[p; t; v] :
rule body

end

Each input port of the component is associated with exactly one such rule,
which is executed whenever the component fires on a token coming in through
that port. (We will discuss how this association is done in sections 4.7.1 and
4.9.)

In the above rule skeleton, the parameters p, t, and v are just the port, the
(time) tag and the value of the input token. Of course, a class definition can
contain any number of rules. Obviously, the constructions in a rule must be
able to not only refer to the symbols defined by the vocabulary of a class, it
also needs to refer to the parameters of a rule, and (as we will see) also to
local variables defined inside the rule texts. We will deal with this aspect of the
language definition in the next section.

An actor’s transition from one state to a successor state has been described
as an atomic step in our examples so far. However, in many cases one would
like a more iterative style of specification, where the single transition is in fact
a sequence of ’microsteps’, each leading to a new state. The last state in the
sequence is then taken to be the ’result’ of the state transition, i.e. the new state
of the actor. This is illustrated in Fig. 29.

In its most general form, a full rule consists of two sequences of basic rules,
i.e. rules that result in an atomic state transition. It has the following syntax:

rule ruleName[parameters] :
once

r1 ;
:::

rj

then
r1 ;
:::

rk

end

Where the ri and the ri are basic rules. We will allow any rule sequence to be
empty. If the first is empty (j = 0) the above syntax may be simplified to the
following form:
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Start

End

apply ...r r1 k

apply r ... r1 j

all U ... U

empty?
1 k

Y

N

Fig. 28: The execution of a full rule once r1;:::;rj then r1;:::;rk end.

rule ruleName[parameters] :
r1 ;
:::

rk

end

On the other hand, if the second rule sequence is empty, we can simply write
it like this:

rule ruleName[parameters] :
once

r1 ;
:::

rj

end

We call such a rule an full rule, or iterated rule because of the way it is
executed.

Intuitively, executing a full rule has the structure shown in Fig. 28. The
first step is to execute the basic rules r1; :::; rj in the order in which they are
given, updating the state after each basic rule, so that its successor is executed
in the valuation that results from this update. This is depicted in Fig. 29, which
shows the transitions of state a rule makes, where each �i corresponds to a new
valuation of the vocabulary.

Then, the second sequence of basic rules r1; :::; rk is executed similar to
the first, each basic rule resulting in an update set Ui, which is applied to the
valuation as with the first sequence of basic rules. As before, every rule is
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therefore executed in the valuation resulting from the update of its predecessor.
Now there are two cases: Either, all the update sets Ui of this sequence were
empty, or at least one contained an update. In the first case, the execution of the
full rule is finished, and the resulting state, the connection sets, the output, and
the newly created actors become the result of this actor transition (Fig. 29).

Otherwise, at least one update was generated from the second sequence of
basic rules. In this case the rule sequence is executed again, in the same fashion,
until all update sets are empty. The result is then again the final state and the
accumulated connection sets, output sequences, and newly created actors.

(p, t, a)

�

r1
rku1

un

�� �n-1 � �n= '

Fig. 29: The sequence of states during the execution of a full rule.

Note that once the execution of the rule has finished, we have reached a
fixed point of the state transition described by the ’iterated’ second sequence of
basic rules ri. However, the converse is not true, i.e. having reached a fixed
point does not guarantee termination of the algorithm in Fig. 28. Consider the
following rule body:
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once
then

a := 42
end

The second part of this rule will always create the same update set, which
assigns 42 to the location (a; ()). This means that it immediately reaches a fixed
point, but since the update set is not empty, the algorithm in Fig. 28 will not
terminate. We do not define the behavior of the actor under these circumstances.

The reason for this choice is a practical one—it is expensive to find out
whether a fixed point has been reached, i.e. whether the application of an update
set changes the state. In particular, if we are only interested in fixed points of
the complete sequence of basic rules, rather than of each single one of them.
For instance, consider this rule body:

once
then

a := 11 ;
a := 42

end

Each single basic rule creates a non-empty update set, and also actually
changes the state. Considered as a unit, however, the sequence always returns
back to the same state. If we were to detect this, we would need to keep a copy
of the state at the beginning of an iteration and compare it at each point that
might have changed with the state resulting at the end on an iteration. It seems
that these cases are rather unusual in practice, and to require an implementation
to provide this complex machinery in order to handle this case therefore seemed
inappropriate.

We will come to the full formal semantics of a iterated rule in section 4.8.
First we will describe the basic rules, which we need to effect atomic state
transitions. In order to do this, we need to discuss how we handle parameters
and local variables in the interpretation of rules.

4.5 Rule parameters and variables

Looking at the general rule format, it is clear that the rule body needs to re-
fer to the parameters of a rule, which (like the functions in the signature) are
represented by symbols.
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rule ruleName[p; t; v] :
rule body

end

When writing a rule fragment such as

M(v) := M(v) + weight(t)

we use several kinds of symbols—some (M , and possibly weight) might be
part of the vocabulary of the class, while others (t and v) could be parameters
or even local variables defined inside a rule (we will discuss below how this can
be done), still others, such as the + symbol, we might consider as ’predefined’
globally. In general, we may want to use other symbols than those defined in
the vocabulary.

What we need is some assignment that gives some symbols a value (in U)
that is independent of the current valuation of the vocabulary. This assignment
of values to a set of symbols of our language is done by an interpretation.

Def. 27: (Symbols, interpretation) Let S be an enumerable set of symbols, then an in-
terpretation I is a partial map

I : S* U

We will write its domain as dom I.

Note that I needs to be defined as a partial map rather than denote ’unde-
fined’ symbols by assigning them the value? because? is of course a perfectly
legal value for a symbol (in fact we might even have ’predefined’ symbols ex-
plicitly representing ?, e.g. the symbol false).

When later interpreting concrete rules in our language such as the ones
above, we will assume a certain set of symbols to have ’predefined’ interpre-
tations—such as 1 and +, but possibly also things such as � as the basic list
constructor and many others. This global interpretation will be written I. We
will leave the details of this interpretation up to the concrete implementation,
but for convenience we will assume it to define the usual arithmetic operators,
numbers, strings etc. as well as a list constructor � in the way suggested above.
It is via these ’predefined’ symbols that we gain access to these structures of the
universe.

The interpretations used for different parts of a rule may be different—new
variables may be defined, adding to the interpretation and possibly shadowing
a previous definition of the same variable symbol. Rules may be parameterized
with different values, which also results in different interpretations being ap-
plied to the rule. This means we need to define a way to add new symbol/value
pairs to an existing interpretation.

Def. 28: (Substitution operation) Given an interpretation I, a symbol s and an object
v, we define the substitution of v for s in I (written as I[s 7! v]) as follows:

I[s 7! v] : a 7!

(
v a = s

Ia a 6= s ^ a 2 dom I
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For convenience, when substituting a number of symbols (s1; :::; sk) with
corresponding values (v1; :::; vk) we will write

I[(s1; :::; sk) 7! (v1; :::; vk)] = I[s1 7! v1]:::[sk 7! vk]

It is important to note that at any lexical point in a rule we need to be able
to statically (i.e. from the rule text) compute the set of symbols that have an
interpretation, i.e. to statically determine dom I. This is essential if the symbol
sets for variables and function symbols overlap (as will usually be the case),
as this allows us to determine for each occurrence of every symbol in the text
whether it represents a variable or parameter (in which case we call it a variable
symbol), or a function of the vocabulary of the actor (in which case it is called a
function symbol).

Using the concept of interpretation, we can formulate precisely whether we
interpret a symbol s as a function symbol or a variable symbol in the context of
an interpretation I, by looking it up in the following order of precedence:

1. s 2 dom I: The symbol is a (local) variable symbol.

2. s 2 dom V: The symbol is a function symbol.

3. s 2 dom I: The symbol is a (global) variable symbol.

4. Otherwise the symbol is undefined.

Def. 29: (Function symbol, variable symbol) Given an interpretation I (and assuming
a vocabulary V and a global interpretation I), we say that the symbols in

FuncI = dom V n dom I

are its function symbols and those in

V arI = dom I [ (dom I n dom V)

are its variable symbols.

Now we will use these concepts to define a simple yet powerful language to
write down rules.

4.6 Terms and their evaluation
One fundamental element in our rule language are terms. There are three kinds
of terms:

� object terms, which are used to compute an element of the universe, and which
are so common that we often omit the ’object’ qualification when there is no
risk of confusion,
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� location terms (lterms, for short), which identify a location in an actor’s state,
and

� set terms whose result is a set of objects (these are used when we quantify
variables over sets of objects).

Consider the following fragment of a rule (which we already encountered
above), and assume that M is part of the vocabulary, p and w are local variables
or parameters, and + is a predefined variable:

M(p) :=M(p) + w

Recall that we expect this rule fragment to lead to a change of the location
identified by the term to the left of the :=-sign, to the value resulting from
evaluating the term on the right of it. This means that the left-hand occurrence of
M(p) is a location term, while the right hand occurrence, as part of the addition,
is an object term. Of course, the variable symbols themselves are object terms,
and so is the addition itself.

When discussing terms, we need to talk about three aspects:

� their environment, i.e. the context in which they are written with respect to the
variables/parameters/function symbols defined in that context,

� their structure, i.e. the way terms are constructed,

� their value.

The environment for terms is always defined by three components: the in-
terpretation of local variables and parameters, the current valuation of the vo-
cabulary, and the global interpretation I of predefined symbols. Assuming the
latter as fixed, the variable part of the environment of a term is a pair

(I;V)

of an interpretation and a valuation. Then the object, location, or set that a term
t evaluates to in this environment is written

[t](I;V)

We will use the same notation for all kinds of terms, since the context usually
makes clear which interpretation is intended.

We will now define the structure and the value of the different kinds of
object terms, location terms, and set terms. Then we will shortly discuss the
issue of how to embed ’functional’, i.e. side-effect free computation into this
framework.
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4.6.1 Object terms

Looking at the rule fragment above we can rewrite it eliminating the syntactic
sugar previously used as follows (resolving infix notation of the +-symbol and
assuming objects to be associated with unary maps as discussed above):

M(p) := (+(M(p))) (w)

There are three kinds of object terms in the above example:

� variable symbols:8 p (twice; as part of the left-hand location term, and inside
the right-hand object term), w, +

� function applications, consisting of a function symbol applied to an appropriate
number (as defined by the vocabulary) of argument terms: M(p) (only the right-
hand occurrence)

� object applications, where the result of some object (more precisely, of course,
the function associated with its result by �, see below) is applied to (the result
of) one argument term: +(M(p)), (+(M(p))) (w)

Naturally, we will allow infix notation and having more than one argument
for object map applications, syntactically transforming them to the basic case
as discussed above. Note that if we encounter a term such as

f(a; b)

we need to know whether f is a function symbol or a variable symbol in the
context where it occurs in order to decide whether this denotes the function
application

f(a; b)

or the object map application
(f(a)) (b)

respectively. It is here that we need to distinguish statically between variable
symbols and function symbols. We will construct our rules so that this is possi-
ble.

These are exactly the three kinds of object terms we will be defining.

Def. 30: (Object terms and their values) Given a vocabulary V, an environment (I;V),
and assuming a global interpretation I, we define the following kinds of object
terms:

All s 2 V arI are object terms. Their value is simple looked up in the ’cur-
rent’ interpretation, or in the global one, if they are not defined in the former:

[s](I;V) =

(
Is if s 2 dom I

Is otherwise

8Recall that we can for each occurrence of a symbol determine whether it is a variable
symbol or a function symbol.
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All f(t1; :::; tn) are object terms, if f 2 FuncI, n = Vf , and the ti are
object terms. Their value is the result of applying the function bound to the
symbol f (in the current valuation) to the values of the argument terms:

[f(t1; :::; tn)](I;V) = (Vf)([t1](I;V); :::; [tn](I;V))

If m and t are object terms then so is m(t). Its value is defined as:

[m(t)](I;V) = �([m](I;V); [t](I;V))

Note that the last kind of object term, m(t), essentially ’applying’ and object
(the result of the term m) to another one (resulting from t) makes use of the
common, ’global’ binary function � (cf. Section 4.2.4). The syntax supports
the intuition behind �, viz. that each object is associated to a unary function.
We mentioned that � may be considered as being bound (by each vocabulary) to
an implicitly defined ’invisible’ symbol, say S�. Then we can simply consider
the object term m(t) as a shorthand for S�(m; t).

Object terms allow us to compute values using the predefined maps and the
functions of our vocabulary. Now we need to identify locations we can assign
them to.

4.6.2 Location terms

Location terms are even simpler than object terms, since there is only one struc-
ture of them: they consist of a function symbol and an appropriate (i.e. corre-
sponding to the function’s arity in the current vocabulary) list of object terms.

Def. 31: (Location terms and their values) Given a vocabulary V, an environment
(I;V), and assuming a global interpretation I, every f(t1; :::; tn) is a location
term if f 2 FuncI, n = Vf , and the ti are object terms. Its value is

[f(t1; :::; tn)](I;V) = (f; ([t1](I;V); :::; [tn](I;V)))

4.6.3 Set terms

Set terms are used to compute a set of objects in order to quantify a variable
over them, as in

8v 2 V : :::

Sets are represented by (unary) functions and maps; such a set comprises all
those elements for which the corresponding function or map is not ?.

Def. 32: (Set terms and their values) Given a vocabularyV, an environment (I;V), and
assuming a global interpretation I, we define the following kinds of set terms:

All s 2 FuncI are set terms if Vs = 1. Their value is

[s](I;V) = fa j (Vf)a 6= ?g

All object terms t are set terms. Their value is

[t](I;V) = fa j (�[t](I;V); a) 6= ?
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4.6.4 Embedding side-effect free computation

As we have seen in Section 4.2.4, the universe has a structure, and so do the
objects in it, by virtue of being related to other objects by the � function. This
means we can consider objects as representing data structures of various kinds.
For instance, as we saw above, we can interpret any object x as representing a
set of those objects y, for which �(x; y) 6= ?.

In many cases, we would like to compute with these structures, e.g. given
an object s representing a set of integers and some object k representing an
integer, we would like to compute some object s0 that represents the set of all
those integers in s that are smaller than k (we assume we have an object < that
represents the corresponding relation between integers).

Obviously, we could do something like this by writing rules, having first
added a suitable unary function, say s2 to our vocabulary (we will use the fol-
lowing rule here in its ’intuitive’ interpretation, which is good enough for the
purpose of illustrating the idea):

:::

function s2 arity 1 ;
:::

rule :::
once

:::

do forall x 2 s :
if x < k then
s2(x) := true

end
end
:::

end

This would iterate over all elements of s and set s2 for an element to true if
it is smaller than k.

This, however, suffers from a number of drawbacks:

� We need to extend our vocabulary with a new function, even though the values
stored in there might not even be part of the ’conceptual’ state, i.e. s2 is just
some intermediate result on the way to computing the next state or some output.

� The changes we made to s2 are only visible in the next step, but not in the
current basic rule.

� The functions of our vocabularies are not first-class objects, i.e. we may not
pass them as parameters to other actor schemata or output them, because this
can be done only with objects. So, for example, we could not construct that
subset and communicate it to another actor. The structure we have thus created
is, by definition, a ’private’ one.
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These limitations can be overcome by applying the concept of ’interpreta-
tion’ to a somewhat broader class of ’symbols’—up to now, we have only used
’symbol’ in the conventional sense of an identifier (string) naming some ob-
ject. However, there is nothing in the definition of the symbol set or the global
interpretation that prevents us from considering the expression

fx j x 2 s; x < kg

as a symbol. The interpretation is free to map this symbol to any object. This
could be the object that represents just the set that we want to describe. In other
words, instead of the code above, we could write something like this:

rule :::
once

:::

let s2 = fx j x 2 s; x < kg :
:::== do something using s2

end
end

Here, the let-construct declares a local variable symbol, which is visible
inside its body only. So this solution does not suffer from any of the problems
above: The declaration s2 = fx j x 2 s; x < kg does not require any entries
in the vocabulary (just a local symbol is defined), and therefore no state change
takes place, we can nest this kind of declaration arbitrarily, and the long symbol
fx j x 2 s; x < kg even denotes an object, which can be output and passed to
the creation functions of schemata.

However, a problem remains. Strictly speaking, fx j x 2 s; x < kg cannot
be such a symbol, because its value depends on the values of the symbols s, k,
and <, i.e. those that occur free in it—as opposed to x, which is bound inside
this expression. We can solve this problem by using �-abstractions [13], which
have the following form:

�v:t

where v is a variable symbol (a simple one, not an expression itself) and t is
some term that does not contain any unbound variables but v. Then our global
interpretation interprets the expression �v:t as an object a such that for any term
t0,

�(a; [t0](I;V)) = [t[v 7! t
0]](I;V)

This means that the function associated with the object a by �, when applied
to the value of t0 in some interpretation/valuation (I;V), yields the same value
as replacing every free occurrence of v in t with the argument term t0 (this is
written as t[v 7! t0]) and evaluating that term in (I;V).

In other words, the interpretation I returns for each �-abstraction an object
that is associated with the denotation of that �-abstraction by the structure �.
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However, writing those �-terms becomes clumsy and unnecessarily compli-
cated. We will therefore consider terms like the above fx j x 2 s; x < kg as
syntactic sugar for the following term:

(�s:�k:� < :fx j x 2 s; x < kg) (s)(k)(<)

The first part of which will then be considered as a symbol and interpreted
by I in the way described above. More generally, for any expression e in our
expression language, containing free variable symbols v1; :::; vn, we can write it
as the ’standard’ (object or set) term

(� v1::::(� vn:e):::)(v1):::(vn)

by simply assuming (� v1::::(� vn:e)::: to be an expression symbol appropriately
interpreted by I.

The set of constructions we can use to compute with objects, if e.g. we have
set-comprehension-style constructs such as fx j x 2 s; x < kg, depends now
only on the interpretation. From our perspective, whatever language we intro-
duce to write expressions is merely a choice of I, allowing us to completely
abstract away from these details for the semantic description of the rule lan-
guage. The only requirement is, of course, that the expression language be free
from side-effects: it must not change the state of an actor. Otherwise, it is fully
orthogonal to our rule language. Appendix D presents a short overview of the
expression language we are using inside our ASM component schemata.

4.7 Basic rules and their denotation

In this section we will define a number of basic rules. Recall from section 4.4
that basic rules are those that produce an update set and thus lead to an atomic
state transition. Like for terms, we will describe the various kinds of basic
rules and their denotation. We assume that there is a current valuation of the
vocabulary V and also a context in which the rule is evaluated defined by an
interpretation I of variable symbols.

The denotation of a rule is its combined effect. This includes, of course,
the various updates it might produce, but since we are talking about a language
for specifying actors this must also include the output produced as well as port
connections to be added or removed, and the actors created. Furthermore, we
will allow a rule to be non-deterministic (and provide appropriate construction
to express such non-deterministic rules), so in general a rule will produce a set
of possible results.

Thus we will think of a rule r as representing, denoting, a map [r] such that

[r] : (I;V) 7! f(Uk; Pk; c
+
k ; c

�

k ; Nk) j k 2 Kg
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where Uk is an update set, the output function Pk is a map from output ports
P out to U� (holding the output computed in that rule), c+k and c�k are subsets of
P out

� P in, denoting the connections to be added and removed, respectively,
and Nk � I as a set of new actor identifiers (of actors created by that rule). K
is any index set. Note that P in; P out

� U. For convenience we will use the
name P� for the output function that maps all output ports to �. We will call one
such tuple of update set, output, connection changes, and new actors a (rule)
outcome, and a set of these resulting from a rule a result set.9

In the following we describe each rule first syntactically, including an in-
formal explanation of its action, and then we provide a denotation for it. We
distinguish between ’atomic rules’, which do not contain any other rules but
only terms, rules creating objects, and structured rules, which allows us to con-
struct various types of compound rules, which contain one or more rules.

4.7.1 Atomic rules

Atomic rules are the primitive building blocks in constructing state transition
behavior. The simplest atomic rule is the do-nothing rule. It looks as follows:

skip

Its effect is that it has none. Therefore, its denotation is this:

[skip] : (I;V) 7! f(;; P�; ;; ;; ;)g

The most fundamental ASM rule that actually does something is the atomic
update of a location to a new value. It has the following form:

tL := t

where tL is a location term and t an object term. This rule simply creates a
singleton update set f(l; v)g (Def. 23 on page 71), such that l is the result of the
location term tL and v the value of t:

[tL := t] : (I;V) 7! f(f(l; v)g; P�; ;; ;; ;)g

with l = [tL](I;V); v = [t](I;V)

While these first two kinds of rules were common in traditional ASM [51,
53], the following rules deal with connecting ASM components and communi-
cating between them, and are therefore specific to our rule language. However,
before we can discuss them, we need to describe how we can formulate terms
that denote input/output ports.

As we have seen above, ports are represented by a special kind of object.
Identifying a port (so we can use it in the rules we are about to discuss) implies

9Even though we use the same brackets for term values and rule denotation, they can be
distinguished by the position of the (I;V)—terms values are indexed with them, so that [t] (I;V)

is the value of the term t in the context given by I and V, while [r] is the rule denotation and
[r](I;V) the result set produced by the rule for the interpretation I and valuationV.
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being able to write a term whose value is the port. To this end, we make the
following assumptions about the vocabulary of components, the universe U, its
structure �, and the global interpretation I:

The interpretation valid inside each component (schema) contains a symbol
this, which is bound to its actor identifier (cf. Section 4.9).

There are symbols InputPorts and OutputPorts defined in I, which are bound
to objects in and out, respectively, such that the associated maps �in and �out
map each actor identifier i 2 I to objects ini and outi, which in turn are as-
sociated to maps from port names (usually strings, which are also assumed to
be part of the universe, but this is not necessarily so—cf. Section 5.3) to port
objects. If the actor does not have a port of the name, these maps are required
to associate ? to this name.

For reasons that will become clear in the examples in Chapter 5, we need to
be able to distinguish between ’external’ and ’internal’ input and output ports,
with the intention that other actors only hook up to an external port of an actor,
and that the internal ports are only connected by an actor itself.10 This means we
will assume a symbol Extern, which represents the subset of all external input
and output ports.

For example, the value of the term InputPorts (this)(”A”) is the input port
of name ”A” of the current component (i.e. the one we evaluate the rule for that
this term occurs in). Symbolically, if a is an actor index, and n a port name, we
write �in(a; n) and �out(a; n) for the correspondingly named input and output
port of that actor, respectively. The set�ext

� P in
[P out is the set of all external

ports.
The most straightforward use of an output port is to write a token (or a

sequence of tokens) to it. The following rule does just that:

[tp]  tval@ttag

Here, tp is a term denoting a port, tval is also some term, and ttag a term resulting
in a tag (which will be real numbers in our examples). This rule sends a token
to the port whose value projection is the value tval, and whose tag projection is
the value of ttag . More precisely,

[[tp]  tval@ttag] : (I;V) 7! f(;; P; ;; ;; ;)g

with P p =

8><
>:
w for p = [tp](I;V)

^w 2 A�
^ p 2 P out

� otherwise

such that �w = [ttag](I;V); �w = [tval](I;V)

Note that this denotation allows the value term to produce a sequence of tokens
(assuming that the universe contains sequences). We extend the projection �

10This is merely a convention and has no effect on our model of computation. Using this
notion we might want to define a concept of well-behavedness of an actor that does not touch
’internal’ ports of another actor, but this is a derived notion and is orthogonal to the model
presented in Chapter 2.
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over A� elementwise, and �w = t iff �a = t for every token a in the sequence
w. This rule has no effect if the port term does not yield an output port or the
token sequence is not one in the alphabet A. Obviously, making A as large as
possible, including in it, e.g., the set I of actor identifiers, or the ports, enhances
the expressiveness of the framework, facilitating the exchange of components
inside messages.

The next two constructions facilitate the creation and removal of connec-
tions between ports. Their syntax is as follows:

[pout] �! [pin]

[pout] 6�! [pin]

The pout term must result in an output port object, and the pin term in an input
port object. Then the first rule will establish a connection between the two ports,
while the second will remove a connection between them—it has no effect if the
two ports are unconnected. Their denotation correspondingly is this:

[[pout] �! [pin]] :

(I;V) 7!

8><
>:
f(;; P�; f(a; b)g; ;; ;)g if (a; b) 2 P out

� P in

witha = [pout](I;V); b = [pin](I;V)

f;; P�; ;; ;; ;)g otherwise

[[pout] 6�! [pin]] :

(I;V) 7!

8><
>:
f(;; P�; ;; f(a; b)g; ;)g if (a; b) 2 P out

� P in

witha = [pout](I;V); b = [pin](I;V)

f;; P�; ;; ;; ;)g otherwise

4.7.2 Object creation

As mentioned before, when talking about creating objects we are formally only
making objects accessible, which have so far not been accessible to the compu-
tation. The basic idea is that our universe of objects is sufficiently big so that we
have an inexhaustible supply of ’fresh’ objects if we need them, the so-called
reserve, which contains all objects which we cannot access from any actor in
the computation.

The criterion for accessibility is this:11 If we can write a term in the current
state of an actor, such that some object is the value of that term, this object is
accessible inside the actor.

11There are some subtle issues here involving for instance quantification over infinite sets,
which could be resolved in a number of different ways. We will not go into these here, and
instead assume that we only quantify variables over finite sets, which makes sense anyway from
a practical perspective.
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The simplest rule to make an object (from the reserve) accessible, i.e. to
create it in the sense above, has the following form:

import s : r end

As usual, s is a symbol, and r a rule. The idea is that some object is picked
from the reserve, bound to the symbol s, and then the rule r is executed which
can use that object through the symbol. Describing the denotation in the terms
above is straightforward:

[import s : r end] : (I;V) 7! [r](I[s 7! a];V)

But the formal definition above is somewhat incomplete, since we use the object
a without making explicit where it comes from. For our purposes it will be
sufficient to say that it comes from the reserve, and has no properties other than
being different from any other object we have used so far. It is this property of
picking a ’fresh’ object from the reserve that allows us to think about import as
’creating’ an object.

We will use a variant of this rule to create a new component.12 As mentioned
before, in general components may depend on parameters, which control their
internal state. These parameters are of course values of terms, which are passed
to the creation mechanism constructing the initial state of the component. Syn-
tactically, this looks as follows:

import s = component schema[par1; :::; parn] :
r

end

This creates a discrete event component of the schema corresponding to the
value of the term schema13 passing the parameter objects resulting from the
evaluation of the terms pari to the initialization rule of that schema, which we
can think of as invoking the ’constructor’ of a class (in an object-oriented pro-
gramming language) to instantiate and initialize a new instance of that class14

The important additional effect of this is that initialization creates a new actor,
thereby affecting the set of new actor indices.

However, constructing a new component involves somewhat more than just
initializing an actor. In particular, the new component may itself create fur-
ther subcomponents, connect them to each other or to already existing com-
ponents and so on. If we write the creation function for a given schema s =

12It would be more precise to talk about an actor identifier, an element i 2 I , rather than an
actor Ai. However, this distinction will not be visible to us in the following, so we will allow
ourselves to confound those two concepts and speak as if i = A i.

13We will leave open the question how this correspondence between the values of such a term
and an actual schema is established. We may assume that these terms are required to evaluate
to a string, which is then the name of the schema.

14We will discuss initialization of a component in section 4.9.
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[schema](I;V) as Creates[t; v1; :::; vn] (where t is the ’current’ time tag, vi is
the value of pari), then this creation function returns a non-empty set with ele-
ments that have the following structure:

Creates(t; v1; :::; vn) = f(ak; Nk; c
+
k ; c

�

k ) j k 2 Kg

Here, the ak identifies the newly created actor itself (or rather the top-level actor
of the newly created set of actors). Nk is the corresponding set of additional
actors that were created , and c

+
k and c

�

k are, as usual, the sets of connections
to be added and removed. K is any index set (the creation of a new actor itself
is a non-deterministic process and can produce any number of possible results).
With this, the denotation of the rule may be given as follows:2

4 import s =
component schemaname[par1; :::; parn] :
r end

3
5 : (I;V) 7!

f(U; P; c+ [ c+
�
; c

�
[ c

�

�
; N [N� [ fag j

(U; P; c+; c�; N) 2 [r](I[s 7! a];V)g

with

(a;N�; c
+
�
; c

�

�
) 2 Create[schema](I;V)

(t; v1; :::; vn);

vi = [pari](I;V)

We will discuss how to specify the constructor function in section 4.9.

4.7.3 Structured rules

Structured rules allow the construction of more complex rules from simpler
ones. A very basic structured rule is the conditional, which allows us to execute
a rule depending on the value of some term. It has the following form:

if t then r1else r2 end

where t is an object term and r1 and r2 are rules. As usual, we represent the
’false’ value by ?, so this rule is equivalent to r1 if the term is not equal to ?,
and equivalent to r2 if it is.

[if t then r1else r2 end] : (I;V) 7!

(
[r1](I;V) if [t](I;V) 6= ?

[r2](I;V) otherwise

We will allow more than one rule to be evaluated ’in parallel’, in the sense
that they are evaluated in the same environment, and neither is influenced by the
effects of the other. Writing this for any number n of rules looks like this:

r1; :::; rn

Since each rule returns a set of possible outcomes, we have to ’merge’ any
combination of outcomes from all sets. This is straightforward for the update
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sets and the sets of connections to be created or removed (we simply union
them). For example, assume we have two functions a and b of arity 0 in our
vocabulary, which currently carry the values 7 and 25, respectively. The basic
rule

a := b; b := a

creates the update set f(a; (); 25); (b; (); 7)g (effectively exchanging the values
of these functions in the next state, without the need for a temporary variable).

However, rules producing output potentially pose a problem, because we
have to concatenate them in order to form a sequence of output tokens for each
output port. Consider the rule:

[p]  1@t; [p]  2@t

Assuming p is (i.e. evaluates to) an output port, this rule produces either the
sequence (1; 2) or (2; 1) at this output port. The denotation of a rule must con-
tain all possible outcomes, therefore we must take all permutations of output
into account. In other words, parallel combination of rules creating output is a
potential source of non-determinism in our language.

The technicalities of the parallel combination of result sets (i.e. the set of
all possible outcomes of a rule) can be found in App. C, where we define
the parallel combination operator }, which is given a set of result sets R and
returns the set }R of all possible parallel combinations of them.

Using the parallel combination operator, we can write the denotation of the
parallel rule construct as follows:

[r1; :::; rn] : (I;V) 7! }f[ri](I;V) j i 2 f1; :::; ngg

This kind of parallel combination of rules contributes significantly to the
power of Abstract State Machines, because it is possible to construct very large
(arbitrarily large, as we will see in the next construct) update sets that change
any part of the state in one atomic action, while retaining referential trans-
parency during the construction of that update set.

However, using the above construction, a given specification can only com-
bine a fixed number of result sets, because the rules have to be written down
explicitly (so not only is the number fixed, but also finite).

This is somewhat generalized in the next rule, where we universally quantify
a (new local) variable variable over some set, and combine the result sets of
some rule for all values of this variable. We write this down as follows:

do forall s 2 t :
r

end

Here, s is any symbol, t is a set term, and r is a rule that forms the body of the
construct. The result of evaluating this rule is defined to be this:



4.7. Basic rules and their denotation 93

[do forall s 2 t : r end] : (I;V) 7! }
�
[r](I[s 7! a];V) j a 2 [t](I;V)

	
Note the way we make the symbol and its interpretation visible inside the

body of the do-forall-construction, by making use of the substitution operation
for interpretations.

Using this rule we can write rules that perform an unbounded, and indeed
infinite, number of updates in one step—for instance, assume a symbol N be
predefined that represents the set of natural numbers, and two binary function
symbols f and g be defined. Then the following rule would construct rather
large addition and multiplication tables, in one atomic step:

do forall n1 2 N :
do forall n2 2 N :

f(n1; n2) := n1 + n2;

g(n1; n2) := n1 � n2

end
end

So obviously, for purposes of interpretation and execution we require the
sets over which we quantify variables to be finite.

So far, all rules were completely deterministic, apart from the output. Often,
however, we would like to express non-determinism in the sense that we would
like to pick an element from a set, and do something with this element only. For
instance, the state transition of a Petri net should roughly have the following
form:

choose aTransition 2 activatedTransitions :
updateP lacesAroundThatTransition

end

The choose-construct picks one out of any number of alternatives, again by
quantifying a variable over a set, but this time existentially, instead of univer-
sally. In other words, instead of performing all rules and combining their result
sets with the parallel combination operator, we choose one of the alternatives.
The syntax looks like this:

choose s 2 t :
r1

else
r2

end

Again, s is any symbol, t is a set term, and r1 and r2 are basic rules. r1 is the
body of the rule, and is executed for one of the elements in whatever t evaluates
to. However, if this turns out to be the empty set, r1 cannot be executed, and
instead r2 will be. (We will employ the syntactic convention that the else-branch
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may be left out if r2 is the skip-rule.) Semantically, we must of course consider
all possible rule outcomes, which effectively boils down to the union of all
outcomes of all possible variations of the rule body. Formally, we thus have

�
choose s 2 t :
r1else r2 end

�
: (I;V) 7!

8>><
>>:

S
a2A

[r1](I[s 7! a];V) if A 6= ;

with A = [t](I;V)

[r2](I;V) otherwise

Often, we want to use the value of a term more than once inside a rule. In
this case, we would like to define a local variable of that value. The let-rule
construction allows us to do just that. It looks like this:

let
s1 = t1; :::; sn = tn :
r

end

As before, the si are symbols, the ti terms, and r is a rule. The ti are evaluated
in the context valid outside of the let-construct, and r is then of course evaluated
in the context where the si are bound to the values of the respective terms. The
formal denotation is therefore this:

[let s1 = t1; :::; sn = tn : r end] : (I;V) 7![r](I[(s1; :::; sn) 7! (a1; :::; an)];V)

where ai = [ti](I;V)

4.8 Full rules and their denotation
In the last section we discussed a language for basic rules, giving each such rule
a denotation of the following form (once again, K is just some index set):

[r] : (I;V) 7! f(Uk; Pk; c
+
k ; c

�

k ; Nk) j k 2 Kg

In other words, a basic rule computed a number of possible rule results (recall
that in general a basic rule was non-deterministic), each such result consisting
of an update set, some output sequence for each output port of the actor, sets
of connections between ports to be created or removed, and a set of new actors
created by that rule.

Eventually, our goal will be to use these basic rules to specify the response
of a schedulable single-token actor, which looks like this:

�� : (�; :::; a; :::; �) 7! f(�
0

k; wk; c
+
k ; c

�

k ; Nk)gk

We will now discuss the concept of a full rule, which consists of any number of
basic rules, and which we will use to define the firing function of an actor by
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binding such a rule to an input port such that, when the actor fires on a token
from that port, the transition function uses this rule to determine its result.

In section 4.4 we introduced the general format of a full rule, which con-
sisted of a number of those basic rules as follows:

rule ruleName[p; t; v] :
once

r1 ;
:::

rj

then
r1 ;
:::

rk

end

Here, each ri and rl is a basic rule as defined above, resulting in a set of rule
outcomes, the result set. The three parameters of the rule stand for the port
(-name) from which the token came, its tag and value, respectively.

Now if we assume that such a rule is bound to a port (section 4.9 will discuss
how this is done), then obviously the transition behavior is given by the denota-
tion of all full rules and their associations to the ports of an actor. In Section 4.4
we described the execution of a full rule as first executing the sequence of basic
rules ri once, and then iterating the sequence of basic rules ri until all update
sets resulting from these rules are empty. In this section, we will make this more
precise.

The first step towards defining the semantics of a full rule will be the de-
scription of the result of executing a sequence of basic rules. Obviously, this
will be a sequence of state transitions (of the actor) and outputs, connection
sets, and new actors, resulting from the execution of the individual rules. We
will write the denotation of a sequence of basic rules as hr1;:::;rni rather than
using square brackets, because it results in a new valuation (instead of an update
set), i.e. its denotation computes a new state (among other things). With this
in mind, we can define the simple denotation of a sequence of basic rules as
follows:

Def. 33: (Denotation of a sequence of basic rules.)

hr1:::rni : (I;V) 7! Sn

with S0 = f(V; P�; ;; ;; ;; f)g

Sk = f(V2; P1 + P2; c
+
1 [ c

+
2 ; c

�

1 [ c
�

2 ; N1 [N2; b
0) j

(V1; P1; c
+
1 ; c

�

1 ; N1; b) 2 Sk�1;V2 = V1[Uk]

(Uk; P2; c
+
2 ; c

�

2 ; N2) 2 [rk](I;V1)

b
0 = (b _ (Uk 6= ;))g
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This means that in evaluating a sequence of rules, we keep the last state,
concatenate the output sequences (we symbolize this with P1 + P2 which is a
function defined as (P1 + P2)p = P1p + P2p), and simply build the union of
the connection sets and the new actors. Obviously, we have to do this for all
possible outcomes of a rule.

The last component of each outcome (V; P; c+; c�; N; b) is a Boolean value
from the set ft; fg. It serves as a flag indicating whether the executions of the
rules so far have produced a non-empty update set. The first flag (in the set
S0) is initialized to f , denoting the value ’false’. At each step, we build the
disjunction of the last flag and the test of non-emptiness of the current update
set.15 This value will of course be used for the termination criterion during the
iteration of the second sequence of basic rules.

The above construction only allows us to execute a sequence of rules exactly
once. Often, however, we would like to iterate a previously unspecified number
of times, until some condition becomes true. This is exactly what the second
sequence of basic rules, r1;:::;rk is for. In order to define the effect of the iterated
execution of a sequence of rules, we will now proceed to define the iteration,
finite iteration, and results of an iteration very similar to the Def. 9 and Def. 13
for the runs, finite runs, and results of runs of systems of actors. For simplicity,
we will write r for a sequence of rules.

Def. 34: (Iteration, finite iteration, result of an iteration of a sequence of basic rules)
Given a sequence of basic rules r, an iteration of r in an interpretation I and
starting from a valuation V is a sequence of structures

(Vk; Pk; c
+
k ; c

�

k ; Nk; bk)

such that

(V0; P0; c
+
0 ; c

�

0 ; N0; b0) 2 hri(V; I)

and for all k, a step leading to the next structure in the sequence is defined as
follows.

If bk = f (i.e. all update sets of this step were empty), we simply set

(Vk+1; Pk+1; c
+
k+1; c

�

k+1; Nk+1; bk+1) = (Vk; Pk; c
+
k ; c

�

k ; Nk; bk)

Otherwise, we choose some

(V�; P�; c
+
�
; c

�

�
; N�; b�) 2 hri(Vk; I)

15It is not sufficient to test for equality of the current state with the original valuation, because
(a) an update might not produce a change (if it updates to the same value that the point it updates
has) and (b) a step may reverse the effect of its predecessor.
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and define

Vk+1 = V�

Pk+1 = Pk + P�

c
+
k+1 = c

+
k [ c

+
�

c
�

k+1 = c
�

k [ c
�

�

Nk+1 = Nk [N�

bk+1 = b�

An iteration is finite iff there exists a k such that bk = f , otherwise it is
infinite.

The result of a finite iteration is (Vk+1; Pk+1; c
+
k+1; c

�

k+1; Nk+1).

Def. 35: (Iterated denotation of a sequence of basic rules.) Given a sequence of basic
rules r, its iterated denotation hri� is defined as follows:

hri
� : (I;V) 7! fx j ex. finite iteration of r with result xg

This finally allows us to define the denotation of a full rule of the form given
above. This denotation will map a valuation V and a number of parameters
(which are objects) v1; :::; vn to a set of possible outcomes, each of which has the
form (V; P; c+; c�; N), it looks like the kind of structure we expect as a result
of an iteration, which is almost (except for the representation of the output)
identical to the structures returned by the transition function of an extended
actor.

A rule declaration of the form

rule name[par1; :::; parn] :
once

r1 ; ::: ; rj
then

r1 ; ::: ; rk
end

consists of two parts, that do different things. It declares a name to stand for
something (a rule), which is then defined. The rule itself is fully described by

[par1; :::; parn] : once r1 ; ::: ; rj then r1 ; ::: ; rk end

Therefore, when defining the semantics of a full rule, it is this part that we
will be looking at. The binding of this to the name of the rule (and subsequently
to input ports) will be discussed below.
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* [par1; :::; parn] :
once r1 ; ::: ; rj
then r1 ; ::: ; rk end

+
:

(I;V; v1; :::; vn) 7! f(V2; P1 + P2; c
+
1 [ c

+
2 ; c

�

1 [ c
�

2 ; N1 [N2) j

I
0 = I[(par1; :::; parn) 7! (v1; :::; vm)];

(V1; P1; c
+
1 ; c

�

1 ; N1; b) 2 hr1:::rji(I
0
;V);

(V2; P2; c
+
2 ; c

�

2 ; N2) 2 hr1:::rki
�(I0;V1)g

This tells us what it means to ’run’ a rule on a list of parameter values in a
given state—the result is a new state, some output, connection sets, and a set of
new actors. Two things need to be clarified before we can use this to describe
an actor:

� We need to describe how an actor is set up, i.e. how its initial state is defined,
and how rules are connected to its input ports, and also how input and output
ports of an actor are defined.

� From this, we have to put the pieces together and describe the relation between
the definition of an actor schema in our language as outlined in Section 4.3 and
our formal concept of an interpreter schema from Def. 19.

This will be addressed in the following sections.

4.9 The semantics of a component schema
At this point, we have fully described the rule language, the structure of the state
of an actor, how rules manipulate that structure, and how terms are evaluated.
It is now time to bring these elements together and define the semantics of a
component (or actor) schema. This is essentially given by the creation function,
which we encountered in Section 4.7.2, and which had the following form:

Createschemaname(t; v1; :::; vn) = f(ak; Nk; c
+
k ; c

�

k ) j k 2 Kg

The t is the time tag corresponding to the ’current’ time, i.e. the tag of the token
which is currently fired on, and the vi are constructor parameters. Recall that
each ak is the index of the newly created actor, Nk is a set of indices of actors
created along with the one denoted by ak (as ’subcomponents’), and the c+k and
c
�

k are the usual connection sets. K is again some index set, representing the
non-determinism of the creation function.

Note that each ak 2 I represents a schedulable actor, which according to
Def. 12 has the following structure:

Aaj = (�; �0; (P�)�2�; (��)�2�; pfire; psched; t0)
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In order to define the creation function of a schema, we must describe how
all these items are constructed from a schema definition. To this end, we will
now take a closer look at the structure of such a schema than we had done in
Section 4.3. The general structure of an actor schema definition can be seen
in Fig. 30.16 Here, the dti are object terms, the iseti and oset are set terms,
symba;b, rulenamei and name as well as tm, vari, pari, pi, ti and vi are sym-
bols, and the n1 are natural numbers (including 0). The rulebodyi are the bodies
of full rules.

class name[tm; par1; :::; parn] is
define var1 = dt1; :::; varh = dth ;

input iset1 : rulenamer1 ; :::; iseti : rulenameri ;
private input ipset1 : rulenamerp1 ; :::; ipsetip : rulenamerpip ;
output oset ;
private output opset ;

function symb1;1; :::; symb1;k1 arity n1 ;
:::

function symbl;1; :::; symbl;kl arity nl ;

initialize : rulebody end

rule rulename1[p1; t1; v1] : rulebody1 end
:::

rule rulenamem[pm; tm; vm] : rulebodym end
end

Fig. 30: The structure of an actor schema definition.

A text like this basically describes (denotes) an actor creation function of
the kind mentioned above. We will now proceed to construct the details of this
function from the denotation of the various parts of the definition. Note that the
actor identifiers aj are conceptually ’picked’ from the reserve—we will build
up the actor structures, and then allow any identifier from the reserve whose
corresponding actor has these structures.

Before we start we need to deal with the formal schema parameters
par1; :::; parn. These are symbols bound to the parameters of the creation func-
tion t; v1; :::; vn, and are to be bound to the pari, resulting in an interpretation I0.

16The form presented here is the canonical form. There are a few syntactic abbreviations
to this form, such as using the attribute keyword for functions with arity 0. As these can
be trivially translated into the canonical form, we will not clutter the semantics definition with
them.
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Additionally, we bind the declared symbols vari to the values of the respective
terms dti and we obtain the class-wide interpretation Î defined as

Î = Ih

with Ii+1 = Ii[vari+1 7! [dti+1](Ii;V?)]

and I0 = I?[(tm; par1; :::; parn) 7! (t; v1; :::; vn)]

Here, I? is the empty interpretation, i.e. domI? = ; and V? is the valuation of
the actor prior to initialization, such that all functions are ? at all points.

The define-block allows the definition of symbols to stand for the values of
arbitrarily complex terms—it does not add anything semantically, but it provides
a convenient mechanism for making specifications shorter and more readable
(we will see a first application of this in the Petri net example below).

This interpretation will be the one that defines the visible symbols inside the
actor, with the exception of the this symbol—this must obviously be defined
differently for each actor returned by the creation function. Given an actor
identifier a 2 I , we define the local interpretaton of actor a as

Îa = Î["this" 7! a]

In order to define the creation function for a schema, it is helpful to first
extract the information contained in its definition into a more useful format. We
will interpret the actor schema of Fig. 30 to define

� a vocabulary

� input port names and output port names

� a map from port names to denotations of rules

� an initialization function

Def. 36: (Vocabulary, port map, port names and initialization function of a param-
eterized schema) Given a schema definition of the form in Fig. 30 this defines
a vocabulary Vname as follows:

Vnames =

8>>><
>>>:
n1 if s 2 fsymb1;1; :::; symb1;k1g

:::

nl if s 2 fsymbl;1; :::; symbl;klg

? otherwise

It also defines sets of names for input and output ports, Inputsname and
Outputsname, respectively, and subsets of these of external input and output
ports, Inputsextname and Outputsextname, respectively, and a function, called port
map, Portname mapping the input port names to the rule denotation corre-
sponding to it. As opposed to the vocabulary, these items, of course, depend
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on the actual schema parameters (t; v1; :::; vn), which define the interpretation
Î as described above.

Inputs
ext
name(t; v1; :::; vn) =

[
a2f1;:::;ig

[iseta](Î;V?)

Inputsname(t; v1; :::; vn) = Inputs
ext
name(t; v1; :::; vn)

[

[
a2f1;:::;ipg

[ipseta](Î;V?)

Outputs
ext
name(t; v1; :::; vn) = [oset](Î;V?)

Outputsname(t; v1; :::; vn) = Outputs
ext
name(t; v1; :::; vn) [ [opset](Î;V?)

Portname(t; v1; :::; vn) : s 7! h[pr; tr; vr] : rulebodyr endi

for s 2 [isetr](Î;V?); s 2 [ipsetr](Î;V?)

Finally, the schema definition also defines an initialization rule Initname as
follows:

Initname = h[]rulebody endi

The vocabulary is only well-defined if all function symbols appear at most
once in the function definitions. Likewise, all values of the iseti terms of input
port names must be pairwise disjoint.

We also need to bring the output produced by a rule (cf. Section 4.7.1),
which is a map from output ports toA�, into the tuple format we need to describe
actor behavior. According to Def. 4 P out

a is the set of output ports of actor a.
A rule returns a function P mapping ports to output sequences. A function
Outputa transforms such a function into the appropriate output tuple for actor
Aa as follows:

Outputa : P 7! !as

with s such that

8p 2 P
out
a : p s = Pp;

8p 2 P
out
n P

out
a : p s = �

Now we can define the semantics of such an actor schema definition in terms
of the creation function it denotes.

Def. 37: (Denotation of actor schema definition) Given the schema definition in Fig.
30. It defines a function Createname such that

Createname(t; v1; :::; vn)

returns the largest set of structures (a;N; c+; c�), such that the following holds
for each of its elements:
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� a is an actor identifier from the reserve,Aa is a discrete-event component, such
that

Aa = (�Vname
;V0; (PV)V2�Vname

; (�V)V2�Vname
; pfire; psched; t0)

� (V0; P0; c
+; c�; N) 2 Initname(Îa;V?), i.e. the initialization rule of the schema

creates the initial valuation as well as the connection sets and the set of new ac-
tors.

� pfire = �in(a; "fire"); psched = �out(a; "schedule")

� The prefix functions PV are as defined in Def. 10 (since the actor is a single-
token actor).

� If P0(�
out(a; "schedule")) = �, then t0 =1, else

P0(�
out(a; "schedule")) = wa (with w 2 A� and a 2 A) and then t0 = � a.

� Finally, the transition functions �V have to be defined as follows:

�V(�i�1; a; �n�i) = f(V
0
; Outputa(P ); c

+
; c

�
; N) j

(V0
; P; c

+
; c

�
; N) 2 Portname(p)(Îa;V; p; �a; �a);

p = �a Æ �ig

The key elements in this definition are the ones concerned with initializa-
tion and state transition. Note that the initialization rule may produce output,
but all of it is discarded except for the output at the schedule output port. This
determines the scheduled firing time—if the initialization rule does not produce
output at this port, it becomes1, i.e. the actor is unscheduled. If the initializa-
tion rule produces output, it is only the time stamp of the last token produced
that will determine the scheduled firing time of the actor.

This concludes our presentation of the ASM-based description of discrete-
event components (or rather component schemata). What is left is to relate a
parametric component schema definition to the notion of visual language inter-
preter schema developed in the last chapter.

4.10 Interpreter schemata and graph-defined schemata
In Def. 19 in the last chapter we defined an interpreter schema for a visual
language L(P) to be a function

I(t; G; v1; :::; vn) = f(ak; Nk; c
+
k ; c

�

k ) j k 2 Kg

where t is a time tag, G a graph in that language, the vi are some values, and
the i is the actor identifier. In other words, it takes a time, a graph, and some
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parameters, and returns a set of structures containing an actor identifier, a set of
further new actors, and connection sets. The actor creation function developed
and defined in the last section, had the following form:

Createschemaname(t; v1; :::; vn) = f(ak; Nk; c
+
k ; c

�

k ) j k 2 Kg

They differ only in that the interpreter takes a graph as one of its parameters.
This means that in order to be able to use ASM component schema definitions as
definitions of visual language interpreter schemata, we only need to show how
to represent a graph as an object (or rather structure of objects) in our universe.

Recall from Def. 17 that an attributed graph had the following structure:

(V;E; s; d; �; �)

where V and E where sets of vertices and edges, s; d : E �! V mapped an
edge to its start and end vertex, � : (E[V )�A �! U is the attribution function
(A is the set of valid attribute names) for all graph objects (edges and vertices),
and � : A �! U is the attribution function for the graph itself. Representing
these attribution functions in our universe is straightforward—since any object
a is associated with a map �a : U �! U, we could simply require
(�a)(x) = �(a; x) for graph objects a and (�g)(x) = �x for the object g
representing the graph itself, for any attribute name x.

The graph structure we can represent by introducing four symbols (into the
global interpretation I), say vertices, edges, src, and dst, such that the maps
associated with the objects bound to them would return (an object representing)
the set of vertices and edges (for a graph), and, respectively, the source and
destination vertex (for an edge object). This allows us to parameterize a schema
for an interpreter of some visual language with a graph and a set of parameters
in order to obtain a discrete event component realizing the functionality of the
visual program represented by the graph.

Usually, however, we would like to abstract from the concrete visual lan-
guage used to specify a given component—in fact, it is a key feature of our ap-
proach to the interoperability between different visual notations that we can use
an actor without knowing what language it was written in. We therefore intro-
duce the notion of a graph-defined schema, which is basically an actor schema
derived from the schema for a visual language interpreter and a concrete graph:

Def. 38: (Graph-defined schema) Given a visual language interpreter schema I and
a graph G of that visual language, the graph-defined schema CG is defined as
follows:

CG(t; v1; :::; vn) = I(t; G; v1; :::; vn)

This means that we can view graphs (i.e. visual programs) themselves as
representing actor schemata, rather than viewing only interpreter schemata in
this way, and graphs only as parameters for these interpreters. In fact, this
will be the view of the user of a visual language (as opposed to the author
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of that language): ignoring the technicalities of how interpreters are related
to graphs, indeed ignoring the very existence of interpreters, users conceive
of pictures/visual programs/graphs as denoting actor schemata. We thus have
made visual the specification of classes of actors.
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4.11 Small examples

With the actor schema definition language fully defined, we can now use it to
define the first small examples—Chapter 5 is devoted to further, slightly larger
applications. We will use our new description technique first on the two exam-
ples we had already defined using plain ’mathematical’ notation in Ex. 10 and
Ex. 11, viz. the interpreters for finite state machines and Petri nets.

Alg. 1: (Schema definition of an FSM interpreter)

1 class FSMInterpreter[tm;G] is
2 input f"input"g : handleInput;
3 f"fire"g : doNothing ;
4 output f"output"; "schedule"g ;
5

6 attribute currentState ;
7

8 initialize :
9 do forall e 2 edges(G) :

10 if src(e)("type") = "InitMarker" then
11 currentState := dst(e)
12 end
13 end
14 end
15

16 rule handleInput[p; t; v] :
17 once
18 choose e 2 fe je 2 edges(G); src(e) =
19 currentState; e("Input") = vg:
20 currentState := dst(e);
21 [OutputPorts(this)("output")]  e("Output")@t
22 end
23 end
24

25 rule doNothing[p; t; v] :
26 skip
27 end
28 end

4.11.1 Example 1: FSM interpreter schema

The full definition of our FSM interpreter as an ASM component is presented
in Alg. 1. Recall that it is driven by tokens arriving at some ’data’ input (as
opposed to the input used by the scheduling mechanism to fire the actor explic-
itly), which may or may not cause a state transition. Correspondingly, in Line
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3 it defines its fire input to be associated with a rule of the descriptive name
doNothing, which in Line 26 does just that.

The vocabulary of an FSM interpreter actor is as simple as one would ex-
pect: It consists of exactly one attribute (function of arity zero) containing the
currentState (Line 6). For simplicity, these states are directly represented by
the corresponding vertices of the graph. This can be seen in the initialization
rule (Lines 8-14), which iterates over all edges, picks the one (there must be ex-
actly one) with the ”InitMarker” vertex at its source, and sets the ’currentState’
attribute to the vertex at the other side of the edge.

The actual state transition consists of a simple choose-construct (Lines 18-
22). This picks one of the activated transitions (where the activation condition
is that it starts at the current state and has the proper ”Input” attribute that corre-
sponds to the token value v), updates the state and outputs the ”Output” attribute
of the chosen transition.

Note that this actor never produces any scheduling messages, and will there-
fore never receive any firing tokens—nevertheless, in order to make it a legal
schedulable actor, we have to include the two ports in its definition.
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Alg. 2: (Schema definition of a Petri net interpreter)

1 class PNInterpreter[tm;G] is
2 define
3 P = fv j v 2 vertices(G); v("type") = "P lace"g;
4 T = fv j v 2 vertices(G); v("type") = "Transition"g ;
5 input f"fire"g : step ;
6 output f"schedule"g ;
7

8 function M arity 1 ;
9

10 initialize :
11 once
12 [OutputPorts(this)("schedule")]  ?@tm;
13 do forall p 2 P :
14 M(v) := v("initialTokens")
15 end
16 end
17

18 rule step[p; now; v] :
19 once
20 choose t 2 ft jt 2 T;
21 8e 2 edges(G) :
22 (dst(e) = t) e("Weight") � M(src(e)))g :
23

24 do forall e 2 edges(G) :
25 if t = dst(e) then
26 M(src(e)) := M(src(e))� e("Weight")
27 end;
28 if t = src(e) then
29 M(dst(e)) :=M(dst(e)) + e("Weight")
30 end
31 end;
32 [OutputPorts(this)("schedule")]  ?@now
33 end
34 end
35 end

4.11.2 Example 2: Petri net interpreter schema

The Petri net interpreter schema definition in Alg. 2 is only slightly more com-
plicated than the previous example. It contains fewer ports, because it is not
driven by any data input, but exclusively by firing messages—consequently, it
has to schedule itself—which is what it does in Line 12, by sending a message
to its own ”schedule” output with time stamp tm, the time parameter of the
actor, its creation time.
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This schema includes a define-block, which defined the symbols P and T

to stand for the sets of ”Place” vertices and ”Transition” vertices of the graph,
respectively.

The vocabulary also contains only one function, though this time of arity
1: the function M represents the marking, mapping ”Place” vertices to non-
negative integers.

Initialization consists of setting up this marking by iterating over the ”Place”
vertices (here we make use of the definition of P ) and setting M for each such
vertec to the value of its ”initialToken” attribute.

The actual update of the neighboring places is done in an iteration over all
edges. If an edge is connected to the selected transition, the marking of the place
on the other side of that edge is changed according to the ”Weight” attribute of
the edge. Here we must assume that a place and a transition are not connected
by more than one edge, otherwise we get inconsistent updates here.

If there is no activated transition the choose-construct will not execute its
body (the else part is omitted because it is a skip-rule), thus the actor will not
reschedule itself.

Note that, as an actor, such a Petri net is a rather useless thing, since it does
not communicate with its environment—other than scheduling itself until it is
dead. We will address this issue in Chapter 5.

4.12 Discussion and related work

In this chapter, we have essentially developed an actor description language
based on a well-known state-based specification language, Abstract State Ma-
chines. We have brought together our actor model, with its notion of compo-
sition and communication, and ASM, which are focussed on the definition of
discrete state transition behavior. Many approaches to defining languages for
describing concurrent systems have approached the problem from another an-
gle, by extending a functional language with notions of component, channel,
communication etc. Examples of this include Erlang [10], Obliq [35], Facile
[47], and Pict [86]. The first two are essentially actor languages (with Erlang
having roots in Prolog, despite being essentially functional in flavor), based on
objects for keeping the state of the actors and direct addressing of actors as
communication mechanism, while the latter two are based on process algebraic
notions.

The main focus of our model of computation, apart from communication
between components, is the state transition behavior of individual components
and the structure of their state. This is why we started from an essentially state-
based language that had a very general concept of state structure, and provided a
powerful set of constructs for manipulating the state. In order to accommodate
the features of our model, we have added a number of constructions to basic
Abstract State Machines:
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� A notion of component, and a component schema from which to instantiate/create
components.

� Input ports, by which tokens could enter a component and trigger the execution
of a rule, and output ports by which a rule could output data to other compo-
nents. Along with these we needed constructs to output tokens and to connect
and disconnect ports.

� Binding of rules to input ports. In this way, rules were used to describe the
component’s reaction to a token.

Traditional Abstract State Machines have been defined in [51, 53] as a way
to describe algorithms at arbitrary levels of abstraction while maintaining an es-
sentially operational style of description. In contrast to other state-based spec-
ification techniques (such as Schönhage’s storage modification machines [40]
and random access machines [18]), the state of an ASM is an algebra (which is
why initially ASM were known as ’evolving algebras’), a very general concept
facilitating the representation of complex structures without the need for much
’coding’.

ASM have been used as a specification and modeling device in many con-
crete case studies (e.g. the railroad crossing problem [14, 55], the group mem-
bership protocol [56], a production cell [23], the Broy-Lamport problem [63]).

A very important part of the ASM work is the application of this technique to
the specification of programming language semantics. This includes a variety of
imperative languages (C [54], C++ [109], Cobol [105], Java [27, 26], Modula-
2 [83], Oberon [73]), the hardware description language VHDL [22, 94], the
parallel programming language Occam [21, 57], functional languages [104],
and a large body on work in logic programming languages (e.g. Prolog [19, 20],
CLP(R) [25]), including the definition of the ISO standard of Prolog [24].

ASM were applied to the specification of visual notations, such as SDL [49]
and to Petri nets [48]. However, all these applications focused on the descrip-
tion of one particular visual notation (the same applies to the specification of
textual languages cited before), not on the mapping of a range of languages to
an underlying common model of computation.

In the context of textual languages, there is some work on general frame-
works for their syntax and semantics description where the latter is based on
ASM—most notably [87] and [72]. Here, the focus is on a uniform specifica-
tion technique, mostly (but not exclusively) for imperative languages, and the
automatic generation of tools (compilers, interpreters, debuggers) from such a
specification.

Abstract State Machines in their most basic form do not include a compo-
sition technique. Most work addressing this problem focused on refinement of
ASM descriptions from high-level specifications to efficiently executable im-
plementations [15, 23]. Another line of research developed concurrent compo-
sition of ASM [50, 53], where ASM agents (which can be thought of as threads
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of control) communicated essentially via a global state (a common valuation of
a vocabulary)—despite being called ’distributed ASM’.

Recently, work has been done on incorporating composition concepts of
object-oriented languages into ASM, e.g. [8, 112] and our own previous work
on Object-based ASM [67] and Mapping Automata [66]. While these approaches
do address some issues arising in composition of ASM (encapsulation, local-
ity of state, threads of control, transfer of control between agents etc.) to
varying degree, they provide no formal interface to a more generic model of
computation—i.e. they define the model of computation in their own terms,
rather than being themselves embedded into a more general framework. Fur-
thermore, their focus is on state and how this evolves over time, rather than
dataflow and communication between agents—for instance, none of the above
approaches would explicitly represent the communication structure of the sys-
tem, or provide a notion of ’port’.

Traditionally, the focus in ASM research is on the modeling aspect, and
on the expressiveness of the language, on ways to improve or demonstrate its
applicability to the specification of some system or language. In recent years,
however, progress has been made in the area of formal proofs based on ASM
descriptions [95, 96] and on model checking ASM [111]. Of course, not all
ASM can be subject to automatic verification by these methods, but extending
their applicability certainly adds a very important incentive to use ASM in the
first place. Being able to automatically derive interesting properties from an
ASM description of an actor would, of course, significantly enhance the value
of such a description.



5
Applications

In this chapter we will apply the concepts and the language developed in the
previous chapters to the definition of a few visual languages. In this, we will
focus on the semantics, and will describe the syntax only insofar as attributes
of vertices and edges are needed in the definition of interpreters. Syntactical
constraints (syntax predicates) will only be formulated informally.

In choosing the examples we were guided by two considerations: to cover a
reasonable variety of visual notations with different characteristics (from state-
based to purely dataflow-oriented notations), and to address the main archi-
tectural issues arising in the design of interpreters. The following prototype
solutions address the following issues:

� computation inside the model, i.e. the evaluation of ’expressions’ inside the
model (usually formulated as text) and its integration into the state transition
mechanism of the interpreter

� adding a notion of time, i.e. non-instantaneous temporal behavior, involving
scheduling of a component at a proper time

� interpreters with a variable number of input/output ports depending on the actual
graph

� creation and connection of other components

� connection/disconnection of components during runtime (i.e. dynamic network
structures)

These concepts will be presented in a series of increasingly complex inter-
preter schemata. We will start by extending the finite state machine interpreter
schema from the end of the previous chapter.
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5.1 State-based languages: extended FSM
The state machine language for which we presented the interpreter at the end of
the previous chapter realizes a rather restricted kind of state machine. We will
extend this language in this section in two steps.

5.1.1 Adding computation

One way to make this language more expressive is to allow actual computation
to be performed in the course of a state transition, which may operate on the
input token consumed by the transition, and may modify a number of ’variables’
that can contain arbitrary pieces of information.1 Whether a transition between
states is possible may depend on the value of the input as well as the values
assigned to those variables. The same holds for the output computed and the
new variable values. We will call this kind of state machine an extended FSM.

Fig. 31: A simple run-length coder as an extended FSM.

Fig. 31 shows an extended FSM that implements a very simple form of
run-length coding. Each transition is inscribed with three attributes, all of them
expressions (cf. App. D for a summary of the syntax of the expression lan-
guage). The Guard attribute contains an expression that evaluates to true if the
transition is possible, and false otherwise. It is evaluated in an environment that
contains the variables of the state machine (n and c in this example) as well as
the symbol input, which is bound to the respective input token that the state ma-
chine is about to fire on. The Output attribute contains an expression computing
the output tokens, and the UpdateExpression attribute contains an expression
that computes a map of new assignments to the variables to the state machine.

Assuming initially c and n to be undefined, the first transition from the initial
state sets c to the input token received, and n to 1, no output is being produced.
Now in the middle state, either of the two transitions leading away from it may

1This means of course that strictly speaking the state space of such an automaton may no
longer be finite.



5.1. State-based languages: extended FSM 113

be activated, depending on whether the input token is equal to c. If it is not,
the state transition will lead back to the middle state, setting c to the new input
token and outputting the old value of c. If it is equal, the right state is entered,
no output is produced, but n is incremented by one. Similarly, we remain in
the right state as long as the input token remains the same, incrementing n. As
soon as we encounter a new input token, we change back to the middle state,
setting c to the new token, n to 1, and writing out two tokens, viz. the number
of identical tokens we encountered on the input, and the token itself.

In addition to the Guard, Output, and UpdateExpression attributes of edges,
the graph itself has an InitialValues and a Parameters attribute. The former is
an expression that results in a map mapping the variable names to their initial
values. The Parameters attribute is a list of formal parameter names, which get
bound to actual parameter values passed when creating an extended FSM actor.

The following Alg. 3 shows an interpreter schema for our extended FSM
notation. In Line 3 the local environment, i.e. the one resulting from binding the
formal parameter names to the actual parameter values is defined—we assume a
predefined function createMap that takes two lists and returns a map that maps
each element of the first list to the element of the second list at the corresponding
position, or ? if the second list is shorter than the first.

The component has two input ports (input for the data tokens, fire for fire
messages from the scheduling mechanism, which are ignored by these actors)
and two output ports (output for data generated during a transition, schedule for
schedule messages, which these actors do not generate). In addition to the actor
schema for simple FSMs, the state has an attribute currentVars which contains
a map mapping the variable names of the actor to their current values (Line 9).

As for the simple FSM, the initialization ’looks’ for the state connected
to the initial state marker and sets this as the initial value of the currentState
attribute (Lines 12-16). Additionally, it computes the initial mapping of its
variables (Line 17)—here we assume the existence of an evaluation function
eval, that takes an expression (here the graph attribute InitialValues) and an en-
vironment (in this case the one resulting from the binding of the parameters,
localEnv) and returns the value of that expression. This will be a map, which is
stored in the currentVars attribute.

The transition behavior of the extended FSM is defined by the handleInput
rule, which does the following:

1. Select a transition from the set of possible transitions (as defined by current state
and guard of the transitions)—Lines 25-27. Note how the environment for the
evaluation of the guard is constructed (Line 23): to the local environment (the
bound formal parameters) we ’add’ the current assignment of the local variables
and the mapping of the symbol ”input” to the input value v. We assume that in
this addition values 6= ? of a map supersede values for the same point of maps
to the left of it, i.e. local variables override parameters of the same name.

2. Assign the next state to currentState (Line 28).
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3. Update the assignment of variables by evaluating the UpdateExpression at-
tribute of the chosen transition and adding it to the current assignment (using
the overriding behavior of the add-operation for maps just mentioned)—Lines
29-30.

4. Finally, write the result of the evaluation of the Output attribute of the transition
to the output port (Lines 31-32).

Alg. 3: (An extended FSM interpreter schema.)

1 class XFSMInterpreter[tm;G; pars] is
2 define
3 localEnv = createMap(G("Parameters"); pars) ;
4 input f"input"g : handleInput;
5 f"fire"g : doNothing ;
6 output f"output"; "schedule"g ;
7

8 attribute currentState ;
9 attribute currentV ars ;

10

11 initialize :
12 do forall e 2 edges(G) :
13 if src(e)("type") = "InitMarker" then
14 currentState := dst(e)
15 end
16 end;
17 currentV ars :=
18 eval(G("InitialV alues"); localEnv)
19 end
20

21 rule handleInput[p; t; v] :
22 once
23 let env = localEnv+currentV ars
24 +["input" 7! v]:
25 choose e 2 fe je 2 edges(G);
26 src(e) = currentState;

27 eval(e("Guard"); env) 6= ?g:
28 currentState := dst(e);
29 currentV ars := currentV ars+
30 eval(e("UpdateExpression"); env);
31 [OutputPorts(this)("output")]  
32 eval(e("Output"); env)@t
33 end
34 end
35 end
36
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38 rule doNothing[p; t; v] :
39 skip
40 end
41 end

5.1.2 Adding a notion of time

The next addition to the extended FSM visual language is a concept of time.
Up to now, all state transition occur instantaneously, and the FSM/extended
FSM interpreters did not interact with the scheduler. Now we want to create an
extended FSM that ’consumes’ time while firing.

There are several possibilities to include such behavior. Of particular im-
portance are the following questions: (a) How is the choice of the transition to
be taken influenced by the time model? (b) Where does the delay come from
and how is it specified? (c) What happens to input tokens that arrive during the
occurrence of a transition?

We will choose a very simple design that answers these questions as follows:
(a) Not at all. (b) From an expression attribute of the transition. (c) They are
discarded. Intuitively, each transition is attributed with an expression that is
supposed to compute a delay, i.e. the time that this expression will take when it
is chosen to fire. When an expression is chosen, its delay is evaluated and the
actual update of state and variables, as well as the output take place at the end
of the transition, i.e. when the delay is expired.

This means that we have two rules participating in the firing: The first selects
a transition in response to an input token and schedules the second rule (which
is bound to the fire input instead of the doNothing rule in the previous example).
This actually updates state and variables according to the transition taken. It is
important that the first rule recognizes that it has already scheduled the actual
state transition, so that it can discard tokens arriving in the meantime.

Alg. 4 shows how this can be realized in our framework. It has a few more
attributes to hold the new values of the variables, as well as the output values
while the transition is in process. We will use the value of the transition attribute
as an indicator of whether the extended FSM is currently idle or is performing
a transition—if it is 6= ?, a transition is in progress, and is contained in the
attribute.

The main differences to Alg. 3 is the division of responsibility between
the handleInput and the doTransition rules. As defined above, the former does
nothing if the transition attribute is 6= ?. If it is = ?, however, and input ar-
rives, the handleInput rule picks a transition like before, but instead of executing
it, the transition edge is stored in the transition attribute (Line 32). Then, the
new variable assignment and the output value are stored in newVars and out-
Value, respectively (Lines 33-35). Finally, a scheduling message is written to
the schedule output port for the current time + the result of evaluating the Delay
expression (Lines 36-37).

Firing this actor at the scheduled time then results in the relevant updates
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being peformed (currentState and currentVars) as well as the precomputed out-
put being written (Lines 46-48). At the same time, transition is reset to ?, so a
new input may be processed.

Alg. 4: (A timed FSM interpreter schema.)

1 class T imedFSMInterpreter[tm;G; pars] is
2 define
3 localEnv = createMap(G("Parameters"); pars) ;
4 input f"input"g : handleInput;
5 f"fire"g : doTransition ;
6 output f"output"; "schedule"g ;
7

8 attribute currentState ;
9 attribute currentV ars ;

10 attribute transition ;
11 attribute newV ars ;
12 attribute outV alue ;
13

14 initialize :
15 do forall e 2 edges(G) :
16 if src(e)("type") = "InitMarker" then
17 currentState := dst(e)
18 end
19 end;
20 currentV ars :=
21 eval(G("InitialV alues"); localEnv)
22 end
23

24 rule handleInput[p; t; v] :
25 once
26 if transition = ? then
27 let env = localEnv+currentV ars
28 +["input" 7! v; "now" 7! t]:
29 choose e 2 fe je 2 edges(G);
30 src(e) = currentState;

31 eval(e("Guard"); env) 6= ?g:
32 transition := e;

33 outV alue := eval(e("Output"); env);
34 newV ars := currentV ars+
35 eval(e("UpdateExpression"); env)
36 [OutputPorts(this)("schedule")]  
37 ?@t + eval(e("Delay"); env)
38 end
39 end
40 end
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41 end
42

43 rule doTransition[p; t; v] :
44 if transition 6= ? then
45 transition := ?;
46 currentState := dst(transition);
47 currentV ars := newV ars;

48 [OutputPorts(this)("output")]  outV al@t
49 end
50 end
51 end

5.2 Concurrency and infinite-state systems: Petri nets
Now we will turn to the visual language of Petri nets. A basic variant of Petri
nets was defined in the interpreter schema Alg. 2 in the previous chapter. In this
section we extend it also in two steps, and we will further expand its capabilities
in Sect. 5.4.

Fig. 32: A Petri net component.

5.2.1 Petri net components

One of the most fundamental shortcomings of the Petri nets as we defined them
in Alg. 2 is that there is no way to connect them to any other components—they
have no input or output ports, except for the fire and schedule ports. We will
now add input and output ports to these Petri nets in the way depicted in Fig.
32 (which shows a simplified version of the network in Fig. 10 on page 14).
Each input port will be represented by a vertex of type InputPort, similarly each
output port is represented by a vertex of type OutputPort. These vertices have a
Name attribute containing a string that becomes the name of the respective port.
(All Weight attributes of the arcs are 1, so they have been omitted in the figure.)

Correspondingly, in addition to the usual Petri net arcs between places and
transitions, we have now arcs going from input port vertices to places and from
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transitions to output port vertices. The interpreter schema for this kind of Petri
net component is shown in Alg. 5. It begins by defining variables containing
the different sets of vertices (input ports, output ports, places, transitions—Lines
2-5), and then the sets of arcs corresponding to the different kinds of connec-
tions we allow (places to transitions, transitions to places, input ports to places,
transitions to output ports—Lines 6-13).

A crucial feature of this visual language is that the input/output signature
(i.e. the number of ports and their names) depends on the graph to be interpreted—
as opposed e.g. to the FSM examples, where there were always the same in-
put/output ports irrespective of the graph that was interpreted. This means that
the declarations of ports must somehow refer to the graph structure. In Line
16 we declare the set of ’data’ input names as those that occur as values of the
Name attribute of InputPort vertices. These are associated with the handleInput
rule, which is of course different from the step rule associated with the fire input
port. Similarly, the set of output port names is computed in Line 17.

The vocabulary and the initialization are identical to Alg. 2.
The handleInput rule is fired when some token (other than a firing message)

arrives at some port. Intuitively, the intention is that this token will be put onto
every place connected to the corresponding input port vertex. The handleInput
rule realizes this by iterating over those edges in the IP set (the input-to-place
edges) that originate from an input port vertex with the correct Name attribute.
The marking of each place connected to an input port is incremented by one
(Lines 31-33), and eventually the actor is rescheduled at the current time (be-
cause the new token might result in a transition to be ’firable’ with the net pre-
viously dead) in Line 34.

The first part of the step rule is very similar to the step rule in Alg. 2, except
that the iterations are structured here according to the edge-subset that they use
(whereas in Alg. 2 the iteration went over all edges). After having chosen the
transition t from the set of activated transitions (Lines 39-41), we compute the
effect of its firing in three steps:

1. Iterate over the place-to-transition edges that end at t, subtracting the weight of
the edge from the marking of the place it comes from (Lines 43-45).

2. Iterate over the transition-to-place edges originating at t, adding the weight of
the edge to the marking of the place it points to (Lines 46-48).

3. Iterate over the transition-to-output-port edges originating at t, sending a ? to-
ken from each port that is pointed to (Lines 49-52).

Finally, the step rule reschedules the actor, so it could fire again (Line 53).
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Alg. 5: (An interpreter of Petri nets with ports.)

1 class PNComponentsInterpreter[tm;G] is
2 define I = fv j v 2 vertices(G); v("type") = "InputPort"g;
3 O = fv j v 2 vertices(G); v("type") = "OutputPort"g;
4 P = fv j v 2 vertices(G); v("type") = "P lace"g;
5 T = fv j v 2 vertices(G); v("type") = "Transition"g;
6 PT = fe j e 2 edges(G);src(e)("type") = "P lace";
7 dst(e)("type") = "Transition"g;
8 TP = fe j e 2 edges(G);src(e)("type") = "Transition";
9 dst(e)("type") = "P lace"g;

10 IP = fe j e 2 edges(G);src(e)("type") = "InputPort";
11 dst(e)("type") = "P lace"g;
12 TO = fe j e 2 edges(G);src(e)("type") = "Transition";
13 dst(e)("type") = "OutputPort"g ;
14

15 input f"fire"g : step;
16 fv("Name") j v 2 Ig : handleInput ;
17 output f"schedule"g [ fv("Name") j v 2 Og ;
18

19 function M arity 1 ;
20

21 initialize :
22 once
23 [OutputPorts(this)("schedule")]  ?@tm;
24 do forall p 2 P :
25 M(v) := v("initialTokens")
26 end
27 end
28

29 rule handleInput[p; now; v] :
30 once
31 do forall e 2 fe j e 2 IP; src(e)("Name") = pg :
32 M(dst(e)) :=M(dst(e)) + 1
33 end;
34 [OutputPorts(this)("schedule")]  ?@now
35 end
36

37 rule step[p; now; v] :
38 once
39 choose t 2 ft jt 2 T;
40 8e 2 PT :
41 (dst(e) = t) e("Weight") � M(src(e)))g :
42

43 do forall e 2 fe j e 2 PT; t = dst(e)g :
44 M(src(e)) :=M(src(e))� e("Weight")
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45 end;
46 do forall e 2 fe j e 2 TP; t = src(e)g :
47 M(dst(e)) :=M(dst(e)) + e("Weight")
48 end;
49 do forall e 2 fe j e 2 TO; t = src(e)g :
50 [OutputPorts(this)(dst(e)("Name"))]  
51 ?@now
52 end;
53 [OutputPorts(this)("schedule")]  ?@now
54 end
55 end
56 end

a

[a(0) + b(0)]

b

Fig. 33: A high-level Petri net component.

5.2.2 Adding computation

Another important extension to Petri nets is shown in Fig. 33 (which imple-
ments the same functionality as the network in Fig. 10 on page 14, though we
have rearranged the attributes somewhat to simplify the interpreter) is the abil-
ity to embed computation in it, very much like we did for extended FSM in the
previous section. This means that the tokens in a Petri net need to represent
objects, and in firing a transition we need to be able to express computation on
these objects.

As is usually the case in the design of a visual notation, there are various
ways to add a capability for manipulating objects to the Petri net language.
Here, we have chosen one that facilitates a simple description and still illustrates
the key design elements. The token objects will be stored in the markings of the
places in the order in which they ’arrived’ at the place, i.e. our marking (the
state of the Petri net) maps each place to a finite sequence of objects. As can
be seen in Fig. 33, the arcs going from places to transitions have an attribute
(called Var) containing a symbol, and the arcs going from transitions to places
have one (called Values) containing an expression. (As in the last examples, all
weights are 1 in Fig. 33, and therefore have been omitted for clarity.)
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When a transition fires, it takes for each incoming arc the sublist of tokens
of the length corresponding to its Weight attribute from the head of the sequence
of tokens residing on the place the arc is coming from. This is then bound to the
symbol contained in the Var attribute of that arc. For instance, if in the example
if the figure, the upper place would contain the token sequence [1; 2; 3] and the
lower place the token sequence [4; 5; 6], a would be bound to the sequence [1]
and b to the sequence [4]. The resulting environment is then used to evaluate the
expressions in the Values attributes of the outgoing arcs. In the example, this
would be [a(0) + b(0)], where we employ the convention that a sequence is a
map from indices (starting at 0) to the corresponding elements, so that a(0) and
b(0) select the first element in their corresponding sequence (which in this case
contains only one element anyway, of course). The result of the expression is a
sequence [5], which is then written to the output port in the example.

Alg. 6 shows an interpreter schema for this visual notation. It begins like the
schema in Alg. 5 by declaring sets of the different kinds of structural elements,
and also a localEnv map representing the environment resulting from binding
the formal parameter symbols to the actual parameter values (Lines 2-14). Ad-
ditionally, it declares a map createEnv of two parameters, a transition vertex
and a map containing the current marking (Lines 15-15).2 The notation we use
to specify this function follows the �-calculus, using �(t;m):e as a shortcut for
�t:(�m:e). The result of applying this function to a transition and a marking is
a map which maps the symbols of the Var attributes of the incoming arcs of that
transition to the initial segments of the sequences of the corresponding places—
in other, words, it constructs the bindings that will be needed when firing the
transition. It assumes the existence of a predefined function head that is applied
to a sequence and a number and returns the initial segment of that sequence of
the specified length.

Initialization is very similar to Alg. 5, except that the InitialTokens attribute
of a place is now expected to contain an expression (rather than a number),
which is evaluated in the local environment to yield the initial list of tokens
(Line 29). Similarly, when adding a token coming in at an input port (Line
36), we do not just add 1 to the number of tokens as in the previous example,
but instead add the token itself to the lists of tokens at the markings of the
corresponding places.

The firing of a transition is also similar in structure to the rule in Alg. 5.
However, choosing a transition involves evaluating its guard (not shown in the
example, since here it is always true), which is an expression bound to the tran-
sition vertex’ Guard attribute and must be 6= ? if the transition is allowed to
fire (Lines 44-48). Once a transition is chosen, tokens are removed from the
marking of those places from which arcs go to the transition (Lines 50-52),
then tokens (computed as the result of evaluating the Values attribute of the cor-
responding arc) are added to the marking of those places to which arcs lead
from the transition (Lines 53-56), and finally tokens are written to those ports

2It is necessary to pass the marking as an object because a function cannot, of course, depend
on the valuation of a vocabulary—only rules can.
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to which arcs lead from the transition (Lines 57-60). In removing tokens, we
assume a predefined function tail, which is the dual of head in that it takes a
sequence and a number and return the rest of the sequence after removing that
number of elements from its head.

Alg. 6: (An interpreter of high-level Petri net components.)

1 class HLPNInterpreter[tm;G; pars] is
2 define I = fv j v 2 vertices(G); v("type") = "InputPort"g;
3 O = fv j v 2 vertices(G); v("type") = "OutputPort"g;
4 P = fv j v 2 vertices(G); v("type") = "P lace"g;
5 T = fv j v 2 vertices(G); v("type") = "Transition"g;
6 PT = fe j e 2 edges(G);src(e)("type") = "P lace";
7 dst(e)("type") = "Transition"g;
8 TP = fe j e 2 edges(G);src(e)("type") = "Transition";
9 dst(e)("type") = "P lace"g;

10 IP = fe j e 2 edges(G);src(e)("type") = "InputPort";
11 dst(e)("type") = "P lace"g;
12 TO = fe j e 2 edges(G);src(e)("type") = "Transition";
13 dst(e)("type") = "OutputPort"g;
14 localEnv = createMap(G("Parameters"); pars);
15 createEnv =�(t;m):localEnv+
16 [e("V ar") 7! head(m(src(e)); e("Weight")) j
17 e 2 PT; dst(e) = t] ;
18

19 input f"fire"g : step;
20 fv("Name") j v 2 Ig : handleInput ;
21 output f"schedule"g [ fv("Name") j v 2 Og ;
22

23 function M arity 1 ;
24

25 initialize :
26 once
27 [OutputPorts(this)("schedule")]  ?@tm;
28 do forall p 2 P :
29 M(v) := eval(v("InitialTokens"); localEnv)
30 end
31 end
32

33 rule handleInput[p; now; val] :
34 once
35 do forall e 2 fe j e 2 IP; src(e)("Name") = pg :
36 M(dst(e)) :=M(dst(e)) + [val]
37 end;
38 [OutputPorts(this)("schedule")]  ?@now
39 end
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40

41 rule step[p; now; v] :
42 once
43 let m = [p 7!M(p) j p 2M ] :
44 choose t 2 ft jt 2 T;
45 8e 2 PT :
46 (dst(e) = t)

47 e("Weight") � length(M(src(e))));
48 eval(t("Guard"); createEnv(t;m)) 6= ?g :
49

50 do forall e 2 fe j e 2 PT; t = dst(e)g :
51 M(src(e)) := tail(M(src(e)); e("Weight"))
52 end;
53 do forall e 2 fe j e 2 TP; t = src(e)g :
54 M(dst(e)) :=M(dst(e))+
55 eval(e("V alues"); createEnv(t;m))
56 end;
57 do forall e 2 fe j e 2 TO; t = src(e)g :
58 [OutputPorts(this)(dst(e)("Name"))]  
59 eval((e("V alues"); createEnv(t;m))@now
60 end;
61 [OutputPorts(this)("schedule")]  ?@now
62 end
63 end
64 end
65 end

Class: "Nats"

Pars: [2]

Class: "Sieve"

Pars: [2]
Class: "InitToken"

Pars: [1]
Primes

Fig. 34: Asynchronously communicating processes.

5.3 Networks of communicating actors
So far, we have described visual languages that allow us to express computation,
describe the structure of the state of an actor and how it changes, and to define
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actors that have input and output ports. However, none of these languages pro-
vided a facility to combine actors, to describe networks of actors, and define
their communication structure. The language we are now about to describe is
just the opposite: Actors defined in that language never change state (they only
have one), and all these actors do is, in fact, create other actors and establish-
ing a communication structure between them, as well as acting as an ’interface’
between the network they contain and the outside world.

Fig. 34 (a slight adaptation of Fig. 11 on page 14 with attribution a little
more explicit) shows an example of such a network of communicating actors.
The contained actors are connected to each other as well as to the input and
output ports of the containing actor (though the one in the example only has an
output port).

Class: "Nats"

Pars: [2]

Class: "Sieve"

Pars: [2]
Class: "InitToken"

Pars: [1]

Primes

Class: "Nats"

Pars: [2]

Class: "Sieve"

Pars: [2]
Class: "InitToken"

Pars: [1]
Primes

Fig. 35: Flattening the ’hierarchy’ in Fig. 34.

Note, however, that our model of computation does not provide an explicit
concept of hierarchy—all actors, in principle, can be connected to all other ac-
tors, there is no notion of one actor being ’above’ or ’around’ another actor, or
’containing’ another actor. The only thing we can do to two actors, the only
relation they can be in, is to be connected to each other, to that tokens from the
outputs of one flow into the inputs of the other.

In order to represent an actor network as in Fig. 34, we have to ’flatten’ the
hierarchy, connecting the seemingly ’contained’ actors to their ’container’ in
some appropriate manner, so that this container can provide the interfaces and
functionality we expect from the apparent containment. In order to do this, the
container has to have special ports, one for each input and output port of its con-
tained actors, so that they can be connected to their container. Fig. 35 illustrates
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this ’flattening’ operation, which connects the ’inner’ actors (the InitTokens, the
Nats, and the Sieve actors) to their containing actor by means of those special
ports, which we call private ports (introduced in Section 4.9). Although other-
wise completely normal input and output ports, by convention these ports are
not meant to be connected with other (’outside’, i.e not contained) actors. These
private ports are drawn along the bottom of the enclosing actor. The only func-
tionality provided by it (after it has established the contained actors and their
connection) is to ’catch’ the tokens leaving the rightmost actor at its upper out-
put port and to forward them to its own Primes output port. In general, such an
actor does not perform any state transitions, or schedule itself—it only provides
interface functionality to and from the enclosed actors.

In the case of the vertices representing embedded components, arcs are con-
nected to them at so-called connectors, which are graphically represented by
little triangles pointing into or out of the vertex they belong to. In the abstract
syntax, each vertex has two attributes, InConnectors and OutConnectors, con-
taining the sets of input and output connectors, respectively. (Basically, the little
triangles can be considered graphical representations of these sets.) In general,
any vertex may have connectors, as permitted, required or forbidden by the syn-
tax rules of the language. Edges may be connected to ’just the vertex’, or to
a particular connector of the vertex. In the abstract syntax, an edge has two
attributes ConnectorA and ConnectorB, representing the name of the connector
of its source vertex and its destination vertex, respectively. If these are = ?, it
means that the edge is connected to ’just the vertex’. Otherwise, it is connected
to the corresponding vertex connector.

Alg. 7 shows an interpreter schema for this visual language. As usual, it
starts with a list of definitions of sets of vertices and edges, as well as a local
environment binding the parameters (Lines 2-13). This time there are three sets
of vertices, viz. those representing input ports, output ports, and embedded
components. These are followed by four sets of edges: Edges connecting input
ports to input ports of embedded components (IC), edges connecting output
ports of embedded components to input ports of embedded components (CC),
edges directly connecting an input port vertex to an output port vertex (IO), and
finally edges connecting output ports of embedded components to output port
vertices (CO).

The actor network actor will represent component-to-component connec-
tions directly by connecting the two components in question, thus freeing itself
from having to handle the tokens flowing between them. The other connections,
IC, IO, and also CO, involve a token flowing over an input port of the containing
actor, i.e. they involve the execution of a rule. Note that this also holds for CO
connections—as can be seen from Fig. 35, these are realized via an intermediate
private input port.

The set of external (i.e. non-private) input ports is defined as in the previous
examples as the fire input port (associated with an empty rule) plus an input port
for each I vertex (Lines 15-16). Then follows the declaration of the private input
ports (Lines 17-19). Here we want to construct one for each output port of each
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embedded component that an arc might be connected to. The private input port
corresponding to the component output port c of the component represented by
the vertex v is given the ’name’ (v; c). In this way, we construct a private input
port for each OutConnector in the graph.

Similarly, the external output ports are generated from the output port ver-
tices, while each private output port corresponds exactly to one InConnector in
the graph (Lines 20-22).

The vocabulary contains just one unary function, which eventually maps
each Comps vertex to the component that was created for it (Line 24). This
information is used during setup.

In the initialization, in a first step we create the components correspond-
ing to each Comps vertex (Lines 28-33). Then we ’wire’ them up: First the
connections among the embedded components themselves (Lines 34-40), then
we connect the private output ports to the embedded components’ input ports,
(Lines 42-45), and finally the private input ports to the embedded components’
output ports (Lines 46-49).

In handling incoming tokens, we distinguish between those tokens coming
from an external input port and those arriving at a private input port. Exter-
nal input is handled by the rule handleInput, which simply forwards the tokens
along each arc leading to a component input port (which, of course, is repre-
sented by the corresponding private output port—Lines 55-58), and along each
arc leading directly to an output port (Lines 59-61). The rule handling input at
private input ports is even simpler: It just needs to forward the tokens along arcs
connecting the corresponding embedded component output with an output port
(Lines 65-68).

Alg. 7: (An interpreter schema of networks of communicating actors.)

1 class ProcNetInterpreter[tm;G; pars] is
2 define I = fv j v 2 vertices(G); v("type") = "InputPort"g;
3 O = fv j v 2 vertices(G); v("type") = "OutputPort"g;
4 Comps = fv j v 2 vertices(G); v("type") = "Component"g;
5 IC = fe j e 2 edges(G);src(e)("type") = "InputPort";
6 dst(e)("type") = "Component"g;
7 CC = fe j e 2 edges(G);src(e)("type") = "Component";
8 dst(e)("type") = "Component"g;
9 IO = fe j e 2 edges(G);src(e)("type") = "InputPort";

10 dst(e)("type") = "OutputPort"g;
11 CO = fe j e 2 edges(G);src(e)("type") = "Component";
12 dst(e)("type") = "OutputPort"g;
13 localEnv = createMap(G("Parameters"); pars) ;
14

15 input f"fire"g : doNothing;

16 fv("Name") j v 2 Ig : handleInput ;
17 private input
18 f(v; c) j v 2 Comps; c 2 v("OutConnectors")g



5.3. Networks of communicating actors 127

19 : handleInternalInput ;
20 output f"schedule"g [ fv("Name") j v 2 Og ;
21 private output
22 f(v; c)minv 2 Comps; c 2 v("InConnectors")g ;
23

24 function C arity 1 ;
25

26 initialize :
27 once
28 do forall v 2 Comps :
29 import proc = component
30 v("Class")(eval(v("Pars"); localEnv)) :
31 C(v) := proc

32 end
33 end ;
34 do forall e 2 CC :
35 let v1 = src(e); c1 = e("ConnectorA");
36 v2 = dst(e); c2 = e("ConnectorB") :
37 [OutputPorts(C(v1))(c1)]
38 �! [InputPorts(C(v2))(c2)]
39 end
40 end;
41 do forall v 2 Comps :
42 do forall c 2 v("InConnectors") :
43 [OutputPorts(this)((v; c))]
44 �! [InputPorts(C(v))(c)]
45 end;
46 do forall c 2 v("OutConnectors") :
47 [OutputPorts(C(v))(c)]
48 �! [InputPorts(this)((v; c))]
49 end
50 end
51 end
52

53 rule handleInput[p; now; val] :
54 once
55 do forall e 2 fe j e 2 IC; src(e)("Name") = pg :
56 [OutputPorts(this)((dst(e); e("ConnectorB")))]
57  val@now
58 end;
59 do forall e 2 fe j e 2 IO; src(e)("Name") = pg :
60 [OutputPorts(this)(dst(e)("Name"))]  val@now
61 end
62 end
63
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64 rule handleInternalInput[p; now; val] :
65 do forall e 2 fe j e 2 CO;

66 p = (src(e)("Name"); e("ConnectorA"))g :
67 [OutputPorts(this)(dst(e)("Name"))]  val@now
68 end
69 end
70

71 rule doNothing[p; t; v] :
72 once
73 skip
74 end
75 end

Result

Guard: s1 = s2

Guard: s1 = s2AddServer

RemoveServer

Job

Job

Finished

Result

Idle

Schedule

Start

Working

Unschedule

Remove

Fig. 36: A dynamic Petri net.

5.4 Petri nets revisited: dynamic Petri net structures
Now we will turn again to Petri nets, incorporating some of the techniques from
the previous example into them, creating a new form of Petri nets that support
dynamic network structures. A more complete description of its semantics can
be found in [65], applications of this visual notation are presented in [45, 68].

Fig. 36 shows a simple example of such a ’dynamic’ Petri net (we have
annotated some places and vertices with ’non-functional’ names in a serif type-
face, to aid our explanation). The basic function of this component is to dis-
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tribute ’jobs’ to an arbitrary number of other actors—indeed, this number is
allowed to change over time! Jobs are represented by tokens arriving at the Job
input port. We assume that there are a number of tokens representing actors (i.e.
elements of I) on the place named Idle. In that case, the transition called Sched-
ule can fire, picking an actor from the Idle place and the new job and placing
the actor on the place labeled Working, and the tuple consisting of that actor and
the job token on the place above it, activating the transition Start.

The Working place (Fig. 37) looks somewhat different—most importantly,
it has input and output connectors attached to it, similar to those representing
embedded components in the previous example. Also, some arcs (such as the
one from the Start transition) go to the input connectors, while other arcs (such
as the one from the Schedule transition) go to the place ’directly’—and the same
applies to arcs leaving the place. The intended meaning is this: Arcs directly
connected to the place itself work just like for any other place in a Petri net,
i.e. tokens created by the expression associated with an incoming arc are put on
the place, and tokens bound to the variable symbol associated with an outgoing
arc are removed from the place. This was the case, e.g., when the Schedule
transition placed the selected actor on the Working place.

However, arcs connecting to a place via one of its connectors do not trans-
port tokens to or from the place itself—instead, they connect to the components
residing on the place (which may be any number, including zero). In other
words, when the firing of the Start transition produces a token on this arc, this
token is not placed on the Working place, but instead is fed to the Job input
ports of all actors residing on that place (assuming they do have such an input
port). Similarly, the arcs starting at the Result and Finished connectors collect
tokens from the correspondingly named output ports of the actors residing on
the Working place.

The technique that is employed to realize this in the following interpreter
schema for this visual language (Alg. 8) will be similar to the one used in the
previous example (Alg. 7)—for each connector at each place vertex we create
a private input or output port, interpreting the arcs connected to a connector as
leading to or from the corresponding port (Fig. 38).

The most important new feature compared to the previous example is the
fact that the connections of other actors with these private ports change over
time. When the actor was moved onto the Working place by the Schedule tran-
sition, the connections were established. Now when the Start transition fires it
sends the tuple consisting of the actor identifier and the job token to the Job
input port of all actors residing on the Working place. This is, by the way, the
reason why we included the actor identifier in the message—this way, the actors
are able to distinguish those messages intended for them and ignore those that
do not carry their own identifier.3

Now the embedded actor works on the job, producing result tokens at its
Result output port—which are directly forwarded to the Result output port of

3Other visual notations might provide better ways to address the destination actor directly,
of course.
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Fig. 37: A place vertex with connectors.

the dynamic Petri net. Eventually, it produces a token at its Finished output
port, which is required to be its own actor identifier. This token is placed on
the place that is connected to the Finished connector of the Working place. This
activates the Unschedule transition, which eventually removes the actor from
the Working place and puts it on the Idle place again.

Finally, the AddServer and RemoveServer input ports allow other actors to
put new server actors into the pool of idle actors (on the Idle place), or have
them removed from there.

The interpreter schema for dynamic Petri nets is presented in Alg. 38. As
before, it starts with defining names for sets of different kinds of vertices and
edges in the graph. While the vertex sets are the usual input ports, output ports,
places, and transitions (Lines 2-5), there are nine different kinds of edges, de-
pending on the entities connected by them (Lines 6-30). The sets are named
according to the type of things they connect, where ”Pc” denotes the connec-
tor on a place, so that PcO are edges going from such an output connector to
an output port vertex, while TPc are edges going from a transition to an input
connector.

The definition of the local environment and the createEnv function creating
the environment for a given transition and a given marking (Lines 31-31) are
identical to the way this was done in the high-level Petri nets (Alg. 6). The
definition of the input and output ports is similar to the definition in Alg. 7—
external ports for the input/output port vertices, a private port for each connector
of a place (Lines 36-43).

The vocabulary consists of the usual unary marking function M (Line 45).
For simplicity, we initialize it with an empty list for all places (Line 49).
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Fig. 38: ... and its translation into the actor model.

As for the visual language of actor networks (Alg. 7), there are three rules:
handleInput describes the reaction to tokens arriving at the external input ports,
while handleInternalInput defines what happens when a token arrives at one
of the private input ports. Finally, step performs the state transition when a
transition fires.

The handleInput rule first iterates over those edges connecting the input port
vertex corresponding to the input port at which the current token is coming in to
a place (Lines 54-66). In addition to adding the token to the list of tokens that
constitute the marking of that place, the input/output ports of the corresponding
actor must be connected to the respective private output/input ports of this ac-
tor.4 This is done in Lines 57-65. Lines 67-69 forward the input along edges
leading to embedded component inputs, and finally the component schedules
itself.

Tokens arriving at an internal input (i.e. tokens coming from an embedded
component) are dealt with by the rule handleInternalInput. They can go to three
different destinations: output ports, places, or other embedded components’
input ports. These three cases are dealt with in the rule in that order. First,
the token is forwarded along edges leading to output port vertices (Lines 75-
78), then the token is added to the marking of places connected to the input

4If the token does not, in fact, represent an actor, the InputPorts(val)(conn) etc. expres-
sions will not yield a port, and then by the definition of the connection/disconnection rules (Sect.
4.7.1), nothing happens.
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(Lines 79-92), and finally the token is forwarded to connected input ports of
embedded components (Lines 93-97). Note that adding a token to the marking
of a place again involves connecting it to the corresponding private input/output
ports (Lines 82-91).

Finally, the step rule, like for high-level Petri nets (Alg. 6), first picks
a transition it can take (Lines 103-107). As in the high-level Petri net inter-
preter schema, firing the selected transition essentially consists of three steps:
removing the ’consumed’ tokens (Lines 109-124), adding the ’produced’ tokens
(Lines 125-140), and writing out output (Lines 141-148), the latter consisting
in writing out tokens to external output ports (Lines 141-144), and to internal
output ports, i.e. to embedded component input ports (Lines 145-148). Remov-
ing consumed tokens from a place involves disconnecting their ports from this
actor, just as adding them involves connecting their ports to the corresponding
private ports. Here, we use the function elementsOf to produce the set of objects
contained in a list.

Alg. 8: (An interpreter of dynamic Petri nets)

1 class DynamicPNInterpreter[tm;G; pars] is
2 define I = fv j v 2 vertices(G); v("type") = "InputPort"g;
3 O = fv j v 2 vertices(G); v("type") = "OutputPort"g;
4 P = fv j v 2 vertices(G); v("type") = "P lace"g;
5 T = fv j v 2 vertices(G); v("type") = "Transition"g;
6 PT = fe j e 2 edges(G);src(e)("type") = "P lace";
7 dst(e)("type") = "Transition";
8 e("ConnectorA") = ?g;
9 TP = fe j e 2 edges(G);src(e)("type") = "Transition";

10 dst(e)("type") = "P lace";
11 e("ConnectorB") = ?g;
12 IP = fe j e 2 edges(G);src(e)("type") = "Input";
13 dst(e)("type") = "P lace";
14 e("ConnectorB") = ?g;
15 TO = fe j e 2 edges(G);src(e)("type") = "Transition";
16 dst(e)("type") = "Output"g;
17 IPc = fe j e 2 edges(G);src(e)("type") = "Input";
18 dst(e)("type") = "P lace";
19 e("ConnectorB") 6= ?g;
20 PcO = fe j e 2 edges(G);src(e)("type") = "P lace";
21 dst(e)("type") = "Output"g;
22 PcP = fe j e 2 edges(G);src(e)("type") = "P lace";
23 dst(e)("type") = "P lace";
24 e("ConnectorB") = ?g;
25 PcPc = fe j e 2 edges(G);src(e)("type") = "P lace";
26 dst(e)("type") = "P lace";
27 e("ConnectorB") 6= ?g;
28 TPc = fe j e 2 edges(G);src(e)("type") = "Transition";
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29 dst(e)("type") = "P lace";
30 e("ConnectorB") 6= ?g;
31 localEnv = createMap(G("Parameters"); pars);
32 createEnv =�(t;m):localEnv+
33 [e("V ar") 7! head(M(src(e)); e("Weight")) j
34 e 2 PT; dst(e) = t] ;
35

36 input f"fire"g : step;
37 fv("Name") j v 2 Ig : handleInput ;
38 private input
39 f(v; c) j v 2 P; c 2 v("OutConnectors")g
40 : handleInternalInput ;
41 output f"schedule"g [ fv("Name") j v 2 Og ;
42 private output
43 f(v; c)minv 2 P; c 2 v("InConnectors")g ;
44

45 function M arity 1 ;
46

47 initialize :
48 once
49 do forall v 2 P : M(v) := [] end
50 end
51

52 rule handleInput[p; now; val] :
53 once
54 do forall e 2 fe j e 2 IP; src(e)("Name") = pg :
55 M(dst(e)) :=M(dst(e)) + val;

56 let place = dst(e) :
57 do forall conn 2 place("InConnectors") :
58 [OutputPorts(this)((place; conn))]
59 �! [InputPorts(val)(conn)]
60 end;
61 do forall conn 2 place("OutConnectors") :
62 [OutputPorts(val)(conn)] �!
63 [InputPorts(this)((place; conn))]
64 end
65 end
66 end;
67 do forall e 2 fe j e 2 IPc; src(e)("Name") = pg :
68 [Output(this)((dst(e); e("ConnectorB"))]  val@now
69 end;
70 [OutputPorts(this)("schedule")]  ?@now
71 end
72

73 rule handleInternalInput[p; now; val] :
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74 once
75 do forall e 2 fe j e 2 PcO;

76 p = (src(e)("Name"); e("ConnectorA"))g :
77 [OutputPorts(this)(dst(e)("Name"))]  val@now
78 end;
79 do forall e 2 fe j e 2 PcP;

80 p = (src(e)("Name"); e("ConnectorA"))g :
81 M(dst(e)) :=M(dst(e)) + val;

82 let place = dst(e) :
83 do forall conn 2 place("InConnectors") :
84 [OutputPorts(this)((place; conn))]
85 �! [InputPorts(val)(conn)]
86 end;
87 do forall conn 2 place("OutConnectors") :
88 [OutputPorts(val)(conn)] �!
89 [InputPorts(this)((place; conn))]
90 end
91 end
92 end;
93 do forall e 2 fe j e 2 PcPc;

94 p = (src(e)("Name"); e("ConnectorA"))g :
95 [OutputPorts(this)(((dst(e); e("ConnectorB")))]
96  val@now
97 end
98 end
99

100 rule step[p; now; v] :
101 once
102 let m = [p 7!M(p) j p 2M ] :
103 choose t 2 ft jt 2 T;
104 8e 2 PT :
105 (dst(e) = t)

106 e("Weight") � length(M(src(e))));
107 eval(t("Guard"); createEnv(t;m)) 6= ?g :
108

109 do forall e 2 fe j e 2 PT; t = dst(e)g :
110 let place = src(e) :
111 do forall comp 2 elementsOf(head(M(place);
112 e("Weight"))):
113 do forall conn 2 place("InConnectors") :
114 [OutputPorts(this)((place; conn))]
115 6�! [InputPorts(comp)(conn)]
116 end;
117 do forall conn 2 place("OutConnectors") :
118 [OutputPorts(comp)(conn)] 6�!
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119 [InputPorts(this)((place; conn))]
120 end
121 end
122 end;
123 M(src(e)) := tail(M(src(e)); e("Weight"))
124 end;
125 do forall e 2 fe j e 2 TP; t = src(e)g :
126 let place = dst(e);
127 res = eval(e("Fire"); createEnv(t;m)) :
128 M(dst(e)) :=M(dst(e)) + res;

129 do forall comp 2 elementsOf(res) :
130 do forall conn 2 place("InConnectors") :
131 [OutputPorts(this)((place; conn))]
132 �! [InputPorts(comp)(conn)]
133 end;
134 do forall conn 2 place("OutConnectors") :
135 [OutputPorts(comp)(conn)] �!
136 [InputPorts(this)((place; conn))]
137 end
138 end
139 end
140 end;
141 do forall e 2 fe j e 2 TO; t = src(e)g :
142 [OutputPorts(this)(dst(e)("Name"))]
143  eval((e("V alues"); createEnv(t;m))@now
144 end;
145 do forall e 2 fe j e 2 TPc; t = src(e)g :
146 [OutputPorts(this)((dst(e); e("ConnectorB")))]
147  eval((e("V alues"); createEnv(t))@now
148 end;
149 [OutputPorts(this)("schedule")]  ?@now;
150 end
151 end
152 end

5.5 Primitive components

In this section we give a short impression of how to use ASM component
schemata to specify the behavior of primitive components, which we under-
stand to be components that do not interpret a graph of a visual language (and
are therefore not parameterized by a graph), but rather perform some specific
’built-in’ task. We take this short departure from the main topic of this work
to demonstrate how the language we have developed can be put to use to solve
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more traditional programming problems.
As an example we describe a component that generates prime numbers by

the method known as the Sieve of Erathostenes. It has an input port and an
output port, and for each input token (whose value is irrelevant) it produces the
next prime number, starting from 2.

The component schema in Alg. 9 implements this. After the declaration of
the input and output ports (Lines 2-4), binding the fire input port to a doNothing
rule and the input input port to the rule that actually computes the next prime, we
declare two attributes to be the vocabulary (Lines 6-7). The attribute n holds the
next prime (after the last that has been output), while the attribute sieve contains
an object representing the set of all primes output so far. The initialization
sets them to initially 2 and the empty set (which is represented by an object
associated with a map that is ? everywhere), respectively (Lines 9-12).

Executing the handleInput rule happens in two phases, one basic rule that is
executed once, and one that is iterated until its update set is empty. In the first
phase (Lines 16-18), the next prime (the one in n) is output, added to the set of
primes written out and then n is incremented.

In the second phase (Lines 20-22), the next prime is computed iteratively.
The technique employed here relies on the definition of the choose-construct
(page 93), which specifies that the body of the choose is not executed if and
only if the set which is chosen from is empty (in that case, if an else-clause
is present, this would be executed instead, but here the empty else-clause is
omitted). With the current value of n (i.e. the prime which was output before
plus one), we pick some number from the set of all primes so far which evenly
divide the current n.5 Of course, this set is empty exactly if n contains the
next prime, in which case the choose-construct has no effect and the iteration
stops, with n containing the next prime. Otherwise, if that set was not empty,
we increment n. This makes the update set non-empty, and consequently makes
the iteration proceed, until an n is found which is not evenly divided by any of
the primes found so far.

Alg. 9: (Sieve of Erathostenes)

1 class Sieve[] is
2 input f"input"g : handleInput;
3 f"fire"g : doNothing ;
4 output f"output"; "schedule"g ;
5

6 attribute n ;
7 attribute sieve ;
8

9 initialize :
10 sieve := [];

5Obviously, we could improve the efficiency of an implementation of this algorithm if we
chose from a smaller set, viz. fk j k 2 sieve; k � k � n; n mod k = 0g.
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11 n := 2
12 end
13

14 rule handleInput[p; t; v] :
15 once
16 [OutputPorts(this)("output")]  n@t;
17 sieve := sieve+ [n 7! true];
18 n := n+ 1
19 then
20 choose a 2 fk j k 2 sieve; n mod k = 0g :
21 n := n + 1
22 end
23 end
24

25 rule doNothing[p; t; v] :
26 skip
27 end
28 end
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6
Conclusion

This work presented a comprehensive approach to the specification of graph-
like visual notations for the description of discrete-event systems. Starting from
a very general concept of an actor, we described a discrete-event model of com-
putation using a special class of these actors, a notion of dynamically changing
network structure, and an abstract concept of time.

Then we presented a notion of abstract visual syntax, which provided us
with a straightforward way of representing visual programs as mathematical
structures. Our approach of specifying visual language semantics is to define
mechanisms (which we called ’schemata’) that generate an actor from a given
visual program (i.e. a graph). This actor was then said to be the interpreter of
that program.

Seeing that the specification of these actors directly in the formal terms of
their definition was somewhat cumbersome, we then developed a more concise
and better structured language for the specification of actors. This language
was based on concepts developed for Abstract State Machines—a simple but
very general notion of state, and a powerful concept of atomic state change. We
added some structuring facilities and extensions to accommodate the special
features of our actor model, in particular input/output ports, and a dynamically
changing network structure between them. The language is relatively small,
is open to extensions by arbitrarily powerful side-effect-free constructions, and
has a fully formal semantics.

This language we then applied to writing interpreters for a variety of visual
notations. The resulting specifications were relatively compact. They are oper-
ational and executable, and there exists a prototype implementation generating
code from such specifications suitable for execution in the MOSES environment
(App. E). Building an actor language on the basis of Abstract State Machines
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was an appropriate choice for a language intended to describe the semantics of
discrete-event state-based notations.

There are a number of directions in which this work could be extended and
improved.

� The first class of extensions concern the syntactical framework presented here.
Attributed graphs as an abstract syntax may not be the most appropriate struc-
ture to represent some visual notations in. In particular, hierarchical graph struc-
tures, where vertices contain sub-graphs, might better be represented in some
other abstract syntax [58, 59].

On the other hand, we might like to be able to work with visual notations other
than graph-like diagrams—diagrams that interpret visual features such as size,
color, relative placement (containment, overlapping, touching, crossing of areas
or lines—cf. [37]). Or one might want to extend the framework developed
here towards the definition of textual languages, incorporating the Montages
approach to describing the operational textual language semantics in an ASM
framework [72].

It seems that rather than designing a new abstract syntax concept for each of
those special cases, a somewhat broader notion is needed to be able to represent
the necessary abstract syntax structures in a common framework.

� Another possible direction of work would be the improvement of our specifica-
tion technique and its actor language. So far, we have not addressed the issue of
compositionality of a specification itself. Clearly, as we have seen in Chap. 5,
many visual language semantics can be considered to consist of a set of ’ingre-
dients’, such as computation, temporal behavior, parameters, dynamic network
structures and others. One interesting line of research would explore whether
these could in fact be abstracted into reusable parts that could then be put to-
gether in new interpreter specifications, so that constructing a visual language
semantics would consist of selecting and configuring standard library compo-
nents and possibly handling their specific interactions in any given situation.

Obviously, a language facilitating such a semantics description must exhibit
a high degree of compositionality, something that our current rule language
fails to address. Developing composition constructs for the rule language it-
self would therefore be an important contribution towards this goal. Another
approach would be to use the semantics framework developed in Chap. 2 and
embed another concrete actor language into it, possibly by adapting an existing
one. In fact, given the variation in visual language semantics, it might turn out
that description techniques other than the ASM-based one we proposed in this
work might be more suitable for some languages. In these cases, it would cer-
tainly be most useful to have a tool box of actor languages available from which
to choose.

Finally, it might be interesting to actually visualize the actor language itself, i.e.
to develop a visual notation for the definition of visual language interpreters.
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� An important line of research concerns the use of the semantics specifications.
Their most straightforward application is as abstract yet executable specifica-
tions of behavior, from which prototype implementations may be generated.
However, recent work on verification of Abstract State Machines (using proof
techniques and model checking) could be put to use in proving properties of
interpreters, e.g. their equivalence to some formal model of computation, fair-
ness, determinacy, equivalence of some transformation of the visual program
etc.

Similarly, there has been some research in efficient code generation by step-
wise transformation of ASM specification into a target language. Being able to
generate an efficient interpreter from an ASM specification would certainly add
considerable value to the language and the method.

The basis for much of this further research would be the experience gained
by using the current language in a wide spectrum of applications. So far, the
experiences with rather general purpose modeling languages have been encour-
aging. The development of more specialized, more intricate visual notations
will be the litmus test for the viability of this approach.
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A
Denotation of deterministic actors

Here we will discuss one important property of deterministic actors, viz. their
denotation in terms of a function on streams. The reason for this is that this
is one of the major contributions in the actor model in [77] that our model is
based on. In fact, we will be able to repeat the construction given there for our
actors with state, thus generalizing it for our larger class of actors. Like for the
stateless actors in [77], a very important result of this construction will be the
fact that it coincides with the operational semantics defined in Def. 2. It is this
property that makes it possible to analyze, e.g., a network of deterministic actors
in terms of their denotations (which makes the network essentially a system of
equations), and still implement it operationally without invalidating the results
of the analysis.

Even though we are able to formulate a rather straightforward operational
interpretation of actors, it may be desirable to consider actors as implemen-
tations of functions on sequences, effectively operational definitions of such a
function. One possible motivation might be to analyze the properties of the
functions they denote—for instance, it is well-known that networks of contin-
uous functions are themselves continuous [71]. Therefore, if in a network of
actors each one is known to compute a continuous function from its input se-
quences to its output sequences, this property is then automatically inherited
by the network itself. In other words, continuity is a compositional property of
actors.

In this section we will construct the denotation of deterministic actors. First
though, we have to discuss a few preliminary concepts concerning the partial
order of sequences known as the prefix order, then we characterize the subclass
of deterministic actors, and then we construct their denotation by first showing
their existence and then giving a constructive approximation procedure.
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A.1 The order structure of sequences

In the definitions below we will need to express the property that one sequence
is a prefix of (or equal to) another. In fact, this property defines a partial prefix
order v over S and can be defined by using concatenation:

s v s
0
() 9t 2 S : s+ t = s

0 (A.1)

The empty sequence �, being a prefix of every sequence, is the unique small-
est element of this partial order, also often referred to as its bottom element.
This order gives rise to a notion of least upper bound for a set of sequences.
Let X � S be a set of sequences, then tX denotes its least upper bound in the
prefix order, i.e.

8s 2 S; x 2 X : s v x ^ s v tX =) s = tX (A.2)

Note that not all sets of sequences have a least upper bound, e.g. the se-
quences faa; abg do not.

A chain in a partial order is a sequence of elements (sequences in our case)
such that each following element is greater than or equal to all its predecessors,
i.e.

(ai)i2N such that ai v aj () i � j (A.3)

If every chain has a least upper bound, the partial order with a bottom el-
ement is called a complete partial order, or cpo. Examples of cpos would be
(N ;�) or (R+

0 ;�), while neither (R;�) nor (R+ ;�) are a cpo.1 It is easy to see
that (S;v) is a cpo, with � of course being the bottom element.

In the following, we will mostly deal with tuples of sequences, instead of
single sequences. In this, we will assume the prefix order to extend naturally
over tuples of sequences, such that for s; r 2 Sn, with s = (s1; :::; sn) and
r = (r1; :::rn):

s v r() 8i 2 f1; :::; ng : si v ri (A.4)

Obviously, any (Sn;v) is also a cpo. We call its least element, the n-tuple
of empty sequences, �n

One way of discussing the semantics of dataflow actors will be by consider-
ing them as functions on streams. If it has m inputs and n outputs, then it can
be thought of as a function

F : Sm
�! S

n

1We use R+ for the strictly positive real numbers, i.e. without 0.
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which takes an m-tuple of streams and maps it to an n-tuple of streams. Viewing
actors in this way makes it possible to discuss their ’mapping’ properties. Two
interesting properties in this context are monotonicity and continuity, which are
of course defined based on the prefix order on tuples of streams.

Def. 39: (Monotonic function) A function F : Sm
�! Sn is called monotonic iff

8s; r 2 S
m : s v r =) Fs v Fr (A.5)

Intuitively this means that providing more input tokens will only produce
more output tokens, which can be considered a kind of causality property. Con-
tinuity is defined in terms of the least upper bound of the values of the function
on a chain of input sequences as follows.

Def. 40: (Continuous function) A function F : Sm
�! Sn is called continuous iff for

any chain X in (Sm;v), F (X) has a least upper bound tF (X) and

F (tX) = tF (X) (A.6)

If we consider a chain of finite sequences as increasingly good approxima-
tion of an infinite sequence, then continuity means that we can approximate
F ’s value for an infinite input sequence (which can be infinite itself) arbitrar-
ily ’good’ by computing it for longer and longer finite input sequences. This
property, if it holds, is central to constructing a denotational semantics for an
actor.

A.2 Constructing the denotational semantics
In the following we will construct a denotational semantics for deterministic
actors that we have already informally introduced in the above examples. Note
that Def. 1 allows for two sources of non-determinism of an actor:

� Given a tuple of input sequences s and a state �, there may be any number of
active prefixes in P�s.

� For any active prefix p 2 P�s, the transition function may yield any positive
number of successor state/output combinations in ��p.

In order to make an actor deterministic, we have to restrict its definition at
these two points:

Def. 41: (Deterministic actor condition) We call an actor deterministic iff2 it has at
most one active prefix for any input in any state and the transition function

2In fact, the following condition could be considered too strong in the sense that it declares
some actors nondeterministic whose observable behavior is perfectly determinate, viz. those
that have several fully equivalent internal states and a transition function such that these occur
as alternative successor states with the same output. Since this is a rather special case, we will
not consider this point any further.
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always returns singleton sets of possible successor state/output pairs.

8� 2 �; s 2 Sm :j P�s j� 1

8� 2 �; p 2 D� :j ��p j= 1

For notational convenience in this section, the condition on the uniqueness
of �� for deterministic actors allows us to turn it into two functions �� and ��

defined as follows:

��p = f(�
0
; v)g () ��p = �

0

^ ��p = v

Now we construct the function (on sequences) computed by an actor, which
we will call its process following the use of that word in [77]. We do this
by defining a recursive function fA that takes a state and an input tuple, fires
once on the prefix of that input tuple (note that there must be exactly one), and
appends its results on the rest of the input and the next state to the output of this
firing. Once this function is defined, we only need to ’start’ it in the initial state
�0, which is done by another function FA. An this simply gives us the actor
function:

Def. 42: (Actor function) Given a deterministic actor A : Sm
 Sn, we define its

process to be a function FA : Sm
�! Sn as follows:

FA : s 7! fA(�0; s) (A.7)

fA : (�; s) 7!

(
��p+ fA(�

0; s0) if p 2 P�s with p + s0 = s; �0 = ��p

�n if P�s = ;

(A.8)

Unfortunately, due to the recursive structure of the definition of fA there is
no guarantee that there exists a function that fulfills this definition, that it is in
fact well-defined.

However, there is a way of showing that one exists, and even to construct it.
This is accomplished by a least fixed point construction, making use of the com-
plete partial order nature of the space of sequences, and functions over them.

The basic idea is to as follows. We define a ’functional’ (i.e. a function
operating on functions) that takes a ’candidate’ f and returns a new function f 0

(both taking a state and an input tuple, and producing an output tuple) which
does the following: f 0 makes exactly one step of the recursive definition above,
i.e. firing the actor exactly once, and then applying f to the rest of the input.
Note that if f is well-defined, then so is f 0, because it is simply the result of the
application of the functional to f , and the functional is not recursive.

Def. 43: (Actor functional) Given an actorA : Sm
 Sn, we define its actor functional

as follows:



A.2. Constructing the denotational semantics 147

�A : (�� S
m
�! S

n) �! (�� S
m
�! S

n) (A.9)

�Af(�; s) =

(
��p+ f(�0; s0) if p 2 P�s with p+ s0 = s; �0 = ��p

�n P�s = ;

(A.10)

The key observation at this point (and in the preservation of well-definedness
by �A) is that any fixed point of �A, any f that satifies f = �A f , automatically
is a valid fA because it satisfies its recursive definition in Def. 42. Obviously,
there could in principle be any number of such fixed points, including zero. In
the following we will show that a minimal fixed point exists (by virtue of the
properties of the actor and the way it consumes and produces tokens), and that
it is unique. We will also give a way to actually construct this fixed point, or
arbitrarily good approximations to it.

Instead of acting on sequences, the actor functional acts on functions. It will
be crucial to our construction that the set of these functions form a complete
partial order as well. First we define an order among functions that return tuples
of sequences (such as the fA or the arguments of �A).

Def. 44: ((hA �! Sn
i;v)) Given an arbitrary set A and a set of tuples of sequences

Sn, the partial order over tuples of sequences induces a partial order v among
functions in hA �! Sn

i as follows:

f v g () 8a 2 A : fa v ga

In other words, a function is ’greater than or equal to’ another function in
this order if for the same input it produces at least the same output sequences as
the other function, and possibly more. Obviously, if we have the choice between
two candidates of fA, we would like to pick the one that produces as little output
as possible, which is why we are especially interested in finding a minimal fixed
point of the actor functional, if it exists.

Th. A.1: (Functions on cpo form a cpo) If (Y;v) is a cpo, then so is (hX �! Y i;v).

Proof. We have to show two things for (hX �! Y i;v):

� the existence of a unique least element and

� that each chain has a least upper bound.

Let us call � the function defined by � : x 7! ?, i.e. it maps everything to
the smallest element of Y . Since this is smaller than any y 2 Y , � v f for any
function f 2 hX �! Y i. Therefore, � is the least element in (hX �! Y i;v).

For any chain (fi)i2N we construct its least upper bound by pointwise taking
the least upper bound of its function values. This is guaranteed to exists since
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(fix)i2N is a chain (because the fi are a chain) in Y , and Y is a cpo. Thus we
can define

f : x 7! t(fix)i2N

Obviously f is an upper bound to all fi (since it is pointwise bigger than either of
them), and it is also the least upper bound, because the existence of some distinct
f 0 v f would imply the existence of some x 2 X such that f 0x v fx and
f 0x 6= fx. However, by construction, fx = t(fix)i2N , which is a contradiction.

Thus, we have a least element, and every chain has a least upper bound,
therefore (hX �! Y i;v) is a cpo. �

Cor. A.2:The actors functions fA : �� Sm
�! Sn from Def. 42 form a cpo.

The next theorem will yield the existence of a unique least fixed point of
�A. For this, we need to show that it is monotonic.

Th. A.3: (Monotonicity of �A—existence and uniqueness of ��A) For any determin-
istic actorA, its functional �A is monotonic, in other words:

8f; f
0
2 h�� S

m
�! �� S

n
i : f v f

0 =) �Af v �Af
0

This implies the existence of a unique minimal fixed point, which we will call
��.[103]

Proof. Assume we have two f; f 0 2 h� � Sm
�! Sn

i such that f v f 0. We
have to show that �Af v �Af

0, in other words for all (�; s) we must have

�Af(�; s) v �Af
0(�; s) (A.11)

We need to distinguish two cases, viz. whether P�s is empty or not. If it is
empty, we have

�Af(�; s) = �Af
0(�; s) = �n

which satisfies (A.11).
If P�s 6= ;, due to the determinacy of the actor it must contain exactly one

element, which we call p, and which is a prefix of s, i.e. there exists an s0 such
that p+ s0 = s. Then with �0 = ��p and a = ��p the following is true:

�Af(�; s) = a + f(�0; s0) v a+ f
0(�0; s0) = �Af

0(�; s)

Therefore, in this case, too, (A.11) holds.
Since �A is monotonic on a complete partial order h� � Sm

�! �� Sn
i,

it has a unique minimal fixed point �� 2 h�� Sm
�! �� Sn

i. �
Now we have to show that an actor functional is continuous, since continuity

will immediately give us a procedure to iteratively construct arbitrarily good
approximations to its fixed point.
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Th. A.4: (Continuity of �A) For any deterministic actor A, its functional �A is contin-
uous, in other words for any chain f = (fi)i2N:

�A t f = t(�Af)

Proof. We have to show that for each (�; s),

�A(tf)(�; s) = t(�Af)(�; s) (A.12)

First note that the construction in the proof of Theorem A.1 of the least
upper bound of a chain of functions is as follows:

t(fi)i2Na = t(fia)i2N

This allows us to formulate (A.12) as follows:

�A(tf)(�; s) = t(�Af(�; s)) (A.13)

Again we distinguish two cases, viz. whether P�s is empty or whether it
contains exactly one element p. First, assume it is empty. Then

t(�Af(�; s)) = t(�Afi(�; s))i2N = �n = �A(tf)(�; s)

since for any fi we have �Afi(�; s) = �n in this case.
If there is a p 2 P�s, and s = p+ s0; �0 = ��p; a = ��p, we have

t (�Af(�; s))

= t fa+ fi(�
0
; s

0) j i 2 Ng = a+ tffi(�
0
; s

0) j i 2 Ng = a+ tf(�0; s0)

=�A t f(�; s)

This concludes the proof that �A is indeed continuous. �

Cor. A.5:(Denotational semantics of determinate actors) Theorem A.4 gives us the
continuity of �A. Since in a cpo, the least minimal fixed point �f of a con-
tinuous function f is given by3

�f = t(f i?)i2N

we can therefore conclude that the minimal fixed point of an actor functional,
and therefore the actor function, is

fA = ��A = t(�A�)

which makes

FAs = fA�0s = ��A(�0; s) (A.14)

3Cf. [100].
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This denotation of an actor is consistent with its operational semantics (Def.
2). The first few approximation steps in the construction of the fixed point would
be the following:

f
0
A�(�0; s) = �(�0; s)

f
1
A�(�0; s) = ��0p+ �(�1; s

0)

f
2
A
�(�0; s) = ��0p+ ��1p

0 + �(�2; s
00)

f
3
A
�(�0; s) = ��0p+ ��1p

0 + ��2p
00 + �(�3; s

000)

This is of course exactly the way the result sequence in the run is constructed—
more specifically, the operational semantics generates the sequences of approx-
imations to the least fixed point of the actor functional. In other words, for
deterministic actors, our denotational semantics is fully abstract [110] with re-
spect to the operational semantics.

In other words, adding a notion of state to dataflow actors with firing retains
their property (of stateless actors as defined in [77]) of having a denotation as
a function on streams which is compatible with their operational semantics,
providing the actor is deterministic.
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Products

In the definition of actor networks and their structure we made use of a notion
of product that stems from category theory1. In the following we will introduce
the basic idea outside of its categorial context, since in this work it is only used
in the category of sets.

X

	�
�
�
�
�

f

@
@
@
@
@

g

R

A �
�A

C

h

? �B - B

Fig. 39: A product and its projections.

Assume we have two sets A and B. We will call a third set C together with
two projections �A : C �! A and �B : C �! B a product of A and B iff for
any set X and two functions f : X �! A and g : X �! B there is a unique
function h : X �! C such that the diagram in Fig. 39 commutes,2 i.e.

f = �A Æ h

g = �B Æ h

Often, the set C is simply called A � B, implicitly assuming projections
�A : (a; b) 7! a and �B : (a; b) 7! b, but note that the above definition of

1cf. [76, 85] for more comprehensive introductions
2The uniqueness requirement on h is expressed by the dashed arrow.
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product does not require C to be a set of tuples. On the other hand, every
product of two sets must be isomorphic to the ’ordinary’ cartesian product (this
easily follows from the uniqueness of h). Note also that strictly speaking we
cannot talk of C as a product without giving the appropriate projections into A
and B.

X

@
@
@
@
@

fi

R

�
i2I
Ai

h

? �i - Ai

Fig. 40: An n-ary product.

Obviously, this can be generalized to any number of sets, as in Fig. 40.
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Parallel combination of rule results

Here we will define the parallel combination operator for result sets of basic
rules that we used in Chapter 4. First, recall that a basic rule r has a denotation
of the following form:

[r] : (I;V) 7! f(Uk; Pk; c
+
k ; c

�

k ; Nk) j k 2 Kg

It returns a set of tuples consisting of

� an update set Uk,

� an output function (mapping ports to output sequences) Pk,

� connection sets c+k and c�k ,

� a set of new actors Nk.

One such tuple we call rule outcome. A set of these structures we call a
result set. Since rules may be arbitrarily non-deterministic, these result sets
may be arbitrarily large. The following basic rule produces an infinite result
set:

choose n 2 N :
a := n

end

Now we want to combine the results of several rules such that they are con-
sidered to be executed ’in parallel’. For two rules, say r1 and r2, this was written
as

r1; r2
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The result of executing them in parallel should be a set such that we take all
combinations of outcomes from both result sets and ’merge’ them. Intuitively,
merging two outcomes involves joining their update sets, connection sets, and
sets of new actors. Joining their outputs poses a difficulty—we have to allow
outputs to be put in any order, i.e. any permutation. For example:

[p]  1;
[p]  2

produces two possible results at the output port p: [1; 2] or [2; 1]. From this
we can see that our rules are non-deterministic even without using a choose-
construct—at least in the output they produce. All other parts of the rule result
are, of course, not affected by this.

Unfortunately, the do-forall-construct allows for unbounded, and in princi-
ple even infinite, parallel combination of update sets. The following definition
handles all these issues by constructing the set � of selector functions, i.e. func-
tions which pick one outcome from each result set. Then it joins the sets and
adds the output sequences for each of those selections. The final result is just
the union of all results for all selector functions.

Def. 45: (Parallel combination of result sets) Assume a set of result sets

R = fRk j k 2 Kg

indexed by some set K. We define the parallel combination }R of these result
sets as follows.

First let � =

�
� : K �!

S
k2K

Rk j � k 2 Rk

�
be the set of choice functions,

which pick an outcome out of each result set. We will write (U�k; P�k; c
+
�k; c

�

�k; N�k)
for the outcome �k.

Furthermore, for any setW � U�, let
P

W � U� be the set of all sequences
that arise as the sum of the sequences in W in any order.

Then we define the parallel combination of the results sets in R as follows:

}R =

( [
k2K

U�k; P;
[
k2K

c
+
�k;
[
k2K

c
�

�k;
[
k2K

N�k

!
j � 2 �; Pp 2

X
fP�k(p)g

)

Note that this definition implies that }; = f(;; P�; ;; ;; ;)g.
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ELAN—An expression language

D.1 Introduction

The ELAN expression language is a small language designed for use in inscrip-
tions in MOSES models. Its design goals were the following:

� Simple syntactic structure.

� Simple, side-effect free evaluation semantics, as well as simple constructs for
side-effects and iteration.

� Interoperability with the underlying host-language, i.e. Java. Java structures
should be usable by ELAN constructions, and ELAN objects should have a
straightforward Java representation.

� Support for a number of basic and structured types that allows for the construc-
tion of practical models without recourse to Java.

� No static typing.

Evaluation efficiency was not the primary design goal, the rationale being
that algorithmically complex activities and runtime-critical parts would be done
in Java anyway. We had no intention to duplicate existing facilities, only to
merge them into MOSES models in a sufficiently convenient manner.
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D.2 Preliminaries

The key concept of the language is an expression. There are a variety of ex-
pressions in ELAN, but their common characteristic is that all of them can be
evaluated to produce a value. This value in general depends on an environment,
which is simply a (partial) mapping of variable names to objects.

The evaluation of some expressions may also produce side-effects. Side-
effects come in different forms—some expression may change the environment
by substituting the object a variable is bound to for another object, other expres-
sion may change an object’s internal state. We will hint at possible side-effects
whenever they may occur.

In the following, we will denote general expressions by symbols e and ei,
boolean expressions (conditions) by c and ci, and variable symbols by v and vi.
Operator symbols will be written as Æ.

D.2.1 Atomic expressions

Atomic expressions are those containing no other expressions. These are vari-
able symbols and a number of constants of different types.

Each identifier is a variable symbol, evaluating to the value it is bound to in
the current environment.

ELAN recognizes constants of the following types:

� Integers: any sequence of decimal digits optionally prefixed with a sign.

� Real numbers: any sequence of digits with a period, optionally prefixed with a
sign and appended with a decimal exponent in the form of an ”E” followed by
an optionally signed integer.

� Strings: any sequence of characters enclosed in double quotes.

� Boolean: any of the two keywords true and false.

� The symbol null, denoting the null object.

D.2.2 Unary Operators

There are two unary operators.

� e

requires that e evaluates to a number and computes the negative value of that
number.

� e

requires e to result in a boolean value, and computes the negation of that value.
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D.2.3 Binary Operators

The application of a binary operator Æ has the following format:

e1 Æ e2

ELAN currently does not define precedence rules, so one needs to provide
proper parentheses to disambiguate expressions.

There are a number of binary operators to manipulate various kinds of ob-
jects. For numerical operands, these are the following:

+;�; �; =;mod; div

with the usual interpretations.
For sets, we have the operators

+;�; �

denoting union, set difference and intersection, respectively. Additionally, the
boolean expression

e1 in e2

requires e2 to evaluate to a set, and then it is true if the value of e1 is an element
of that set and false otherwise.

Lists can be concatenated using the + operator.
Maps may be ’added’using the + operator, where the mappings of the right-

hand map override those of the left-hand map. Maps may be concatenated using
the � operator.

Boolean values may be manipulated using the operators

&&; jj

denoting conjunction and disjunction, respectively.
Finally, objects may be compared to each other. All objects may be com-

pared for equality or inequality using = or <>. Objects that have an order
defined on them may be compared using the operators

<;<=; >;>=

For numbers, the order is the numerical one, for strings it is lexical order, and
for sets it is inclusion.

D.2.4 Comprehensions and basic structured data objects

ELAN provides direct support for three kinds of structured data objects: sets,
lists, and maps. They are constructed by so-called comprehensions in the fol-
lowing manner.

A set comprehension has the form:

fe1; :::; en : for v1 in e1;s; c1;1; :::; c1;k1; :::; for vm in em;s; cm;1; :::; cm;kmg
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The constructions for vi in ei;s are called generators, the boolean expressions
ci;j are filters. The ei;s must evaluate to sets. Such a set comprehension evaluates
by iteratively creating a number of bindings for the vi, viz. all those in which a
variable vi is bound to an element of the set that results from evaluating ei;s so
that all ci;j are true. For each of these bindings, the expressions ei at the head of
the comprehension are evaluated and all resulting objects are added to the set.
Examples of set comprehensions:

f1; 2; 3; 4g

fa : for a in s; a mod 2 = 0g

fa � b : for a in s1; for b in s2g

fa; b : for a in s1; for b in s2g

The first is a very simple comprehension without generators resulting in a set of
four integers, the second assumes the existence of a variable s (bound to a set
of numbers) and computes the set of even number in s, the third computes the
products of all combinations from number in the sets (bound to) s1 and s2, and
the last one is a roundabout (and inefficient) way to compute the union of s1
and s2.

The same mechanism can be used for constructing lists and maps. For lists,
the general format is the following:

[e1; :::; en : for v1 in e1;s; c1;1; :::; c1;k1; :::; for vm in em;s; cm;1; :::; cm;km]

This constructs a list containing the enumerated elements, preserving the order
among the ei in each iteration.

A map is a finite mapping of keys to values. It is constructed in the following
manner:

map[ek;1� > ev;1; :::; ek;n� > ev;n :for v1 in e1;s; c1;1; :::; c1;k1; :::;

for vm in em;s; cm;1; :::; cm;km ]

Here, the ek;i� > ev;i denote the mapping of the key ek;i to the value ev;i. If the
comprehension enumerates the same key more than once, the value is chosen
non-deterministically.

D.2.5 Closures and closure application

The expression
lambda (v1; :::; vn) e end

creates an n-ary closure, i.e. a function object encapsulating the current envi-
ronment which is valid in the context of the evaluation of this expression. Such
an object may be applied to a tuple of n actual parameters in an application
expression, which has the following form:

eclos (e1; :::; en)
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Here, eclos must evaluate to an n-ary closure. The result of this application is
that of evaluating the body expression e of the closure in an environment that
binds the vi to the value of ei.

For example, assume f is bound to the value of lambda (x) 2 � x end, then
the expression

f(3)

will return 6.

D.2.6 Structured expressions

The most basic structured expression is obtained by putting any expression in
parentheses:

(e)

The value of this expression is that of e.
Another fundamental structured expression is the conditional. It has the

following form:

if c then e1 else e2 end

If the value of c is true, then the value of this expression is the value of e1,
otherwise it is the value of e2.

Another structured expression allows the definition of local variable bind-
ings. The has the form

let v1 = e1; :::; vn = en : e end

The value of this expression is the value of e in an environment that binds vi to
the value of ei.

D.2.7 Quantified expressions

Boolean expressions may be universally quantified over sets in the following
manner:

forall v1 in e1; :::; vn in en : c end

Here, the ei are required to evaluate to sets. The result of this expression is true
if c is true in all environments resulting from the binding of the vi to values from
the set resulting from ei. It is false otherwise.

Likewise, a boolean expression may be existentially quantified as follows:

exists v1 in e1; :::; vn in en : c end

This expression is true if c evaluates to true in at least one of the environments
resulting from the binding to th e vi to values from the set resulting from ei. It
is false otherwise.
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D.2.8 Iterative constructs

Three constructs support iteration in ELAN: assignment, sequential expressions,
and loops.

The assignment expression
v := e

evaluates e and changes the value of the variable v to the value of e. This is also
the value of the assignment expression.

Sequential expressions are a way to evaluate a number of expressions after
each other:

e1 ;::: ; en

This evaluates the ei in the order from left to right. The result of this sequential
expression is the value of en.

Loops provide a way to iterate an expression until a condition is met:

while c : e end

This expression evaluates e as long as c evaluates to true. The value of this
expression is the value of the last evaluation of e. If c was false at the very
beginning, the value of this expression is null.
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The MOSES Tool Suite

Fig. 41: MOSES Tool Suite, Overview
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E.1 Introduction
The MOSES Tool Suite is a set of software tools developed in the MOSES Project
[1]. It forms the technical environment of this work, and all implementation
work has been done in it. The Tool Suite is focused on supporting the following
tasks:

� Defining the syntax of new graph-like visual notations, including descriptions
of its concrete syntax as well as the definition of syntactical constraints (in the
way discussed in Chapter 3).

� Providing an editing environment for these languages which is generated from
the syntax descriptions.

� Interpreting graphs on a generic execution platform, so that different visual lan-
guages can easily interoperate. Animating visual programs during their run.

In addition to tools directly supporting these tasks (a graph editor, a simu-
lation environment, an animator, a graph translator), there are also management
tools, such as a repository for storing and organizing the various files and objects
that belong to a modeling and simulation project.

Here we want to give a brief overview of the definition of a visual nota-
tion using the Moses Tool Suite and how the resulting specification is used to
configure the various parts of the software.

E.2 Syntax definition and editor
The syntax of a visual language is defined textually by enumerating the kinds
of vertices and edges that occur in the language and by giving syntax rules for
their composition, in the way described in Chapter 3. Section E.4 shows a full
specification of a simple Petri net language, in the so-called Graph-Type Defi-
nition Language (GTDL) [92]. The kind of graph defined by such a description
is called a graph type.

The specification in E.4 declares the following entities:

� Some kinds of vertices (vertex types), including a set of attributes for each
(Place, Transition).

� A kind of edge (edge type), also along with attributes that describe it (Arc).

� Several syntax predicates that define the well-formedness of a graph (Place-
TransitionConnection, TransitionPlaceConnection, WeightsPositive, NonEmp-
tyPreset).

� The class name of the compiler to be used to translate a graph into executable
code (Compiler).
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a) b)

Fig. 42: Object-dependent attribute editors.

The definition of the vertex type (and similarly of an edge type) Place looks
like this:

vertex type P lace(string Name; integer InitialTokens)
graphics(hidden string Shape = "Oval";

hidden color Color = "black";
hidden color FillColor = "yellow";
hidden integer ExtentX = 24; hidden integer ExtentY = 24):

After the name of the type we have a sequence of attributes, defined by a
name (Name, InitialTokens) and their type (string, integer). This type defines
the kind of objects that this attribute must contain. Following this is a simi-
lar list of graphical attributes, which define the appearance of a vertex when it
is displayed. These are usually marked as ’hidden’, which advises any tools
processing such a description to hide these attributes from the user.

The most important tool that uses these descriptions is the graph editor.
This is an interactive direct-manipulation editor that allows the construction
of graphs according to such a graph type specification. It makes use of the
definition of vertex and edge types in two ways: it displays instances of these
types according to their graphical attributes, and it also provides attribute edi-
tors which are generated from the attribute definitions associated with a vertex
or edge type. These attribute editors are dialogs that allow the user to manipu-
late the (non-hidden) declared attributes of an edge or a vertex. Fig. 42a shows
the attribute editor generated from the definition of the Place vertex type (which
is displayed in the lower part of the editor window whenever a Place vertex is



164 Appendix E. The MOSES Tool Suite

a) b)

Fig. 43: Error messages generated from syntax predicates.

selected), while Fig. 42b shows the attribute editor displayed when an Arc edge
is selected.

The editor also makes use of the syntax predicates in a graph type specifi-
cation. For example, the syntax predicate that requires all Transition vertices to
have a non-empty preset (i.e. there must be at least one Arc edge ending at each
Transition vertex) has the following form:

predicate NonEmptyPreset

"Transitions must have a non� empty preset:"
forall t in Transition :

exists e in Arc : dst(e) = t end
end

Apart from the predicate name (NonEmptyPreset), a predicate has two parts:
A message that explains the syntax constraint, and a logical expression that is
true if it is fulfilled by the graph. Note that in the above example, variables are
quantified over sets called Transition and Arc—each vertex type and edge type
automatically defines a set of that name that contains exactly the vertices/edges
of the corresponding type.

Fig. 43a shows a rather non-well-formed Petri net, that violates all four of
the predicates in the example in Section E.4. This violation is indicated by the
red button just above the main editing area. That button is green for syntactically
correct graphs (such as the ones in Fig. 42, and it turns red when an editing
operation makes at least one predicate evaluate to false.

In that case, clicking on the button makes a more detailed error report avail-
able, as shown in Fig. 43b. This dialog shows the predicates violated (by their
clear-text predicate message), and also the vertices or arcs where they failed
(clicking on the corresponding red dot would select the culprit).
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Fig. 44: The simulation environment.

E.3 Execution and animation
Once a graph has been entered and found to be syntactically correct, it can be
compiled into executable code and then executed. Although a model may be
executed as a standalone program, the Moses Tool Suite provides an environ-
ment that facilitates stepwise execution, animation, and inspection of the model
state. The interface of this environment is shown in Fig. 44.

The main window features a set of controls at its bottom and a number of
internal windows. The controls are used to run and stop the model, a given num-
ber of steps or until a certain point in (virtual) time, with or without animation
etc. The internal window on the left depicts the containment hierarchy of the
model—this is dynamic, so the corresponding tree view may change during the
execution of the model.

The big central window shows a top-level view of the model itself—a sim-
ilar window may be opened for any component in the containment hierarchy.
One can also see ’into’ contained components by making their container ’trans-
parent’ (as shown for the topmost component in that window). Other internal
windows may show aspects of the state of the model, show a history of states or
output tokens produced etc.
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E.4 Sample GTDL Specification

graph type SimplePetriNetf

vertex type P lace(string Name; integer InitialTokens)
graphics(hidden string Shape = "Oval";

hidden color Color = "black";
hidden color FillColor = "yellow";
hidden integer ExtentX = 24; hidden integer ExtentY = 24):

vertex type Transition(string Name)
graphics(hidden string Shape = "Rectangle";

hidden color Color = "black";
hidden color FillColor = "orange";
hidden integer ExtentX = 24; hidden integer ExtentY = 24):

edge type Arc(string Name; integer Weight)
graphics(hidden string Head = "ClosedTriangle";

hidden color Color = "black";
hidden color FillColor = "black"):

predicate P laceTransitionConnection
"Arcs from places must end at transitions:"
forall e in Arc :

if src(e) in P lace then
dst(e) in Transition

else true end
end

predicate TransitionP laceConnection
"Arcs from transitions must end at places:"
forall e in Arc :

if src(e) in Transition then
dst(e) in P lace

else true end
end

predicate WeightsPositive

"Weights must be positive:"
forall e in Arc :

if e("Weight") <> null then e("Weight") > 0
else true end

end
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predicate NonEmptyPreset

"Transitions must have a non� empty preset:"
forall t in Transition :

exists e in Arc : dst(e) = t end
end

const Compiler = "moses:models:translator:simplepn:PNCompiler":
g
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[97] M. Schönfinkel. Über die Bausteine der mathematischen Logik. Mathe-
matische Annalen, 92:305–316, 1924.

[98] D. B. Skillcorn. Stream languages and data-flow. In J.-L. Gaudiot and
L. Bic, editors, Advanced Topics in Data-Flow Computing. Prentice-Hall,
1991.

[99] D. C. Smith. Pygmalion: A Computer Program to Model and Stimulate
Creative Thought. Birkhauser, Basel, Stuttgart, 1977.

[100] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press, 1977.



Bibliography 177

[101] G. Taentzer, C. Ermel, and M. Rudolf. The AGG approach: Language
and tool environment. In Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 2: Applications, Languages and Tools.
World Scientific, 1999.

[102] Alfred Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen. Stu-
dia Philosophicae, 1:261–405, 1936. English translation in A. Tarski.
Logic, Semantics, Metamathematics. Oxford University Press.

[103] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–309, 1955.

[104] H. Tonino and J. Visser. Stepwise Refinement of an Anstract State Ma-
chine for WHNF-Reduction of �-Terms. Technical Report 96-154, Fac-
ulty of Technical Mathematics and Informatics, Delft University of Tech-
nology, 1996.

[105] M. Vale. The Evolving Algebra Semantics of COBOL. Part I: Programs
and Control. Technical Report CSE-TR-162-93, EECS Dept., University
of Michigan, 1993.
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