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A Graph-Based Definition of Distillation

G.W. Hamilton and G. Mendel-Gleason

School of Computing and Lero@DCU
Dublin City University

Ireland
e-mail: {hamilton,ggleason}@computing.dcu.ie

Abstract. In this paper, we give a graph-based definition of the distil-
lation transformation algorithm. This definition is made within a similar
framework to the positive supercompilation algorithm, thus allowing for
a more in-depth comparison of the two algorithms. We find that the
main distinguishing characteristic between the two algorithms is that
in positive supercompilation, generalization and folding are performed
with respect to expressions, while in distillation they are performed with
respect to graphs. We also find that while only linear improvements in
performance are possible using positive supercompilation, super-linear
improvements are possible using distillation. This is because computa-
tionally expensive terms can only be extracted from within loops when
generalizing graphs rather than expressions.

1 Introduction

Supercompilation is a program transformation technique for functional languages
which can be used for program specialization and for the removal of intermediate
data structures. Supercompilation was originally devised by Turchin in what
was then the USSR in the late 1960s, but did not become widely known to
the outside world until a couple of decades later. One reason for this delay
was that the work was originally published in Russian in journals which were
not accessible to the outside world; it was eventually published in mainstream
journals much later [1, 2]. Another possible reason why supercompilation did not
become more widely known much earlier is that it was originally formulated in
the language Refal, which is rather unconventional in its use of a complex pattern
matching algorithm. This meant that Refal programs were hard to understand,
and describing transformations making use of this complex pattern matching
algorithm made the descriptions quite inaccessible. This problem was overcome
by the development of positive supercompilation [3, 4], which is defined over a
more familiar functional language. The positive supercompilation algorithm was
further extended by the first author to give the distillation algorithm [5, 6].

In this paper we give a graph-based definition of distillation which we believe
gives the algorithm a more solid theoretical foundation. This definition is made
within a similar framework to the positive supercompilation algorithm, thus al-
lowing a more detailed comparison between the two algorithms to be made.



There are two reasons why we do this comparison with positive supercompi-
lation rather than any other formulation of supercompilation. Firstly, positive
supercompilation is defined on a more familiar functional language similar to
that for which distillation is defined, thus facilitating a more direct comparison.
Secondly, the original supercompilation algorithm is less clearly defined and has
many variants, thus making comparison difficult. We find that the main distin-
guishing characteristic between the two algorithms is that in positive supercom-
pilation, generalization and folding are performed with respect to expressions,
while in distillation, they are performed with respect to graphs. We find that
super-linear improvements in performance are possible using distillation, but
not using positive supercompilation, because computationally expensive terms
can only be extracted from within loops when generalizing graphs rather than
expressions.

The remainder of this paper is structured as follows. In Section 2 we define
the higher-order functional language on which the described transformations are
performed. In Section 3 we define the positive supercompilation algorithm. In
Section 4 we define the distillation algorithm by using graphs to determine when
generalization and folding should be performed. In Section 5 we show how pro-
grams can be extracted from the graphs generated by positive supercompilation
and distillation, and Section 6 concludes.

2 Language

In this section, we describe the higher-order functional language which will be
used throughout this paper. The syntax of this language is given in Fig. 1.

prog ::= e0 where f1 = e1 . . . fk = ek Program

e ::= v Variable
| c e1 . . . ek Constructor
| f Function Call
| λv .e λ-Abstraction
| e0 e1 Application
| case e0 of p1 ⇒ e1 | · · · | pk ⇒ ek Case Expression

p ::= c v1 . . . vk Pattern

Fig. 1. Language Syntax

Programs in the language consist of an expression to evaluate and a set of func-
tion definitions. The intended operational semantics of the language is normal
order reduction. It is assumed that erroneous terms such as (c e1 . . . ek ) e and
case (λv.e) of p1 ⇒ e1 | · · · | pk ⇒ ek cannot occur. The variables in the pat-
terns of case expressions and the arguments of λ-abstractions are bound; all



other variables are free. We use fv(e) and bv(e) to denote the free and bound
variables respectively of expression e. We write e ≡ e′ if e and e′ differ only in
the names of bound variables. We require that each function has exactly one def-
inition and that all variables within a definition are bound. We define a function
unfold which replaces a function name with its definition.

Each constructor has a fixed arity; for example Nil has arity 0 and Cons
has arity 2. We allow the usual notation [] for Nil , x : xs for Cons x xs and
[e1, . . . , ek] for Cons e1 . . . (Cons ek Nil).

Within the expression case e0 of p1 ⇒ e1 | · · · | pk ⇒ ek , e0 is called the
selector, and e1 . . . ek are called the branches. The patterns in case expressions
may not be nested. No variables may appear more than once within a pattern.
We assume that the patterns in a case expression are non-overlapping and ex-
haustive.

We use the notation [e′1/e1, . . . , e
′
n/en] to denote a replacement, which rep-

resents the simultaneous replacement of the expressions e1, . . . , en by the cor-
responding expressions e′1, . . . , e

′
n, respectively. We say that a replacement is a

substitution if all of the expressions e1, . . . , en are variables and define a predicate
is-sub to determine whether a given replacement is a substitution. We say that
an expression e is an instance of another expression e′ iff there is a substitution
θ s.t. e ≡ e′ θ.

Example 1. An example program for reversing the list xs is shown in Fig. 2.

nrev xs
where
nrev = λxs.case xs of

[] ⇒ []
| x ′ : xs ′ ⇒ app (nrev xs ′) [x ′]

app = λxs.λys.case xs of
[] ⇒ ys
| x ′ : xs ′ ⇒ x ′ : (app xs ′ ys)

Fig. 2. Example Program for List Reversal

3 Positive Supercompilation

In this section, we define the positive supercompilation algorithm; this is largely
based on the definition given in [4], but has been adapted to define positive
supercompilation within a similar framework to distillation. Within our for-
mulation, positive supercompilation consists of three phases; driving (denoted
by DS), process graph construction (denoted by GS) and folding (denoted by
FS). The positive supercompilation S of an expression e is therefore defined as:
S[[e]] = FS [[GS [[DS [[e]]]]]]



3.1 Driving

At the heart of the positive supercompilation algorithm are a number of driving
rules which reduce a term (possibly containing free variables) using normal-order
reduction to produce a process tree. We define the rules for driving by identifying
the next reducible expression (redex) within some context. An expression which
cannot be broken down into a redex and a context is called an observable. These
are defined as follows.

Definition 1 (Redexes, Contexts and Observables). Redexes, contexts
and observables are defined as shown in Fig. 3, where red ranges over redexes,
con ranges over contexts and obs ranges over observables (the expression con〈e〉
denotes the result of replacing the ‘hole’ 〈〉 in con by e).

red ::= f
| (λv .e0 ) e1
| case (v e1. . . en) of p1 ⇒ e ′

1 | · · · | pk ⇒ e ′
k

| case (c e1. . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k

con ::= 〈〉
| con e
| case con of p1 ⇒ e1 | · · · | pk ⇒ ek

obs ::= v e1 . . . en
| c e1 . . . en
| λv .e

Fig. 3. Syntax of Redexes, Contexts and Observables

Lemma 1 (Unique Decomposition Property). For every expression e, ei-
ther e is an observable or there is a unique context con and redex e′ s.t. e =
con〈e′〉. 2

Definition 2 (Process Trees). A process tree is a directed tree where each
node is labelled with an expression, and all edges leaving a node are ordered.
One node is chosen as the root, which is labelled with the original expression
to be transformed. We use the notation e → t1, . . . , tn to represent the tree
with root labelled e and n children which are the subtrees t1, . . . , tn respectively.
Within a process tree t, for any node α, t(α) denotes the label of α, anc(t, α)
denotes the set of ancestors of α in t, t{α := t′} denotes the tree obtained by
replacing the subtree with root α in t by the tree t′ and root(t) denotes the label
at the root of t.

Definition 3 (Driving). The core set of transformation rules for positive su-
percompilation are the driving rules shown in Fig. 4, which define the map DS



from expressions to process trees. The rules simply perform normal order reduc-
tion, with information propagation within case expressions giving the assumed
outcome of the test. Note that the driving rules are mutually exclusive and
exhaustive by the unique decomposition property.

DS [[v e1 . . . en ]] = v e1 . . . en → DS [[e1 ]], . . . ,DS [[en ]]
DS [[c e1 . . . en ]] = c e1 . . . en → DS [[e1 ]], . . . ,DS [[en ]]
DS [[λv .e]] = λv .e → DS [[e]]
DS [[con〈f 〉]] = con〈f 〉→ DS [[con〈unfold f 〉]]
DS [[con〈(λv .e0 ) e1 〉]] = con〈(λv .e0 ) e1 〉→ DS [[con〈e0 [e1/v ]〉]]
DS [[con〈case (v e1 . . . en) of p1 ⇒ e ′

1 | · · · | pk ⇒ e ′
k 〉]]

= con〈case (v e1 . . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k 〉 →
DS [[v e1 . . . en ]],DS [[e ′

1 [p1/v e1 . . . en ]]], . . . ,DS [[e ′
k [pk/v e1 . . . en ]]]

DS [[con〈case (c e1 . . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k 〉]]
= con〈case (c e1 . . . en) of p1 ⇒ e ′

1 | · · · | pk ⇒ e ′
k 〉 →

DS [[con〈ei [e1/v1 , . . . , en/vn ]〉]]
where pi = c v1 . . . vn

Fig. 4. Driving Rules

As process trees are potentially infinite data structures, they should be lazily
evaluated.

Example 2. A portion of the process tree generated from the list reversal pro-
gram in Fig. 2 is shown in Fig. 5.

3.2 Generalization

In positive supercompilation, generalization is performed when an expression is
encountered which is an embedding of a previously encountered expression. The
form of embedding which we use to inform this process is known as homeomor-
phic embedding. The homeomorphic embedding relation was derived from results
by Higman [7] and Kruskal [8] and was defined within term rewriting systems [9]
for detecting the possible divergence of the term rewriting process. Variants of
this relation have been used to ensure termination within positive supercompi-
lation [10], partial evaluation [11] and partial deduction [12, 13]. It can be shown
that the homeomorphic embedding relation .e is a well-quasi-order, which is
defined as follows.

Definition 4 (Well-Quasi Order). A well-quasi order on a set S is a reflexive,
transitive relation ≤S such that for any infinite sequence s1, s2, . . . of elements
from S there are numbers i, j with i < j and si ≤S sj .

This ensures that in any infinite sequence of expressions e0, e1, . . . there defi-
nitely exists some i < j where ei .e ej , so an embedding must eventually be
encountered and transformation will not continue indefinitely.



nrev xs

case xs of . . .

xs []

xs = []

app (nrev xs′) [x′]

xs = x′ : xs′

† case (nrev xs′) of . . .

case (case xs′ of . . .) of . . .

xs′ [x′]

xs′ = []

case (app (nrev xs′′) [x′′]) of . . .

xs′ = x′′ : xs′′

case (case (nrev xs′′) of . . .) of . . .

case (case (case xs′′ of . . .) of . . .) of . . .

xs′′ [x′′, x′]

xs′′ = []

case (case (app (nrev xs′′′) [x′′′]) of . . .) of . . .

xs′′ = x′′′ : xs′′′

Fig. 5. Portion of Process Tree Resulting From Driving nrev xs

Definition 5 (Homeomorphic Embedding of Expressions). To define the
homeomorphic embedding relation on expressions .e, we firstly define a relation
Ee which requires that all of the free variables within the two expressions match
up as follows:

e1 Ce e2
e1 Ee e2

e1 ./e e2
e1 Ee e2

e Ee (e′[v/v′])

λv.e ./e λv
′.e′

∃i ∈ {1 . . . n}.e Ee ei
e Ce φ(e1, . . . , en)

∀i ∈ {1 . . . n}.ei Ee e′i
φ(e1, . . . , en) ./e φ(e′1, . . . , e

′
n)



e0 Ee e′0 ∀i ∈ {1 . . . n}.∃θi.pi ≡ (p′i θi) ∧ ei Ee (e′i θi)

(case e0 of p1 : e1| . . . |pn : en) ./e (case e′0 of p′1 : e′1| . . . |p′n : e′n)

An expression is embedded within another by this relation if either diving (de-
noted by Ce) or coupling (denoted by ./e) can be performed. Diving occurs
when an expression is embedded in a sub-expression of another expression, and
coupling occurs when two expressions have the same top-level functor and all
the corresponding sub-expressions of the two expressions are embedded. This
embedding relation is extended slightly to be able to handle constructs such
as λ-abstractions and case expressions which may contain bound variables. In
these instances, the bound variables within the two expressions must also match
up. The homeomorphic embedding relation .e can now be defined as follows:

e1 .e e2 iff ∃θ.is-sub(θ) ∧ e1 θ ./e e2

Thus, within this relation, the two expressions must be coupled, but there is
no longer a requirement that all of the free variables within the two expressions
match up.

Definition 6 (Generalization of Expressions). The generalization of two
expressions e and e′ (denoted by e ue e′) is a triple (eg, θ, θ

′) where θ and θ′ are
substitutions such that egθ ≡ e and egθ

′ ≡ e′, as defined in term algebra [9]1.
This generalization is defined as follows:

e ue e′ =


(φ(eg1, . . . , e

g
n),

⋃n
i=1 θi,

⋃n
i=1 θ

′
i), if e .e e′

where e = φ(e1, . . . , en)
e′ = φ(e′1, . . . , e

′
n)

(egi , θi, θ
′
i) = ei ue e′i

(v, [e/v], [e′/v]), otherwise

Within these rules, if both expressions have the same functor at the outermost
level, this is made the outermost functor of the resulting generalized expression,
and the corresponding sub-expressions within the functor applications are then
generalized. Otherwise, both expressions are replaced by the same variable. The
rewrite rule (e, θ[e′/v1, e

′/v2], θ′[e′′/v1, e
′′/v2]) ⇒ (e[v2/v1], θ[e′/v2], θ[e′′/v2]) is

exhaustively applied to the triple resulting from generalization to minimize the
substitutions by identifying common substitutions which were previously given
different names.

To represent the result of generalization, we introduce a let construct of the
form let v1 = e1 , . . . , vn = en in e0 into our language. This represents the
permanent extraction of the expressions e1, . . . , en, which will be transformed
separately. The driving rule for this new construct is as follows:

DS [[con〈let v1 = e1 , . . . , vn = en in e0 〉]] =
con〈let v1 = e1 , . . . , vn = en in e0 〉→ DS [[e1 ]], . . . ,DS [[en ]],DS [[con〈e0 〉]]

1 Note that, in a higher-order setting, this is no longer a most specific generaliza-
tion, as the most specific generalization of the terms f (g x) and f (h x) would be
(f (v x), [g/v], [h/v]), whereas f (g x) ue f (h x) = (f v, [(g x)/v], [(h x)/v]).



We now define an abstract operation on expressions which extracts the sub-terms
resulting from generalization using let expressions.

Definition 7 (Abstract Operation).

abstracte(e, e
′) = let v1 = e1, . . . , vn = en in eg

where e ue e′ = (eg, [e1/v1, . . . , en/vn], θ)

3.3 Process Graph Construction

In our formulation of positive supercompilation, the potentially infinite process
tree produced by driving is converted into a finite process graph.

Definition 8 (Process Graph). A process graph is a process tree which may

in addition contain replacement nodes. A replacement node has the form e
θ

99K α
where α is an ancestor node in the tree and θ is a replacement s.t. t(α) θ ≡ e.

Definition 9 (Process Graph Substitution). Substitution in a process graph
is performed by applying the substitution pointwise to all the node labels within
it as follows.

(e → t1 , . . . , tn) θ = e θ → t1 θ, . . . , tn θ

Definition 10 (Process Graph Equivalence). Two process graphs are equiv-
alent if the following relation is satisfied.

con〈e〉→ t1, . . . , tn ≡ con ′〈e ′〉→ t′1, . . . , t
′
n, iff e .e e′ ∧ ∀i ∈ {1 . . . n}.ti ≡ t′i

e
θ

99K t ≡ e ′
θ′

99K t ′, iff t ≡ t′

Within this relation, there is therefore a requirement that the redexes within
corresponding nodes are coupled.

Definition 11 (Process Graph Construction in Positive Supercompi-
lation). The rules for the construction of a process graph from a process tree
in positive supercompilation t are as follows.

GS [[β = con〈f 〉→ t ′]] =

{
con〈f 〉

[e′i/ei]
99K α, if ∃α ∈ anc(t, β).t(α) .e t(β)

con〈f 〉→ GS [[t ′]], otherwise
where
t(α) ue t(β) = (eg, [ei/vi], [e

′
i/vi])

GS [[e → t1 , . . . , tn ]] = e → GS [[t1 ]], . . . ,GS [[tn ]]

A process graph is considered to be folded when all of the replacements within
it are substitutions. This folding is performed as follows.

Definition 12 (Folding in Positive Supercompilation). The rules for fold-
ing a process graph t using positive supercompilation are as follows.



FS [[e
θ

99K α]] =

{
e

θ
99K α, if is-sub(θ)

t{α := S[[abstracte(t(α), e)]]}, otherwise

FS [[e → t1 , . . . , tn ]] = e → FS [[t1 ]], . . . ,FS [[tn ]]

Example 3. The process graph constructed from the process tree in Fig. 5 is
shown in Fig. 6 where the replacement θ is equal to [app (nrev xs′′) [x′′]/nrev xs′].

nrev xs

case xs of . . .

xs []

xs = []

app (nrev xs′) [x′]

xs = x′ : xs′

case (nrev xs′) of . . .

case (case xs′ of . . .) of . . .

xs′ [x′]

xs′ = []

case (app (nrev xs′′) [x′′]) of . . .

xs′ = x′′ : xs′′

θ

Fig. 6. Process Graph Constructed for nrev xs

The folded process graph constructed from the process graph in Fig. 6 is shown
in Fig. 7.

4 Distillation

In this section, we define the distillation algorithm within a similar framework
to that used to define positive supercompilation in the previous section. Distilla-
tion consists of two phases; driving (the same as for positive supercompilation)
and folding (denoted by FD). The distillation D of an expression e is therefore
defined as: D[[e]] = FD[[DS [[e]]]]. Folding in distillation is performed with respect
to process graphs. We therefore define what it means for one process graph to
be an instance or a homeomorphic embedding of another.



nrev xs

case xs of . . .

xs []

xs = []

app (nrev xs′) [x′]

xs = x′ : xs′

let vs = nrev xs′ in case vs of . . .

nrev xs′ case vs of . . .

vs [x′]

vs = []

v′ : (app vs′ [x′])

vs = v′ : vs′

v′ app vs′ [x′]

case vs′ of . . .

vs′ [x′]

vs′ = []

v′′ : (app vs′′ [x′])

vs′ = v′′ : vs′′

v′′ app vs′′ [x′]

[vs′′/vs′]

[xs′/xs]

Fig. 7. Folded Process Graph for nrev xs

Definition 13 (Process Graph Instance). A process graph t′ is an instance
of another process graph t (denoted by t lθ t′) iff there is a substitution θ s.t.
t ≡ t′ θ.

Definition 14 (Homeomorphic Embedding of Process Graphs). To de-
fine the homeomorphic embedding relation on process graphs .t, we firstly define



a relation Et which requires that all the free variables in the two process graphs
match up as follows:

t1 Ct t2
t1 Et t2

t1 ./t t2
t1 Et t2

t Et (t′[v/v′])

λv.e→ t ./t λv
′.e′ → t′

e ./e e
′ ∀i ∈ {1 . . . n}.ti Et t′i

con〈e〉→ t1 , . . . , tn ./t con
′〈e ′〉→ t ′1 , . . . , t

′
n

∃i ∈ {1 . . . n}.t Et ti
t Ct e→ t1, . . . , tn

t ./t t
′

e
θ

99K t ./t e
′ θ′

99K t ′

t0 Et t′0 ∀i ∈ {1 . . . n}.∃θi.pi ≡ (p′i θi) ∧ ti Et (t′i θi)

(case e0 of p1 : e1| . . . |pn : en)→ t0, . . . , tn ./t (case e′0 of p′1 : e′1| . . . |p′n : e′n)→ t′0, . . . , t
′
n

A tree is embedded within another by this relation if either diving (denoted by
Ct) or coupling (denoted by ./t) can be performed. Diving occurs when a tree is
embedded in a sub-tree of another tree, and coupling occurs when the redexes of
the root expressions of two trees are coupled. As for the corresponding embedding
relation on expressions, this embedding relation is extended slightly to be able
to handle constructs such as λ-abstractions and case expressions which may
contain bound variables. In these instances, the bound variables within the two
process graphs must also match up. The homeomorphic embedding relation on
process graphs .t can now be defined as follows:

t1 .t t2 iff ∃θ.is-sub(θ) ∧ t1 θ ./t t2

Within this relation, there is no longer a requirement that all of the free variables
within the two process graphs match up.

4.1 Generalization

Generalization is performed on two process trees if their corresponding process
graphs are homeomorphically embedded as follows.

Definition 15 (Generalization of Process Trees). Generalization is per-
formed on process trees using the ut operator which is defined as follows:

t ut t′ =



(e → tg1 , . . . , t
g
n ,

⋃n
i=1 θi,

⋃n
i=1 θ

′
i), if t .t t′

where t = e → t1 , . . . , tn
t′ = e ′ → t ′1 , . . . , t

′
n

(tgi , θi, θ
′
i) = ti ut t′i

(DS [[eg]], θ, θ′), otherwise
where (eg, θ, θ′) = root(t) ue root(t ′)



Within these rules, if two trees are coupled then their corresponding sub-trees
are generalized. Otherwise, the expressions in the corresponding root nodes
are generalized. As the process trees being generalized are potentially infinite,
this generalization should also be performed lazily. As is done for the gener-
alization of expressions, the rewrite rule (e, θ[e′/v1, e

′/v2], θ′[e′′/v1, e
′′/v2]) ⇒

(e[v2/v1], θ[e′/v2], θ[e′′/v2]) is also exhaustively applied to the triple resulting
from generalization to minimize the substitutions by identifying common sub-
stitutions which were previously given different names. Note that the use of
this rewrite rule is essential for the correctness of the distillation algorithm. We
now define an abstract operation on process trees which extracts the sub-terms
resulting from generalization using let expressions.

Definition 16 (Abstract Operation on Process Trees).

abstractt(t, t
′) = (let v1 = e1, . . . , vn = en in root(t))→ DS [[e1]], . . . ,DS [[en]], tg

where t ut t′ = (tg, [e1/v1, . . . , en/vn], θ)

4.2 Folding

In distillation, process graphs are used to determine when to perform folding
and generalization. These process graphs are constructed slightly differently than
those in positive supercompilation, with replacement nodes being added when
an expression is encountered which is an embedding (rather than a coupling) of
an ancestor expression. To facilitate this, a new relation .′

e is defined as follows:

e1 .′
e e2 iff ∃θ.is-sub(θ) ∧ e1 θ Ee e2

Definition 17 (Process Graph Construction in Distillation). The rules
for the construction of a process graph from a process tree in distillation t are
as follows.

GD[[β = con〈f 〉→ t ′]] =

{
con〈f 〉

[e′i/ei]
99K α, if ∃α ∈ anc(t, β).t(α) .′

e t(β)
con〈f 〉→ GD[[t ′]], otherwise

where
t(α) ue t(β) = (eg, [ei/vi], [e

′
i/vi])

GD[[e → t1 , . . . , tn ]] = e → GD[[t1 ]], . . . ,GD[[tn ]]

Definition 18 (Folding in Distillation). The rules for folding a process tree
t using distillation are as follows.

FD[[β = con〈f 〉→ t ′]] =


con〈f 〉 θ

99K α, if ∃α ∈ anc(t, β).GD[[α]] lθ GD[[β]]
t{α := FD[[abstractt(α, β)]]},

if ∃α ∈ anc(t, β).GD[[α]] .t GD[[β]]
con〈f 〉→ FD[[t ′]], otherwise

FD[[e → t1 , . . . , tn ]] = e → FD[[t1 ]], . . . ,FD[[tn ]]

Example 4. The process graph constructed from the root node of the process tree
in Fig. 5 is shown in Fig. 8, where the replacement θ is [app (nrev xs′) [x′]/nrev xs].



nrev xs

case xs of . . .

xs []

xs = []

app (nrev xs′) [x′]

xs = x′ : xs′

θ

Fig. 8. Process Graph

Similarly, the process graph constructed from the node labelled † in the pro-
cess tree in Fig. 5 is shown in Fig. 9, where the replacement θ′ is equal to
[app (nrev xs′′) [x′′]/nrev xs′].

case (nrev xs′) of . . .

case (case xs′ of . . .) of . . .

xs′ [x′]

xs′ = []

case (app (nrev xs′′) [x′′]) of . . .

xs′ = x′′ : xs′′

θ′

Fig. 9. Process Graph

The process graph in Fig. 8 is embedded in the process graph in Fig. 9, so the
corresponding process trees are generalized to produce the process tree shown in
Fig. 10. The process graph constructed for the node labelled † is now an instance
of the process graph constructed for the root node of this process tree, so folding
is performed to produce the folded process graph shown in Fig. 11

5 Program Residualization

A residual program can be constructed from a folded process graph using the
rules C as shown in Fig. 12.

Example 5. The program constructed from the folded process graph resulting
from the positive supercompilation of nrev xs shown in Fig. 7 is as shown in
Fig. 13. The program constructed from the folded process graph resulting from
the distillation of nrev xs shown in Fig. 11 is as shown in Fig. 14. We can see
that the distilled program is a super-linear improvement over the original, while
the supercompiled program has produced no improvement.



let vs = [] in nrev xs

[] nrev xs

case xs of . . .

xs vs

xs = []

app (nrev xs′) [x′]

xs = x′ : xs′

case (nrev xs′) of . . .

case (case xs′ of . . .) of . . .

xs′ x′ : vs

xs′ = []

case (app (nrev xs′′) [x′′]) of . . .

xs′ = x′′ : xs′′

case (case (nrev xs′′) of . . .) of . . .

case (case (case xs′′ of . . .) of . . .) of . . .

xs′′ x′′ : x′ : vs

xs′′ = []

case (case (app (nrev xs′′′) [x′′′]) of . . .) of . . .

xs′′ = x′′′ : xs′′′

Fig. 10. Result of Generalizing nrev xs

6 Conclusion

We have presented a graph-based definition of the distillation transformation
algorithm for higher-order functional languages. The definition is made within
a similar framework to the positive supercompilation transformation algorithm,
thus allowing for a more detailed comparison of the two algorithms. We have



let vs = [] in nrev xs

[] nrev xs

case xs of . . .

xs vs

xs = []

app (nrev xs′) [x′]

[x′ : vs/vs]

Fig. 11. Result of Folding nrev xs

C[[(v e1 . . . en)→ t1 , . . . , tn ]] φ = v (C[[t1 ]] φ) . . . (C[[tn ]] φ)
C[[(c e1 . . . en)→ t1 , . . . , tn ]] φ = c (C[[t1 ]] φ) . . . (C[[tn ]] φ)
C[[(λv .e)→ t ]] φ = λv .(C[[t ]] φ)
C[[(con〈f 〉)→ t ]] φ = f ′ v1. . . vn

where
f ′ = λv1 . . . vn.C[[t]] (φ ∪ {f ′ v1 . . . vn = con〈f 〉→ t})
{v1 . . . vn} = fv(t)

C[[(con〈f 〉) θ
99K t ]] φ = (f v1 . . . vn) θ

where
(f ′ v1 . . . vn = t) ∈ φ

C[[(con〈case (v e1 . . . en) of p1 ⇒ e1 | · · · | pn ⇒ en〉)→ t0 , . . . , tn ]] φ
= case (C[[t0 ]] φ) of p1 ⇒ C[[t1 ]] φ | · · · | pn ⇒ C[[tn ]] φ

C[[let v1 = t1 , . . . , vn = tn in t ]] φ
= (C[[t ]] φ)[(C[[t1 ]] φ)/v1 , . . . , (C[[tn ]] φ)/vn ]

Fig. 12. Rules For Constructing Residual Programs

found that the main distinguishing characteristic between the two algorithms
is that in positive supercompilation, generalization and folding are performed
with respect to expressions, while in distillation they are performed with respect
to graphs. We have also found that while only linear improvements in perfor-
mance are possible using positive supercompilation, super-linear improvements
are possible using distillation. This is because computationally expensive terms
can only be extracted from within loops when generalizing graphs rather than
expressions. Of course, this extra power comes at a price. As generalization and
folding are now performed on graphs rather than flat terms, there may be an
exponential increase in the number of steps required to perform these operations
in the worst case.

There are a number of possible directions for further work. It has already
been shown how distillation can be used to verify safety properties of programs



f xs
where
f = λxs.case xs of

[] ⇒ []
| x ′ : xs ′ ⇒ case (f xs ′) of

[] ⇒ [x ′]
| x ′′ : xs ′′ ⇒ x′′ : (f ′ xs ′′ x ′)

f ′ = λxs.λy .case xs of
[] ⇒ [y ]
| x ′ : xs ′ ⇒ x ′ : (f ′ xs ′ y)

Fig. 13. Result of Applying Positive Supercompilation to nrev xs

f xs []
where
f = λxs.λvs.case xs of

[] ⇒ vs
| x ′ : xs ′ ⇒ f xs ′ (x ′ : vs)

Fig. 14. Result of Applying Distilling to nrev xs

[14]; work is now in progress by the second author to show how it can also be
used to verify liveness properties. Work is also in progress in incorporating the
distillation algorithm into the Haskell programming language, so this will allow
a more detailed evaluation of the utility of the distillation algorithm to be made.
Distillation is being added to the York Haskell Compiler [15] in a manner similar
to the addition of positive supercompilation to the same compiler in Supero [16].
Further work is also required in proving the termination and correctness of the
distillation algorithm. Finally, it has been found that the output produced by
the distillation algorithm is in a form which is very amenable to automatic paral-
lelization. Work is also in progress to incorporate this automatic parallelization
into the York Haskell Compiler.
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