
SIM: A Database System Based on the Semantic Data Model
D. Jagannathan, R. L. Guck, B. L. Fritchman,J. P. Thompson and D. M. Tolbert.

Unisys Corporation, Irvine, CA 92718.

Abstract
SIM is a fully featured, commercially available
database management system based on a semantic
data model similar to Hammer and McLeod's SDM.
SIM has two primary modeling goals. The first is to
narrow the gap between a user's real-world
perception of data and the conceptual view imposed
by the database system because of modeling
presuppositions or limitations. The second goal is to
allow, as much as possible, the semantics of data to be
defined in the schema and make the database system
responsible for enforcing its integrity. SIM provides a
rich set of constructs for schema definition, including
those for specifying generalization hierarchies
modeled by directed acyclic graphs, interobject
relationships and integrity constraints. It also features
a novel, easy-to-use, English-like DML. This paper
describes the key modeling features of SIM, the
architecture of the system and its implementation
considerations.
1. Introduction
A data model consists of rules for defining the logical
structure of data and associated operations.
Expressive power, simplicity and freedom from
implementation details are some desirable
characteristics of a data model. The relational model
was the first to emphasize both the structural and
manipulative aspects of modeling as well as storage
independence. It is built on mathematical foundations
and its often-quoted advantages are the simplicity and
completeness of its concepts. However, the
principal weakness of the relational model is its lack
of semantic expressive power — it does not have

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com­
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1988 ACM 0-89791-268-3 / 88/0006/0046 $1.50

constructs which can directly capture application
semantics known to the database designer [HaMc81].
It requires that concepts of an application be
fragmented to suit the model, forcing the resulting
schema and queries on the database to lose their
conceptual naturalness [Ship81]. Artificial steps in
query formulations introduce a level of indirection
and have procedural overtones.

Semantic data models address this weakness
of the relational model. Their model of reality is
usually based on abstract entities (objects) rather than
records; they provide for interobject relationships and
structural constraints. There is generally no
consensus on what constitutes a semantic model and a
number of them have been proposed. These include
the binary relational model which views a database as
objects and binary relationships between objects
[Abri74], the entity-relationship model which treats
the database as entities and n-ary relationships
between entities [Chen76], semantically enriched
relational models [Codd79], the functional model
which treats entities, attributes and relationships as
functions with zero or more arguments [Ship81], the
semantic model SDM [HaMc81] and the object-
oriented data models [Fish87,BKK87], Many data
definitional ideas of SIM are derived from SDM,
while the DML is our own.

The SIM (Semantic Information Manager)
project was initiated four years ago at Unisys with the
goal of producing the next generation of DBMS tools.
The semantic model was chosen because it is rich,
expressive, conceptually natural and provides a path
of growth and evolution for existing DMSII users.
DMSII is a DBMS based on the network data model
and runs on Unisys A Series machines. It has a large
installed base of users and has been used to
implement many large and complex applications. SIM
has initially been built on top of DMSII and relies on
DMSII for transaction, cursor and I/O management.
However, the architecture of the system is designed
such that virtually any data source, including other
database systems, can be substituted in the place of
DMSII. SIM forms the basis for the InfoExectm*
Environment which provides an array of database and

* InfoExec is a trademark of Unisys Corporation.

46

application tools, including ADDS, IQF and WQF.
ADDS is a data dictionary system which can be used
for, among other things, defining a SIM database.
IQF is a menu-based query facility and WQF is a
workstation-based graphically-oriented query
language. The InfoExec Environment also supports
SIM database interfaces in COBOL, ALGOL and
Pascal.

All examples in this paper are based on the
schema of the UNIVERSITY database in Section 7.
This schema and examples based on it are described
in the conceptual languages understood by SIM. The
users, however, are not required to learn these
languages and can instead use menu-based products.
2. The Semantic Data Model
Entities, relationships between entities, abstraction
mechanisms and integrity constraints are the generally
acknowledged key features of semantic models
[Date83,HaMc81,KiMc84,SmSm77,TsLo82]. An
entity is an abstract object that corresponds to some
real or conceptual object in an application
environment. A semantically meaningful collection of
entities forms a class. Entities do not exist in isolation
— they are related to each other in various ways and
the notion of attribute describes this relationship
between entities. An attribute of an entity defines how
it is related to other entities of another or perhaps the
same class. Entities are represented by
system-defined identifiers and their existence does
not depend on any of their attributes. Attributes of an
entity are said to be displayable if their range is one of
a number of special, system-defined classes (for
example, the class of all strings). Attributes can be
single-valued or multi-valued.

Abstraction mechanisms allow complex
information to be categorized and viewed in
comprehensible ways. Classification, aggregation and
generalization are the abstraction mechanisms
normally used in semantic models. Classification
represents a member/class relationship. Aggregation
is a primitive that allows the relationship between
entities to be treated by itself as an entity at a higher
level [SmSm77]. Generalization allows each member
of a class to be related to a member of a more generic
class, called its superclass. The notion of
generalization can be applied successively, yielding a
hierarchy of classes.

Data types, attribute options and assertion
predicates are the principal techniques used for
constraint specification in semantic data models.
Semantic models provide strong typing features that
can be used in a natural way to constrain the values of
an attribute. Strong typing also discourages users
from making meaningless associations between

components of data. Attribute options like unique,
required, distinct and maximum and minimum
cardinality are used to specify the structural integrity
of data. These options are sufficient to describe the
usual 1:1, l:many and many:many relationships.
Assertion predicates specify conditions that are to be
satisfied by entities of a class. They are either stated
as predicates that hold on the database at all times or
as predicates tested after particular DML actions are
executed. Assertions based on transitions [Date83]
are also allowed.
3. Schema Definition in SIM
Most work on semantic data models has been
concentrated on its utility as a logical database design
tool. While some prototype database systems that
implement a selected set of features of semantic
models exist [GGKZ85,TsZa84,MBW80,Ship81,
BKK87], to the best of our knowledge, SIM is one of
the first large scale, fully featured commercial
implementations.
3.1 Classes
The primary unit of data encapsulation in SIM is a
class, which represents a meaningful collection of
entities. A class is either a base class or a subclass. A
base class is defined independently of all other classes
in the database, while a subclass is defined based on
one or more classes, called its superclasses. In the
example schema, PERSON, COURSE and
DEPARTMENT are base classes, STUDENT and
INSTRUCTOR are subclasses whose superclass is
PERSON and TEACHING-ASSISTANT is a
subclass whose superclasses are STUDENT and
INSTRUCTOR. In this paper we will use the
unqualified term class in any context where either a
base class or a subclass is applicable. Interclass
connections are usually represented as a directed
graph whose nodes are the classes and whose edges
denote superclass-to-subclass connections. SIM
requires that this graph be acyclic and the set of
ancestors of any node contain at most one base class.

Every base class has a special system-
maintained attribute called its surrogate. All
subclasses eventually derived from a base class inherit
its surrogate attribute. The surrogate value for every
entity in a class must be unique, must not be null and
cannot be changed once defined. In SIM, surrogates
play a central role in the implementation of
generalization hierarchies and entity relationships.
3 2 Attributes
In SIM, a distinction is made between data-valued
attributes (DVA) and entity-valued attributes (EVA).
A DVA describes a property of each entity in a class

47

by associating the entity with a value or a (m ultiset of
values from a domain of values. Definition of DVAs
in SIM and attribute s in the E-R model [Chen76] are
similar. NAM E and BIRTHDATE of the PERSON
class are examples of DVAs. An EVA, on the other
hand, describes a property of each entity of a class by
relating it to an entity or entities of another or
perhaps the same class. An EVA represents a binary
relationship between the class that owns it (domain)
and the class it points to (range). In the example
schema, ADVISOR is an EVA of STUDENT whose
value is an INSTRUCTOR. SIM automatically
maintains the inverse of every declared EVA and
guarantees that an EVA and its inverse will stay
synchronized at all times. An inverse can also be
explicitly named by the user. For example,
ADVISEES is the inverse of ADVISOR. In DML,
the term INVERSE(ADVISOR) can be used in any
context where ADVISEES is allowed.

A purist can avoid the distinction between
DVAs and EVAs by assuming standard base classes
of integers, strings, etc. We could get rid of explicit
type declarations from the model by requiring that
they be declared as (pre-enumerated) subclasses. For
example, the ID-NUM BER type can be represented
by a subclass of the INTEGER base class with
appropriate range conditions. While a purely
functional definition of all attributes
[HaMc81,Ship81] is aesthetically pleasing, we have
observed that many users have difficulty
understanding it. Explicit data types in SIM are more
naturally imported into its host language interface
programs. We feel that our approach is intuitive and
more readily understood and we chose it because of
historical considerations.

A subclass inherits all the attributes of all its
ancestor classes in its generalization hierarchy. In the
example schema, attributes of PERSON are to be
seen as an integral part of STUDENT since every
student must be a person. An attribute is said to be an
immediate attribute of the base class or subclass it is
declared in. In DML, an inherited attribute of a
subclass can be used in any context where an
immediate attribute is allowed and vice versa.

In SIM, every class that has subclasses must
have a special attribute of subrole type declared with it
(for example, PROFESSION of PERSON). A
subrole is a special case of enumerated types and its
value set must contain the names of all the immediate
subclasses of the class in which it is used. Subrole
attributes are system-maintained and can only be
read. They can be included in the target list of a
retrieve query and provide a convenient method to
retrieve symbolically all the roles an entity
participates in.

3.2.1 Attribute O ptions
REQUIRED, UNIQUE, MV, DISTINCT and MAX
are the attribute options supported in SIM.
REQUIRED implies that the value of an attribute
cannot be null (a null is used to represent both
"unknown" and "inapplicable" values [Date83]).
UNIQUE implies that no two entities of the class can
have a value in common. Null values are omitted from
uniqueness considerations.

MV indicates that an attribute is multi­
valued. By default, attributes are single-valued. The
DISTINCT option on a multi-valued attribute
implies a set of values as opposed to a multiset. MAX
limits the number of values an MV attribute can take,
which by default is unbounded.

When specified appropriately on EVAs and
their inverses, attribute options define the structural
properties of data. Let E l be an EVA and INV-E1 its
inverse in some schema. If both E l and INV-E1 are
single-valued, they define a 1:1 relationship. If E l is
multi-valued and INV-E1 is single-valued, they
define a l:many or many:l relationship, depending on
the point of view. If both are multi-valued, they define
a many:many relationship. Partial, total, or absence of
dependency on the relationship can be defined by
specifying the Required option appropriately on E l
and INV-E1. Cardinality can be controlled by the
MAX option. In the example schema, SPOUSE is a
1:1 relationship, AD VISOR: ADVISEES defines a
many:l relationship between STUDENT and
INSTRUCTOR with a limit of 10 advisees per
instructor, and COURSES-ENROLLED:
STUDENTS-ENROLLED defines a many:many
relationship between STUDENT and COURSE.
3 3 Integrity Constraints
As mentioned before, the structural integrity of data
in SIM is defined by judicious use of generalization
and attribute options. Since all relationships are
maintained by the system, SIM can guarantee full
referential integrity and "dangling reference"
problems do not exist. SIM also allows the
specification of integrity conditions with any class. An
integrity condition can be any arbitrary DML
selection expression with the class as perspective and
may even include quantifiers and aggregate functions.
V I and V2 are examples of integrity conditions in the
example schema. Based on the terms of the integrity
condition, SIM will determine all possible events that
may cause this condition to be violated and will make
sure it does not happen. Integrity constraints are
handled by a trigger detection / query enhancement
mechanism that works efficiently for a subset of
constraints. In its most general form, maintaining

48

integrity constraints not associated with explicit user-
defined trigger events is an extremely difficult
problem to solve efficiently, and we are experimenting
with several algorithms. Currently, arbitrary integrity
constraints have only been partially implemented.
4. D ata M anipulation in SIM
SIM DML is a high-level, non-procedural language
designed with a particular emphasis on its naturalness
and ease of use. Constructs of the DML are a direct
consequence of the features of the semantic model. It
incorporates many ideas from GORDAS [ElWi81]
and DAPLEX [Ship81].
4.1 Perspective C lass
The notion of perspective class is of fundamental
importance in SIM DML. It is based on the
assumption that when formulating a query (either
Retrieve or update), a user is primarily interested in
entities of one class, called the perspective. Other
classes in the database are viewed based on then-
relationship to the perspective class. Qualification is a
syntactic process that relates attributes of various
classes in the database to the perspective of a query.
For example, if STUDENT is the perspective class of
a query, STUDENT-NO OF STUDENT refers to an
immediate attribute, NAME OF STUDENT refers to
an inherited attribute (from PERSON), NAME OF
ADVISOR OF STUDENT refers to the name of his
advisor, TEACHERS OF COURSES-ENROLLED
OF STUDENT refers to the instructors who teach the
courses he is enrolled in. Within the context of a
DML query, attributes derived indirectly from the
perspective by more than one level of qualification are
called its extended attributes.

The request "print the name of each student
and the name of his advisor, if any" is expressed in
DML as

From Student Retrieve Name, Name of Advisor.
Names of persons who are not students will not be
printed. However, if a student does not have an
advisor, SIM will still select and print his name with a
null value for the advisor's name. The perspective of
this query is STUDENT and NAME OF ADVISOR
refers to an extended attribute. Derivation of values
for extended attributes corresponds to the notion of
directed outer join [Codd79] in relational systems and
is a natural and direct result of the notion of
perspective.

Sometimes it may be necessary to form
queries with more than one perspective class (for
example, retrieve all pairs of students who are taking
the same set of courses). SIM provides such a facility

and queries so formulated are called multi­
perspective queries. Multiple perspective classes are
related to each other by value-based joins, which
establish dynamic relationships between classes. We
strongly recommend the use of EVAs over value-
based joins since they represent a static, schema-
defined, efficient and natural way of establishing
relationships.
42 Q ualification
As mentioned before, qualification is a syntactic
process by which an attribute is connected to a
perspective class. Qualification of an attribute is
usually of the form
<attrnam e> (O F <evanam e> [AS <classname>]}
OF < perspective class name> [AS < class name>],
<attr name> can either be a DVA or an EVA. The
'AS' clause specifies role conversion from a class to
another class in the same generalization hierarchy. It
is normally used for converting the role of an entity
from a superclass to a subclass. The following are
examples of qualification from STUDENT:

Title o f Courses-Enrolled of Student,
Teaching-Load of Student as Teaching-Assistant,
Student-No of Spouse as Student of Student.

It is not necessary to qualify every attribute in a DML
query to its perspective. Qualification can be cut
short at any stage where the context is sufficient for
the system Parser to complete it unambiguously. For
example, if STUDENT is the perspective,

Name of Advisor of Student,
Salary of Advisor o f Student and
Name of Advisor, Salary

will yield identical results. Qualifications of multiple
target list items can also be parenthetically factored
for syntactic convenience.
4 3 Syntax o f Retrieve Q ueries
A DML Retrieve query is expressed in the form
[FROM < perspective class list >]
RETRIEVE [TABLE [DISTINCT] ! STRUCTURE]

< target list >
[ORDER BY < order list >]
[WHERE < selection expression>].
< perspective class list> is the list of perspective
classes for a query with optional associated reference
variables. < target list> and < order list> are a list of
expressions made up of constants, immediate,
inherited and extended attributes of the perspectives,

49

and aggregate and other functions applied on such
attributes.
4.4 Binding and Range Variables
The semantics of SIM queries are understood in
terms of nested iterative loops similar to DAPLEX
[Ship81,DGK82]. All occurrences of a perspective
class name in a query are "bound" to one range (loop)
variable. Similarly, all occurrences of an identically
qualified EVA or multi-valued DVA are also bound
to one range variable. Consider the following query:
Retrieve Name of Student,

Title of Courses-Enrolled of Student,
Credits of Courses-Enrolled of Student,
Name of Teachers of Courses-Enrolled of Student

Where Soc-Sec-No of Student = 456887766.
For the student with soc-sec-no 456887766, this query
will print his name and for each course that he is
taking, its title, credits and the name of the instructors
who teach it. This is possible only because all five
occurrences of the literal "STUDENT" and all three
occurrences of the literal "COURSES-ENROLLED"
are bound to their respective range variables.

Implicit binding of names is broken in a few
special constructs such as aggregate functions,
transitive closure or quantifiers. Named range
variables can also be explicitly established on a class,
EVA or a multi-valued DVA for subsequent
discriminating use.
4.5 Semantics of Retrieve Queries
Qualification and binding rules of SIM, taken
together, give rise to the concept of a query tree.
Assume for the moment that queries are allowed to
have only one perspective class. W e can construct a
tree QT such that its nodes, X . ,^ . . .X , represent
implicit or explicit range variables and its edges
represent EVAs or multi-valued DVAs. The root of
this tree (X j) is the range variable of the perspective
class. Qualification of every attribute in a query
results in it being associated with one range variable
in QT. Label each variable Xj in QT as follows: label
it "TYPE 3" if it and all its descendants are used only
in the target list of the query and not in its selection
expression; label it "TYPE 2" if it and all its
descendants are used only in the selection expression
of the query and not in its target list; label it "TYPE 1"
otherwise. X j is always labeled TYPE 1. Without loss
of generality, we can assume that X j ^ - X , m < =
n, are either TYPE 1 or TYPE 3 nodes in tne depth-
first order of their appearance in QT and X + j...X^,
are the TYPE 2 nodes in the depth-first order of then-
appearance. Let domain(Xj) denote the entities or

values Xj ranges over. Entities of the perspective class
constitute domain(X^) while every other domain is
defined based on an attribute and a given instance of
the range variable of its parent node. To make our
definitions simpler, we will assume that the domain of
TYPE 3 variables will never be empty (when empty,
adding a dummy instance all of whose attributes are
null will achieve this). Semantics of a DML query are
defined based on its QT by the following program
(DAPLEX notation):
for each X^ in domain(X^)

for each X2 dom ainp^)
for each X in domain(Xm)

such that
for some Xm + ̂in domain(Xm + j)

for some XQ in domain(Xn)
if < selection expression > is true then

print < target list >
end for;

end for;
end for;

end for;
end for;
Note that the order in which these loops are nested
prescribes the order in which the output data is
returned. Such an ordering is a direct consequence of
the notion of perspective. The output of the program
above is termed "fully tabular", in which one format
describes every output record. SIM provides other
forms of output that impose additional structuring on
the output. They provide multiple record formats, and
every output record is described by one of these
formats. In the "fully structured" case, the number of
different output formats is equal to the count of
TYPE 1 and TYPE 3 variables in the query. Such
forms of output are particularly useful in the host
language interfaces to SIM (the details are omitted
from here because of space considerations).

Multiple perspective classes can be handled
as a cross product with minor extensions to the
program above.
4.6 Aggregate Functions
In SIM, aggregate functions are specified naturally by
delimiting their scope in a qualification. Examples:
AVG(Salary of Instructor),
AVG(Salary of Instructors-employed) of Department,
COUNT(Teachers of Courses-enrolled) of Student.

50

The first gives the average salary of all instructors in
the database, the second gives the average salary of
instructors employed by each department (it's a
dynamically derived attribute of department) and the
third gives, for each student, the count of teachers of
all the courses he is enrolled in. Quantifiers (all, some
and no) follow a similar syntax.
4.7 Transitive C losure
The transitive closure operation is expressed in syntax
similar to that of aggregate functions. The following
query will retrieve all the prerequisites of Calculus I:
Retrieve Title of Transitive(prerequisite) of Course
Where Title of Course = "Calculus I".
The tree structure of a transitive closure will be
preserved in a fully structured output, based on the
notion of level numbers for output records. Transitive
closure can be performed on any cyclic chain of EVAs
(the single reflexive EVA in the example above is a
cyclic chain one element long).
4.8 Update Statem ents
An Insert in SIM is of the form:
INSERT < class nam el>
[FROM < class name2> W HERE < boolean expn>]
[(< assignment list>)]
If the FROM clause is omitted, all superclass roles of
< class nam el> up to and including the root of the
hierarchy will be inserted along with < class nam el> .
If a FROM clause is specified, < class name2> must
be an ancestor of < class nam el> in the hierarchy
and all superclass roles of < class nam el> up to but
not including < class name2> will be automatically
inserted as needed. The boolean expression selects
the entity whose role is being extended. Immediate
attributes of all inserted classes can be assigned values
in one INSERT statement.

A Modify in SIM is of the form:
MODIFY < class name > (< assignment list >)
W HERE < boolean expn>.
All immediate and inherited attributes of < class
name> can be modified in one statement.

Keywords INCLUDE and EXCLUDE
define corresponding operations on multi-valued
attributes. EVA assignment is particularly simple:
<evanam e> := [INCLUDE ! EXCLUDE]

cobject name> WITH (cboolean expn>).

< object name> refers to a class name for single­
valued EVA assignments and multi-valued EVA
inclusions. It refers to the same EVA name for
exclusions. If a class name is used, it must be the
range class of the EVA.

A delete statement is of the form
DELETE < class name > W HERE < boolean expn>.
When an entity is deleted, all its subclass roles will be
deleted, while its superclass roles will remain
unaffected. For example, if an entity of STUDENT is
deleted, it will continue to exist in class PERSON.
However, if an entity of PERSON is deleted, it will
also be deleted from STUDENT, INSTRUCTOR
and TEACHING-ASSISTANT classes (if present).
When an entity of a class or subclass is deleted, its
immediate EVAs, if any, will be automatically
deleted.
4.9 Miscellaneous
The DML also supports quantifiers, pattern matching
and an array of operators and primitive functions.
Null values are treated uniformly in expression
evaluation, and SIM follows the 3-valued logic.
Examples below illustrate the power and ease of use
of SIM DML.
1. Insert John D oe as a STUDENT and enroll him in
Algebra I.

Insert student(name := "John Doe",
soc-sec-no: = .456887766,
courses-enrolled: = course with (title = "Algebra I")).

2. Make John D oe an Instructor too.
Insert instructor
From person Where name = "John Doe"
(employee-nbr: = 1729).

3. Let John D oe drop Algebra I and let Joe Bloke be
his advisor.

Modify student (
courses-enrolled : = exclude courses-enrolled

with (title = "Algebra I"),
advisor := instructor with (name = "Joe Bloke"))

Where name of student = "John Doe"
4. If an instructor teaches more than 3 courses and
advises students from other departments, give him a
10% raise.

Modify instructor(salary: = 1.1 * salary)
Where count(courses-taught) of instructor > 3 and

assigned-department neq
some(major-department of advisees).

51

5. Find the minimum number of courses that must be
completed before one enrolls in Quantum
Chromodynamics.

From course
Retrieve count distinct (transitive(prerequisite))
Where title = "Quantum Chromodynamics".

6. Print the name of each instructor who advises some
student from the Physics department and the courses
he teaches, if any.

Retrieve name of instructor, title of courses-taught
Where name of major-department of advisees =

"Physics".
7. Print student, instructor pairs where the student is
older than the instructor and the instructor is not a
teaching assistant and is not the student's advisor.

From student, instructor
Retrieve name of student, name of Instructor
Where birthdate of student <

birthdate of instructor and
advisor of student NEQ instructor and
not instructor isa teaching-assistant.

5. Im plem entation C onsiderations
SIM has been implemented on Unisys A series
machines and its implementation goals are DMSII
evolution, heterogeneous data access and
performance.

A utility program allows any existing DMSII
database to be viewed as a SIM database. Semantics
of data not readily apparent from its DMSII
description can be made known to SIM by the user.
For example, a foreign-key based relationship
between DMSII structures can be defined as a SIM
EVA.

SIM's architecture has been designed to be
flexible enough to accommodate a variety of sources
and types of data, including files, transitory data such
as from process interfaces and foreign databases
based on relational, network or other models. The
utility of semantic models in this context has been
pointed out before [SBDG81].

SIM is capable of supporting commercial
application systems that span a wide range, including
systems that require very high transaction processing
rates.
5.1 Architecture
The goals mentioned above have led to a highly
modular architecture for implementation with well-
defined, formal interfaces between modules. Query
Driver, Parser/Optimizer, Directory (catalog)
Manager and LUC Mapper are the modules
comprising SIM (see Figure 1). The runtime

(process) architecture, dynamic code generation for
queries and binding have been designed to take
maximum advantage of the features of the stack
architecture of the A series machines and the inter­
process communication they support. These details
are omitted from here for lack of space.

The LUC Mapper is a key module of SIM's
implementation. It extends the capabilities of any
underlying physical or logical data source and
presents a uniform, simplified view of data and
operations associated with it. The objects supported
by the Mapper are LUCs (Logical Underlying
Components), relationships between LUCs and
integrity constraints. A LUC is a collection of records
all of whose fields are single-valued. Relationships
between LUCs come in three flavors, based on the
SIM objects they represent: class-subclass links
(always 1:1), Multi-valued DVAs (l:many between an
independent LUC and a dependent LUC) and EVAs
(1:1, l:many or many:many between two independent
LUCs). Every SIM schema has a standard translation
into a LUC schema with a LUC for every class,
subclass and multi-valued DVA. A cursor can be
opened on a LUC or on a relationship and it delivers
one record of the LUC at a time. Relationship
cursors deliver one record of the range LUC and the
Mapper assumes the responsibility of traversing a
relationship, no matter how it is physically mapped.
The Mapper assures the structural integrity of data
reflected in LUC interconnections. For example,
when a record of a superclass LUC is deleted, the
Mapper will automatically delete corresponding
subclass records and delete instances of all EVAs the
deleted records participate in. Structural integrity is
maintained by the Mapper for performance reasons.
For example, if class and subclass records are mapped
into one physical record, the Mapper will perform one
delete instead of the two operations that may be
needed otherwise. Integrity constraints specified by
the user as ASSERTs are handled by the
Parser/Optimizer using query augmentation
techniques.

SIM optimizes a query by building a query
graph (whose nodes are LUC objects), enumerating
strategies, estimating the cost of processing for each
strategy and choosing the one with the least cost. We
have extended relational query optimization
techniques to handle generalization hierarchies,
EVAs and the perspective-oriented ordering and
duplicate value semantics [DGK82] implied by the
DML. For example, when listing students and their
courses, DML implies an implicit ordering of output
based on student surrogates. Transformation of a
query graph for a strategy is tested to see if it is
semantics-preserving, and, if it is not, the cost of

52

reordering/sorting output is added to the cost of a
strategy. Cardinality of LUCs and relationships,
blocking factors, indexes and the cost of accessing the
first and subsequent instances of a relationship are
some of the optimization parameters used. This
technique enables the Optimizer to do its job without
considering physical mapping details. For example,
the I/O cost of accessing the first instance of a
relationship will be 0 if the relationship is
implemented by clustering and 1 block access if it is
implemented by absolute addresses (pointers).
Statistical optimization is not fully implemented yet.
5 2 Physical Mapping Options
The high-level objects of the model must be mapped
into record-based units for physical storage. SIM uses
a carefully balanced set of rules to determine the
mapping. The user can override the default and
choose any access method or mapping supported by
the underlying system. The default mappings are
described below.

LUCs in a tree structured generalization
hierarchy are physically mapped into a storage unit
with variable-format records based on record types.
The number of record types needed will be equal to
the number of nodes in the tree. This ensures that all
immediate and inherited single-valued DVAs
applicable to a class will be in one physical record. It
is also efficient in terms of space. A class defined as
the subclass of two or more immediate superclasses is
mapped into a separate storage unit with 1:1 subclass
links connecting it to its parent LUCs.

LUCs of multi-valued DVAs without the
MAX option (unbounded) are mapped into a
separate storage unit. Those with the MAX option
are stored as arrays in the same physical record with
their owner.

1:1 EVAs are mapped based on foreign-keys.
Many:many EVAs without the Distinct option and
l:many EVAs are mapped into a storage unit termed
the Common EVA Structure. This structure has
records of the form <surrogatel> < relationship-id >
<surrogate2>. The surrogates can be direct keys
(record number), random keys (based on hashing) or
index sequential keys. Every many:many EVA with
the Distinct option gets a separate structure like the
one described above. The default for l:many EVAs
was chosen to avoid the additional index structure
that will be needed with a foreign-key based mapping.
There are a variety of ways in which EVAs can be
mapped, including absolute addresses and embedded
structures. The mapping of EVAs is the key factor in
determining SIM's performance.

User-declared attributes which are Unique
and Required can be defined to be the surrogate of a

class. By default, the system will create its own
surrogate attribute.
6. Conclusion and Future Developments
We have described SIM, a database system based on
the semantic data model. SIM provides a
conceptually natural view of data by moving away
from the notational simplicity of modeling with a
minimally complete set of constructs. Entities,
generalization hierarchies, schema-defined interobject
relationships and integrity constraints are the key
concepts of the model. The DML of this system is
designed to take advantage of and directly support
these features. The DML notions of perspective and
qualification by EVAs are a natural complement to
the system's schema definition features.

Our experience with a large number of test
databases is a testimony to the power and utility of
the concepts mentioned before. The stand-alone data
dictionary ADDS is itself a SIM database. It consists
of 13 base classes, 209 subclasses, 39 EVA-inverse
pairs, 530 DVAs and at its deepest, one hierarchy
represents 5 levels of generalization.

We are currently working on several
extensions to the model. Work under progress
includes the design of a view mechanism, derived
attributes, system-maintained ordering of classes and
EVAs, temporal data, efficient algorithms for various
categories of integrity constraints and experiments in
quantifying the naturalness and ease of use of DDL
and DML concepts.
7. Example Schema
(* The schema diagram is in Figure 2. *)
Type degree = symbolic (BS, MBA, MS, PHD);
Type id-number = integer (1001..39999,60001..99999);
Class Person (

name: string[30];
soc-sec-no: integer, unique, required;
birthdate: date;
spouse: person inverse is spouse;
profession: subrole (student,instruct or) mv);

Subclass Student of Person (
student-nbr: id-number;
advisor: instructor inverse is advisees;
instructor-status: subrole(teaching-assistant);
courses-enrolled: course inverse is

students-enrolled mv (distinct);
major-department: department);

Verify v l on Student
assert sum(credits of courses-enrolled) > = 12
else "student is taking too few credits";

53

Subclass Instructor of Person (
employee-nbr: id-number unique required;
salary: number[9,2];
bonus: number[9,2];
student-status: subrole(teaching-assistant);
advisees: student inverse is advisor mv (max 10);
courses-taught: course inverse is

teachers mv (max 3,distinct);
assigned-department: department inverse is

instructors-employed);
Verify v2 on instructor

assert salary + bonus < 100000
else "instructor makes too much money";

Subclass Teaching-assistant of Student and Instructor(
teaching load: integer (1..20));

Class Course (
course-no: integer (1..9999) unique required;
title: string[30] required;
credits: integer (1..15) required;
students-enrolled: student inverse is

courses-enrolled mv;
teachers: instructor inverse is

courses-taught mv (max 7);
prerequisites: course inverse is prerequisite-of mv,
prerequisite-of: course inverse is prerequisites mv);

Class Department (
dept-nbr: integer(100..999) required unique;
name: string[30j required;
instructors-employed: instructor inverse is

assigned-department mv;
courses-offered: course mv);

R eferences
[Abri74] J.R Abrial. Data Semantics. In Database
Management, J. Klimbie and K. Koffeman Eds.
North-Holland Amsterdam 1974.
[BKK88] J. Banerjee, W. Kim and K. Kim. Queries in
Object-Oriented Databases. In Proc. IEEE Inti. Conf.
on Data Engg.. February 88.
[Chen76] P.P.S Chen. The entity-relationship Model:
Toward a unified view of data. ACM Trans. Database
Syst. 1,1 March 76.
[Codd79] E.F. Codd. Extending the Database
Relational Model to capture more meaning. ACM
Trans. Database Syst. 4,4 D ec 79.

[Date83] C J. Date. An Introduction to Database
Systems, Volume 2. Addison-Wesley 83.
[DGK82] U. Dayal, N. Goodman, R.H. Katz. An
Extended Relational Algebra with Control over
Duplicate Elimination. In Proc. ACM SIGACT-
SIGMOD Symp. on Principles of Database Systems.
March 82.
[E1WÌ81] R. El Masri, G. Wiederhold. GORDAS: A
Formal High-Level Query Language for the Entity-
Relationship Model. In Proc. 2nd Inti. Conference on
Entity-Relationship Approach. October 81.
[Fish87] D. H. Fishman et al. Iris: An Object-
Oriented Database System. ACM Trans. Office Info.
Systems. Voi 5, No 1. January 87.
[GGKZ85] K. Goldman, S. Goldman, P. Kanellakis,
S. Zdonik. ISIS: Interface for a Semantic Information
System. In Proc. ACM SIGMOD Inti. Conference on
Management of Data. May 85.
[HaMc81] M. Hammer, D. McLeod. Database
Description with SDM: A Semantic Data Model.
ACM Trans. Database Syst. 6,3 Sept 81.
[Kent79] W. Kent. Limitations of Record-Based
Information Models. ACM Trans. Database Syst. 4,1
March 79.
[KiMc84] R. King, D. McLeod. Semantic Database
Models. In S.B. Yao (Ed). Principles of Database
Design. Prentice Hall 84.
[MBW80] J. Mylopoulos, P A . Bernstein, H.K.T
Wong. A Language Facility for Designing Database-
Intensive Applications. ACM Trans. Database Syst.
5,2 June 80.
[Ship81] D.W. Shipman. The Functional Data model
and the Data Language DAPLEX. ACM Trans.
Database Syst. 6 ,1 March 81.
[SBDG81] J. Smith, P. Bernstein, U. Dayal, N.
Goodman, T. Landers, K. Lin, and E. Wong.
Multibase - Integrating Heterogeneous Distributed
Database Systems. In Proc. AFIPS NCC 81.
[SmSm77] J.M. Smith, C.P. Smith. Database
Abstractions: Aggregation and Generalization. ACM
Trans. Database Syst. 2,2 June 77.
[TsLo82] D.C. Tsichritis, F.H. Lochovsky. Data
Models. Prentice Hall 1982.

54

[TsZa84] S. Tsur, C. Zaniolo. In Implementation of
GEM - supporting a semantic data model on a
relational back-end. In Proc. ACM SIGMOD Inti.
Conference on Management of Data. May 84.

rigor* 1. architecture of JIM

Figure 2. UNIDEHSITY databate ichema

55

