
Semantic Essence of AsmL:
Extended Abstract?

Yuri Gurevich, Benjamin Rossman and Wolfram Schulte

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

Abstract. The Abstract State Machine Language, AsmL, is a novel executable specifica-
tion language based on the theory of Abstract State Machines. AsmL is object-oriented,
provides high-level mathematical data-structures, and is built around the notion of syn-
chronous updates and finite choice. AsmL is fully integrated into the .NET framework and
Microsoft development tools. In this paper, we explain the design rationale of AsmL and
sketch semantics for a kernel of the language. The details will appear in the full version of
the paper.

1 Introduction

For years, formal method advocates have criticized specification and documentation practices
of the software industry. They point out that neither more rigorous English nor semi-formal
notation like UML protect us from unintended ambiguity or missing important information. The
more practical among them require specifications to be linked to an executable code. Without
such a linkage one cannot debug the specification or impose it. Non-linked specifications tend
quickly to become obsolete.

We agree with the critique. We need specifications that are precise, readable and executable.
The group of Foundations of Software Engineering at Microsoft Research [4] was not satisfied
with existing solutions of the specification problem (we will address related work in the full paper)
and has worked out a new solution based on the theory of abstract state machines [5, 6, 3, 7]. We
think of specifications as executable models that exhibit the desired behavior on the appropriate
level of abstraction. Abstract State Machine Language, AsmL, is a language for writing such
models [1].

The FSE group has designed AsmL, implemented it and integrated it with the Microsoft
runtime and tool environment. Furthermore, the group has built various tools on top of AsmL.

1.1 Language Features

The language features of AsmL were chosen to give the user a familiar programming paradigm.
For instance, AsmL supports classes and interfaces in the same way as C# or Java do. In fact
all .NET structuring mechanisms are supported: enumerations, delegates, methods, events, prop-
erties and exceptions. Nevertheless, AsmL is primarily a specification language. Users familiar
with the specification language literature will find familiar data structures and features, like sets,
sequences, maps, pattern matching, bounded quantification, and set comprehension.

But the crucial features of AsmL, intrinsic to ASMs, are massive synchronous parallelism and
finite choice. These features give rise to a cleaner programming style than is possible with standard
imperative programming languages. Synchronous parallelism means that AsmL has transactional
semantics. This provides for a clean separation between the generation of new values and the
committal of those values into the persistent state. For instance, when an exception is thrown, the
? Springer Lecture Notes in Computer Science 3188 (2004), 240-259

state is automatically rolled back rather than being left in an unknown and possibly inconsistent
state. Finite choice allows the specification of a range of behaviors permissible for an (eventual)
implementation.

1.2 AsmL-S, a Core of AsmL

AsmL is rich. It incorporates features needed for .NET integration and features needed to support
the tools built on top of AsmL. AsmL-S represents the stable core of AsmL; the S alludes to
“simple”. In this semantical study we allow ourselves to compactify the syntax and ignore some
features that do not add semantical complexity. In particular, maps, sequences and sets are first-
class citizens of the full AsmL. In AsmL-S only maps are first-class citizens. Sets of type t can
be represented as maps from t to a unit type.

Acknowledgments. Without the support from the FSE group this work would not be possible.
Particular thanks go to Wolfgang Grieskamp and Nikolai Tillmann for developing the runtime
mechanism of AsmL.

2 AsmL-S through Examples

One can see AsmL as a fusion of the ASM paradigm and the .NET type system, influenced to an
extent by other specification languages like VDM [2] or Z [13]. This makes it a powerful modeling
tool. On the other hand, we also aimed for simplicity. That is why AsmL is designed in such
a way that its core, AsmL-S, is small. AsmL-S is expression and object oriented. It supports
synchronous parallelism, finite choice, sequential composition and exception handling. The rest
of this section presents examples of AsmL-S programs and expressions. For the abstract syntax
of AsmL-S, see Fig. 1 in Section 3.

Remark 1. The definitions in this section are provisional, having been simplified for the purpose
of explaining examples. The notions introduced here (stores, effects, evaluation, etc.) are, of
course, defined formally in the full paper.

2.1 Expressions

In AsmL-S, expressions are the only syntactic means for writing executable specifications. Binding
and function application are call-by-value. (The necessity of .NET integration is a good reason
all by itself not to use lazy evaluation.)

Literal is the set of literals, like 1, true, null or void . We write the value denoted by a literal
as the literal itself. Literals are typed; for instance, 1 is of type Int and true is of type Bool .
AsmL-S has various operations on Literal , like addition over integers or conjunction, i.e. and ,
over Bool .

Exception is an infinite set of exceptions, that is disjoint from Literal . For now, think of
exceptions as values representing different kinds of errors. We will discuss exceptions further in
subsection 2.8.

If e is a closed expression, i.e. an expression without free variables, and v is a literal or an
exception, then e

v−→ v means that e evaluates to v. The “v” above the arrow alludes to “value”.

Examples 1–5 show how to evaluate simple AsmL-S expressions.

Evaluation of Simple Expressions

1 + 2 v−→ 3 (1)

1/0 v−→ argX (2)

let x = 1 do x + x
v−→ 2 (3)

let x = 1/0 do 2 v−→ argX (4)

if true then 0 else 3 v−→ 0 (5)

For instance, Example 4 shows that let-expressions expose call-by-value semantics: if the evalu-
ation of the binding fails (in this case, resulting in the argument exception), then the complete
let-expression fails, irrespective of whether the body is used the binding.

2.2 Object Orientation

AsmL-S encapsulates state and behavior in classes. As in C# or Java, classes form a hierarchy
according to single inheritance. We use only the single dispatch of methods. Objects are dynam-
ically allocated. Each object has a unique identity. Objects can be created, compared and passed
around.

ObjectId is an infinite set of potential object identifiers, that is disjoint from Literal and
Exception. Normal values are either object identifiers in ObjectId or literals. Values are either
normal values or exceptions.

Nvalue = ObjectId ∪ Literal
Value = Nvalue ∪ Exception

A type map is a partial function from ObjectId to Type. It sends allocated objects to their
runtime types. A location is an object identifier together with a field name drawn from a set
FieldId . A content map is a partial function from Location to Nvalue. It records the initial
bindings for all locations.

TypeMap = ObjectId → Type
Location = ObjectId × FieldId

ContentMap = Location → Nvalue

If e is a closed expression, then e
θ,ω,v−−−−→ θ, ω, v means that the evaluation of e produces the

type map θ, the content map ω and the value v. Examples 6–14 demonstrate the object oriented
features of AsmL-S.

class A {} : new A()
θ,ω,v−−−−→ {o 7→ A}, ∅, o (6)

The execution of a nullary constructor returns a fresh object identifier o and extends the type
map. The fresh object identifier o is mapped to the dynamic type of the object.

class A {i as Int}, class B extends A {b as Bool} : (7)

new B(1, true)
θ,ω,v−−−−→ {o 7→ B}, {(o, i) 7→ 1, (o, b) 7→ true}, o

The default constructor in AsmL-S takes one parameter for each field in the order of their
declaration. The constructor extends the type map, extends the field map using the corresponding
arguments, and returns a fresh object identifier.

class A {i as Int} : new A(1).i v−→ 1 (8)

Instance fields can immediately be accessed.

class A
{
Fact(i as Int) as Int do

(
if i = 0 then 1 else i ∗me.Fact(n− 1)

)}
:

new A().Fact(3)
θ,ω,v−−−−→ {o 7→ A}, ∅, 6 (9)

Method calls have call-by-value semantics. Methods can be recursive. Within methods the receiver
object is denoted by me.

class A {One() as Int do 1,

Two() as Int do me.One() + me.One()}, (10)

class B extends A {One() as Int do − 1} : new B().Two() v−→ −2

As in C# or Java method, dispatch is dynamic. Accordingly, in this example, it is the redefined
method that is used for evaluation.

class A {i as Int} : (11)

let x =
(
if 3 < 4 then null else new A(1)

)
do x.i

v−→ nullX

If the receiver of a field or method selection is null , evaluation fails and throws a null pointer
exception.

class A {}, class B extends A {} : new B() is A
v−→ true (12)

The operator is tests the dynamic type of the expression.

class A {}, class B extends A {} : new B() as A
θ,ω,v−−−−→ {o 7→ B}, ∅, o (13)

Casting checks that an instance is a subtype of the given type, and if so then yields the instance
without changing the dynamic type of the instance.

class A {}, class B extends A {} : new A() as B
v−→ castX (14)

If casting fails, evaluation throws a cast exception.

2.3 Maps

Maps are finite partial functions. A map display is essentially the graph of the partial function.
For example, a map display m = {1 7→ 2, 3 7→ 4} represents the partial function that maps 1 to
2 and 3 to 4. The map m consists of two maplets 1 7→ 2 and 3 7→ 4 mapping keys (or indices) 1, 3
to values 2, 4 respectively.

Remark 2. In AsmL, maps can be also described by means of comprehension expressions. For
example, {x 7→ 2 ∗ x | x ∈ {1, 2, 3}} denotes {1 7→ 2, 2 7→ 4, 3 7→ 6}. In AsmL-S map
comprehension should be programmed.

The maps of AsmL-S are similar to associative arrays of AWK or Perl. Maps have identities
and each key gives rise to a location. Arbitrary normal values can serve as keys. We extend the
notion of a location accordingly.

Location = ObjectId × (FieldId ∪Nvalue)

Maps may be modified (see Section 2.4). Maps are often used in forall and choose expressions
(see Sections 2.5 and 2.7). Examples 15–19 exhibit the use of maps in AsmL-S.

new Int → Bool {1 7→ true, 5 7→ false} (15)
θ,ω,v−−−−→ {o 7→ (Int → Bool)}, {(o, 1) 7→ true, (o, 5) 7→ false}, o

A map constructor takes the map type and the initial map as arguments.

new Int → Bool {1 7→ true, 1 7→ false} v−→ argconsistencyX (16)

If a map constructor is inconsistent (i.e. includes at least two maplets with identical keys but
different values), then the evaluation throws an inconsistency exception.

(
new Int → Bool {1 7→ true}

)
[1] v−→ true (17)

The value of a key can be extracted by means of an index expression.

(
if true then null else new Int → Int {1 7→ 7}

)
[1] v−→ nullX (18)

(
new Int → Int {1 7→ 7}

)
[2] v−→ mapkeyX (19)

However, if the receiver of the index expression is null or if the index is not in the domain of the
map, then the evaluation throws a null exception or a map-key exception, respectively.

2.4 Assignments

One of AsmL’s unique features is its handling of state. In sequential languages, like C# or
Java, assignments trigger immediate state changes. In ASMs, and therefore also in AsmL, an
assignment creates an update. An update is a pair: the first component describes the location to
update, the second the value to which it should be updated. An update set is a set of updates.
A triple that consists of a type map, a content map and an update set will be called a store.

Update = Location × (Value ∪ {DEL})
UpdateSet = SetOf (Update)

Store = TypeMap × ContentMap ×UpdateSet

Note that we extended V alue with a special symbol DEL which is used only with locations given
by map keys and which marks keys to be removed from the map.

If e is a closed expression, then e
s,v−−→ s, v means that evaluation of e produces the store s

and the value v. Examples 20–23 show the three ways to create updates. Note that in AsmL-S,
but not in AsmL, all fields and keys can be updated. AsmL distinguishes between constants and
variables and allows updates only to the latter.

class A {i as Int} : (20)

new A(1).i := 2
s,v−−→

(
{o 7→ A}, {(o, i) 7→ 1}, {((o, i), 2)}

)
, void

A field assignment is expressed as usual. However, it does not change the state. Instead, it returns
the proposed update.

(
new Int → Bool {1 7→ true}

)
[2] := false (21)

s,v−−→
(
{o 7→ Int → Bool}, {(o, 1) 7→ true}, {((o, 2), false)}

)
, void

A map-value assignment behaves similarly. Note that the update set is created irrespective of
whether the location exists or not.

remove
(
new Int → Bool {1 7→ true}

)
[1] (22)

s,v−−→
(
{o 7→ Int → Bool}, {((o, 1) 7→ true}, {(o, 1),DEL)}

)
, void

The remove instruction deletes an entry from the map by generating an update that contains the
placeholder DEL in the location to delete.

class A {F (map as Int → A, val as A) as Void do map[0] := val},
class B extends A {} : (23)

let a = new A() do a.F (new Int → B {}, a) v−→ mapvalueX

Since Int → B is a subtype of Int → A, it is reasonable that this piece of code type-checks success-
fully at compile time. However, the assignment fails at runtime and throws a map-assignment
exception. Thus, map assignments must be type-checked at runtime. (The same reason forces
runtime type-checks of array assignments in C# or Java.)

2.5 Parallel Composition

Hand in hand with the deferred update of the state goes the notion of synchronous parallelism.
It allows the simultaneous generation of finitely many updates. Examples 24–27 show two ways
to construct synchronous parallel updates in AsmL-S.

let x = new Int → Int {} do
(
x[2] := 4 ‖ x[3] := 9

)
(24)

s,v−−→
(
{o 7→ Int → Int}, ∅, {((o, 2), 4), ((o, 3), 9)}

)
, void

Parallel expressions may create multiple updates. Update sets can be inconsistent. A consistency
check is performed when a sequential composition of expressions is evaluated and at the end of
the program.

let x = new Int → Int {} do

let y = new Int → Void {2 7→ void , 3 7→ void} do

forall i in y do x[i] := 2 ∗ i (25)
s,v−−→

(
{o1 7→ Int → Int , o2 7→ Int → Void},

{(o2, 2) 7→ void , (o2, 3) 7→ void}, {((o1, 2), 4), ((o1, 3), 9)}
)
, void

Parallel assignments can also be performed using forall expressions. In a forall expression
forall x in e1 do e2, the subexpression e1 must evaluate to a map. The subexpression e2 is
then executed with all possible bindings of the introduced variable to the elements in the domain
of the map.

let x = new Int → Int {} do
(
forall i in x do x[i] := 1/i

)
(26)

s,v−−→ (∅, ∅, ∅), void

If the range of a forall expression is empty, it simply returns the literal void .

let x = new Int → Int {2 7→ 4} do let y = x[2] do
(
(x[2] := 8) ‖ y

)
(27)

s,v−−→
(
{o 7→ Int → Int}, {(o, 2) 7→ 4}, {((o, 2), 8)}

)
, 4

Parallel expressions can return values. In full AsmL, the return value is distinguished syntactically
by writing return. In AsmL-S, the value of the second expression is returned, whereas forall-
expressions return void .

2.6 Sequential Composition

AsmL-S also supports sequential composition. Not only does AsmL-S commit updates on the
state, as in conventional imperative languages, but it also accumulates updates, so that the result
of a sequential composition can be used in the context of a parallel update as well. Examples 28–31
demonstrate this important feature of AsmL-S.

let x = new Int → Int {2 7→ 4} do
(
(x[2] := 8) ; (x[2] := x[2] ∗ x[2])

)
(28)

s,v−−→
(
{o 7→ Int → Int}, {(o, 2) 7→ 4)}, {((o, 2), 64)}

)
, void

The evaluation of a sequential composition of e1 ; e2 at a state S proceeds as follows. First e1

is evaluated at S. If no exception is thrown and the resulting update set is consistent, then the
update set is fired (or executed) at S. This creates an auxiliary state S′. Then e2 is evaluated at
S′, after which S′ is forgotten. The current state is still S. The accumulated update set consists
of the updates generated by e2 at S′ and the updates of e1 that have not been overridden by
updates of e2.

let x = new Int → Int {2 7→ 4} do (29)(
x[2] := 8 ‖ x[2] := 6

)
; x[2] := x[2] ∗ x[2] v−→ updateX

If the update set of the first expression is inconsistent, then execution fails and throws an incon-
sistency exception.

let x = new Int → Int {1 7→ 2} do(
x[2] := 4 ‖ x[3] := 6

)
; x[3] := x[3] + 1 (30)

s,v−−→
(
{o 7→ Int → Int}, {(o, 1) 7→ 2)}, {((o, 2), 4), ((o, 3), 7)}

)
, void

In this example, the update ((o, 3), 6) from the first expression of the sequential pair is overridden
by the update ((o, 3), 7) from the second expression, which is evaluated in the state with content
map {(o, 1) 7→ 2, (o, 2) 7→ 4, (o, 3) 7→ 6}.

let x = new Int → Int {1 7→ 3} do
(
while x[1] > 0 do x[1] := x[1]− 1

)
(31)

s,v−−→
(
{o 7→ Int → Int}, {(o, 1) 7→ 3)}, {((o, 1), 0)}

)
, void

While loops behave as in usual sequential languages, except that a while loop may be executed
in parallel with other expressions and the final update set is reported rather than executed.

2.7 Finite Choice

AsmL-S supports choice between a pair of alternatives or among values in the domain of a
map. The actual job of choosing a value from a given set X of alternatives is delegated to the
environment. On the abstraction level of AsmL-S, an external function oneof(X) does the job.
This is similar to delegating to the environment the duty of producing fresh object identifiers,
by mean of an external function freshid.

Evaluation of a program, when convergent, returns one effect and one value. Depending on the
environment, different evaluations of the same program may return different effects and values.
Examples 32–36 demonstrate finite choice in AsmL-S.

1 [] 2 v−→ oneof{1, 2} (32)

An expression e1 [] e2 chooses between the given pair of alternatives.

choose i in
(
new Int → Void {1 7→ void , 2 7→ void}

)
do i

s,v−−→ oneof
{(

({o 7→ Int → Void}, {(o, 1) 7→ void , (o, 2) 7→ void}, ∅), 1
)

(33)(
({o 7→ Int → Void}, {(o, 1) 7→ void , (o, 2) 7→ void}, ∅), 2

)}
Choice-expressions choose from among values in the domain of a map.

choose i in
(
new Int → Int {}

)
do i

v−→ choiceX (34)

If the choice domain is empty, a choice exception is thrown. (The full AsmL distinguishes be-
tween choose-expressions and choose-statements. The choose-expression throws an exception if
the choice domain is empty, but the choose-statement with the empty choice domain is equivalent
to void .)

class Math{Double(x as Int) as Int do 2 ∗ x} : (35)

new Math().Double(1 [] 2) v−→ oneof{2, 4}

class Math{Double(x as Int) as Int do 2 ∗ x} : (36)

new Math().Double(1) [] new Math().Double(2) v−→ oneof{2, 4}

Finite choice distributes over function calls.

2.8 Exception Handling

Exception handling is mandatory for a modern specification language. In any case, it is necessary
for AsmL because of the integration with .NET. The parallel execution of AsmL-S means that
several exceptions can be thrown at once. Exception handling behaves as a finite choice for the
specified caught exceptions. If an exception is caught, the store (including updates) computed
by the try-expression is rolled back.

In AsmL-S, exceptions are special values similar to literals. For technical reasons, it is con-
venient to distinguish between literals and exceptions. Even though exceptions are values, an
exception cannot serve as the content of a field, for example. (In the full AsmL, exceptions are
instances of special exceptional classes.) There are several built-in exceptions: argX , updateX ,
choiceX , etc. In addition, one may use additional exception names e.g. fooX .

class A
{
Fact(n as Int) as Int do

(
if n ≥ 0 then(

if n = 0 then 1 else Fact(n− 1)
)

else throw factorialX
)}

: (37)

new A.Fact(−5) v−→ factorialX

Custom exceptions may be generated by means of a throw-expression. Built-in exceptions may
also be thrown. Here, for instance, throw argX could appropriately replace throw factorialX .

Examples 38–40 explain exception handling.

let x = new Int → Int {} do
(
try

(
x[1] := 2 ; x[3] := 4/0

)
catch argX : 5

)
s,v−−→

(
{o 7→ Int → Int}, ∅, ∅

)
, 5 (38)

The argument exception triggered by 4/0 in the try-expression is caught, at which point the
update ((x, 1), 2) is abandoned and evaluation proceeds with the contingency expression 5. In
general, the catch clause can involve a sequence of exceptions: a “catch” occurs if the try expres-
sion evaluates to any one of the enumerated exceptions. Since there are only finitely many built-in
exceptions and finitely many custom exceptions used in a program, a catch clause can enumerate
all exceptions. (This is common enough in practice to warrant its own syntactic shortcut, though
we do not provide one in the present paper.)

try
(
throw fooX

)
catch barX , bazX : 1 v−→ fooX (39)

Uncaught exceptions propagate up.

throw fooX ‖ throw barX v−→ oneof{fooX , barX } (40)

If multiple exceptions are thrown in parallel, one of them is returned nondeterministically.

throw fooX [] 1 v−→ oneof{fooX , 1} (41)

Finite choice is “demonic”. This means that if one of the alternatives of a choice expression
throws an exception and the other one converges normally the result might be either that the
exception is propagated or that the value of the normally terminating alternative is returned.

2.9 Expressions with Free Variables

Examples 1-41 illustrate operational semantics for closed expressions (containing no free vari-
ables). In general, an expression e contains free variables. In this case, operational semantics of
e is defined with respect to an evaluation context (b, r) consisting of a binding b for the free
variables of e and a store r = (θ, ω, u) where for each free variable x, b(x) is either a literal or a
object identifier in dom(θ). We write e

v−→ b,r v if computation of e in evaluation context (b, r)
produces value v.

x + y
v−→{x 7→ 7, y 7→ 11}, (∅,∅,∅) 18 (42)

`[2] v−→{` 7→ o}, ({o 7→ Int→Bool},{(o,2) 7→ false},∅) false (43)

A more general notation e
s,v−−→ b,r s, v means that a computation of e in evaluation context

(b, r) produces new store s and value v.

3 Syntax and Semantics

The syntax of AsmL-S is similar to but different from that of the full AsmL. In this semantics
paper, an attractive and user-friendly syntax is not a priority but brevity is. In particular, AsmL-S
does not support the offside rule of the full AsmL that expresses scoping via indentation. Instead,
AsmL-S uses parentheses and scope separators like ‘:’.

3.1 Abstract Syntax

We take some easy-to-understand liberties with vector notation. A vector x̄ is typically a list
x1 . . . xn of items possibly separated by commas. A sequence x1 α y1, . . . , xn α yn can be abbre-
viated to x̄ α ȳ, where α represents a binary operator. This allows us, for instance, to describe
an argument sequence `1 as t1, . . ., `n as tn more succinctly as ¯̀ as t̄. The empty vector is
denoted by ε.

Figure 1 describes the abstract syntax of AsmL-S. The meta-variables c, f , m, `, prim, op,
lit , and exc, in Fig. 1 range over disjoint infinite sets of class names (including Object), field
names, method names, local variable names (including me), primitive type symbols, operation
symbols, literals, and exception names (including several built-in exceptions: argX , updateX , . . .).
Sequences of class names, field names, method names and parameter declarations are assumed
to have no duplicates.

An AsmL-S program is a list of class declarations, with distinct class names different from
Object , followed by an expression, the body of the program. Each class declaration gives a super-
class, a sequence of field declarations with distinct field names, and a sequence of method decla-
rations with distinct method names.

AsmL-S has three categories of types — primitive types, classes and map types — plus two
auxiliary types, Null and Thrown. (Thrown is used in the static semantics, although it is absent
from the syntax.) Among the primitive types, there are Bool , Int and Void . Ironically, Void
isn’t void but contains one element. There could be additional primitive types; this makes no
difference in the sequel.

Objects come in two varieties: class instances and maps. Objects are created with the new
operator only; more sophisticated object constructors have to be programmed in AsmL-S. A
new-class-instance expression takes one argument for each field of the class, thereby initializing
all fields with the given arguments. A new-map expression takes a (possibly empty) sequence of
key-values pairs, called maplets, defining the initial map. Maps are always finite. A map can be
overridden, extended or reduced (by removing some of its maplets). AsmL-S supports the usual
object-oriented expressions for type testing and type casting.

The common sequential programming languages have only one way to compose expressions,
namely the sequential composition e1 ; e2. To evaluate e1 ; e2, first evaluate e1 and then evaluate
e2. AsmL-S provides two additional compositions: the parallel composition e1 ‖ e2 and the
nondeterministic composition e1 [] e2. To evaluate e1 ‖ e2, evaluate e1 and e2 in parallel. To
evaluate e1 [] e2 evaluate either e1 or e2. The related semantical issues will be addressed later.
The while, forall and choose expressions generalize the two-component sequential, parallel and
nondeterministic compositions, respectively.

AsmL-S supports exception handling. In full AsmL, exceptions are instances of special excep-
tion classes. In AsmL-S, exceptions are atomic values of type Thrown. (Alternatively, we could
have introduced a whole hierarchy of exception types.) There are a handful of built-in exceptions,
like argX ; all of then end with “X”. A user may use additional exception names. There is no
need to declare new exception names; just use them. Instead of prescribing a particular syntactic
form to new exception names, we just presume that they are taken from a special infinite pool
of potential exception names that is disjoint from other semantical domains of relevance.

pgm = cls : e programs

cls = class c extends c {fld mth} classes

fld = f as t fields

mth = m(` as t) as t do e methods

lit = null | void | true | 0 | . . . literals

op = + | − | / | = | < | and | . . . primitive operations

prim = Bool | Int | Void | . . . primitive types

t = prim | Null | c | t → t normal types

exc = argX | updateX | choiceX | . . . exceptions

e = expressions

lit | ` literals/local variables

| op(e) built-in operations

| let ` = e do e local binding

| if e then e else e case distinction

| new c (e) creation of class instances

| new t → t {e 7→ e} creation of maps

| e.f | e [e] | e.m(e) field/index/method access

| e.f := e field update

| e[e] := e | remove e[e] index update

| e is t type test

| e as t type cast

| e ‖ e | forall ` in e do e parallel composition

| e [] e | choose ` in e do e nondeterministic composition

| e ; e | while e do e sequential composition

| try e catch exc : e exception handling

| throw exc explicit exception generation

Fig. 1. Abstract Syntax of AsmL-S

3.2 Class Table and Subtypes

It is convenient to view a program as a class table together with the expression to be evaluated
[8]. The class table maps class names different from Object to the corresponding class definitions.
The class table has the structure of a tree with edge relation c C c′ meaning that extends c′ is
in the declaration of c; we say c′ is the parent of c. Object is of course the root of class tree.

Remark 3. Whenever the “extends c” clause is omitted in examples 1-43, there is an implicit
extends Object .

The subtype relation ≤ corresponding to a given class table is generated recursively by the
rules in Fig. 2, for arbitrary types t, t′, t′′, τ, τ ′ and classes c, c′:

• t ≤ t,
t ≤ t′ t′ ≤ t′′

t ≤ t′′
≤ is a partial order

•
c C c′

c ≤ c′
≤ extends the parent relation over classes

• t → t′ ≤ Object maps are objects

•
t ≤ τ t′ ≤ τ ′

(t → t′) ≤ (τ → τ ′)
maps types are covariant in argument and result types

•
t ≤ Object

Null ≤ t
Null lies beneath all object types

• Thrown ≤ t Thrown lies beneath all other types

Fig. 2. Inductive Definition of the Subtype Relation

Call two types comparable if one of them is a subtype of the other; otherwise call them
incomparable. Primitive types compare the least. If t is a primitive type, then t ≤ t and Thrown ≤
t are the only subtype relations involving t.

The following proposition is easy to check.

Proposition 1 Every two types t1, t2 have a greatest lower bound t1 u t2. Every two subtypes of
Object have a least upper bound t1 t t2. ut

Remark 4. One may argue that map types should be contravariant in the argument, like function
types [11]. In the full paper, we discuss pros and cons of such a decision.

If c is a class different from Object , then addf (c) is the sequence of distinct field names given
by the declaration of c. These are the new fields of c, acquired in addition to those of parent(c).
The sequence of all fields of a class is defined by induction using the concatenation operation.

fldseq(Object) = ε

fldseq(c) = addf (c) · fldseq(parent(c))

We assume that addf (c) is disjoint from fldseq(parent(c)) for all classes c. If f is a field of c of
type t, then fldtype(f, c) = t. If fldseq(c) = (f1, . . . , fn) and fldtype(fi, c) = ti, then

fldinfo(c) = f̄ as t̄ = (f1 as t1, . . . , fn as tn).

The situation is slightly more complicated with methods because, unlike fields, methods can
be overridden. Let addm(c) be the set of method names included in the declaration of c. We
define inductively the set of all method names of a class.

mthset(Object) = ∅
mthset(c) = addm(c) ∪mthset(parent(c))

For each m ∈ mthset(c), dclr(m, c) is the declaration

m(`1 as τ1, . . . , `n as τn) as t do e

of m employed by c. We assume, as a syntactic constraint, that the variables `i are all distinct
and different from me. The declaration dclr(m, c) is the declaration of m in the class home(m, c)
defined as follows:

m ∈ addm(c)
home(m, c) = c

m ∈ mthset(c)− addm(c)
home(m, c) = home(parent(c))

In the sequel, we restrict attention to an arbitrary but fixed class table.

3.3 Static Semantics

We assume that every literal lit has a built-in type littype(lit). For instance, littype(2) = Int ,
littype(true) = Bool and littype(null) = Null . We also assume that a type function optype(op)
defines the argument and result types for every built-in operation op. For example, optype(and) =
(Bool ,Bool) → Bool .

Suppose e is an expression, possibly involving free variables. A type context for e is a total
function T from the free variables of e to types.

TT (e) is a partial function from expressions and type contexts to types. If TT (e) is defined,
then e is said to be well-typed with respect to T , and TT (e) is called its static type.

The definition of TT (e) is inductive, given by rules in Fig. 3. See the full paper for a more
thorough exposition.

3.4 Well-Formedness

We now make an additional assumption about the underlying class table: for each class c and
each method m ∈ mthset(c), m is well-formed relative to c (symbolically: m ok in c).

The definition of m ok in c is inductive. Suppose dclr(m, c) = m(`1 as τ1, . . . , `n as
τn) as t do e and c C c′. Let T denote the type context {me 7→ c} ∪ {`1 7→ τ1, . . . , `n 7→ τn}.

• m ∈ addm(c)−mthset(c′) TT (e) ≤ t

m ok in c

• m ∈ mthset(c)− addm(c) m ok in c′

m ok in c

•

m ∈ addm(c) ∩mthset(c′) TT (e) ≤ t m ok in c′

dclr(m, c′) = m(`′1 as τ ′1, . . . , `′n as τ ′n) as t′ do e′ τ̄ → t ≤ τ̄ ′ → t′

m ok in c

The statement τ̄ → t ≤ τ̄ ′ → t′, in the final premise, abbreviates the inequalities τ1 ≤
τ ′1, . . . , τn ≤ τ ′n and t ≤ t′.

• TT (lit) = littype(lit) • TT (`) = T (`)

•
optype(op) = τ̄ → t TT (ē) ≤ τ̄

TT (op(ē)) = t
•

t < TT (e)

TT (e is t) = Bool

•
TT (e1) = t

TT (let ` = e1 do e2) = TT<{` 7→ t}(e2)
•

t < TT (e)

TT (e as t) = t

• TT (e1) = Bool

TT (if e1 then e2 else e3) = TT (e2) t TT (e3)
•

TT (e1) is defined

TT (e1 ‖ e2) = TT (e2)

• fldinfo(c) = f̄ as t̄ TT (ē) ≤ t̄

TT (new c(ē)) = c
•

TT (e1) = τ → t
TT<{` 7→τ}(e2) is defined

TT (forall ` in e1 do e2) = Void

•
TT (e) = c

TT (e.f) = fldtype(f, c)
• TT (e1 [] e2) = TT (e1) t TT (e2)

•
TT (e1) = c TT (e2) ≤ τ

dclr(m, c) = m(` as τ) as t do e3

TT (e1.m(e2)) = t

• TT (e1) = τ → t

TT (choose ` in e1 do e2) = TT<{` 7→τ}(e2)

•
TT (e2) ≤ TT (e1.f)

TT (e1.f := e2) = V oid
•

TT (e1) is defined

TT (e1 ; e2) = TT (e2)

•
TT (e1) ≤ t1 TT (e2) ≤ t2

TT (new t1 → t2 {e1 7→ e2}) = t1 → t2
•

TT (e1) = Bool TT (e2) is defined

TT (while e1 do e2) = Void

•
TT (e1) = τ → t TT (e2) ≤ τ

TT (e1[e2]) = t
• TT (throw exc) = Thrown

• TT (e1) = τ → t TT (e2) ≤ τ TT (e3) ≤ t

TT (e1[e2] := e3) = V oid
• TT (try e1 catch exc : e2) = TT (e1) t TT (e2)

•
TT (e1) = τ → t TT (e2) ≤ τ

TT (remove e1[e2]) = Void

Fig. 3. Static Types of Expressions in AsmL-S

3.5 Operational Semantics

Suppose (b, r) is an evaluation context (subsection 2.9) for an expression e, where r = (θ, ω, u).
Then (b, r) gives rise to a type context [b, r] defined by

[b, r](`) =

{
θr(b(`)) if b(`) ∈ dom(θr)
littype(b(`)) if b(`) ∈ Literal .

We say e is (b, r)-typed if it is well-typed with respect to the type context [b, r], that is, if T[b,r](e)
is defined.

In the full paper we define an operator Eb,r over (b, r)-typed expressions. The computation
of Eb,r is in general nondeterministic (as it relies on external functions freshid and oneof) and it
may diverge (as it is recursive but not necessarily well-founded). If it converges, it produces an
effect Eb,r(e) = (s, v) where s is a store and v is a value, that is, e

s,v−−→ b,r s, v in the notation
of subsection 2.9.

After seeing the examples in section 2, the reader should have a fairly good idea how Eb,r is
defined for most types of expression. See the full paper for a complete set of rules defining the
effect operator.

4 Analysis

The effect operator is monotone with respect to stores: if Eb,r(e) = (s, v) then r is a substore of
s. Furthermore, if v is an exception then r = s, meaning that the store is rolled back whenever
an exception occurs.

In addition to these properties, the static-type and effect operators satisfy the usual notions
of type soundness and semantic refinement. See the full paper for precise statements and proofs
of the theorems mentioned in this section.

The type of an effect (s, v), where s = (θ, ω, u), is defined as follows:

type(s, v) =


θ(v) if v ∈ dom(θ)
littype(v) if v ∈ Literal
Thrown if v ∈ Exception.

Theorem 2 (Type Soundness) For every evaluation context (b, r) and every (b, r)-typed expres-
sion e, we have

type(Eb,r(e)) ≤ T[b,r](e)

for any converging computation of Eb,r(e).

In the full paper we define a relation . of semantic refinement among expressions. (More
accurately, a relation .T is defined for each type context T .) The essential meaning of e1 . e2 is
that, for all evaluation contexts (b, r),

– computation of Eb,r(e1) potentially diverges only if computation of Eb,r(e2) potentially di-
verges, and

– the set of “core” effects of convergent computations of Eb,r(e1) is included in the set of “core”
effects of convergent computations of Eb,r(e2).

Roughly speaking, the “core” of an effect (s, v) is the subeffect (s′, v′) that remains after a process
of garbage-collection relative to the binding b: we remove all but the objects reachable from values
in rng(b).

The refinement relation . has the following property.

Theorem 3 (Refinement) Suppose e′0, e0, e1 are expressions where e0 is a subexpression of e1

and e′0 refines e0. Let e′1 be the expression obtained from e1 by substituting e′0 in place of a
particular occurrence of e0. Then e′1 refines e1.

Here is a general example for refining binary choice expressions:

e0 . (true [] false) =⇒
(
if e0 then e1 else e2

)
. e1 [] e2

To give a similar general example involving the choose construct, we need a relation .
c.d.

of
choice-domain refinement defined in the full paper.

Proposition 4

e′1 .
c.d.

e1 =⇒
(
choose ` in e1 do e2

)
.

(
choose ` in e′1 do e2

)
The full paper appears as a Microsoft Research Technical Report.

References

1. The AsmL webpage,
http://research.microsoft.com/foundations/AsmL/.

2. Dines Bjoerner and Cliff B. Jones (Editors), “Formal Specification and Software Development”,
Prentice-Hall International, 1982.

3. Egon Boerger and Robert Staerk, “Abstract State Machines: A Method for High-Level System
Design and Analysis”, Springer, Berlin Heidelberg 2003.

4. Foundations of Software Engineering group, Microsoft Research,
http://research.microsoft.com/fse/

5. Yuri Gurevich, “Evolving Algebra 1993: Lipari Guide”, in “Specification and Validation Meth-
ods”, Ed. E. Boerger, Oxford University Press, 1995, 9–36.

6. Yuri Gurevich, “For every Sequential Algorithm there is an Equivalent Sequential Abstract State
Machine”, ACM Transactions on Computational Logic 1:1 (2000), pages 77–111.

7. James K. Huggins, ASM Michigan web page,
http://www.eecs.umich.edu/gasm.

8. Atsushi Igarashi, Benjamin C. Pierce and Philip Wadler, “Featherweight Java: a minimal
core calculus for Java and GJ”, ACM Transactions on Programming Languages and Systems
(TOPLAS) 23:3 (May 2001), 396–450.

9. Gilles Kahn, “Natural semantics”, In Proc. of the Symposium on Theoretical Aspects of Com-
puter Science, Lecture Notes in Computer Science 247 (1987), 22–39.

10. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen, “The Definition of Standard
ML (Revised)”, MIT Press, 1997.

11. Benjamin C. Pierce, “Types and Programming Languages”, MIT Press, Cambridge, Mas-
sachusetts, 2002

12. Gordon D. Plotkin, “Structural approach to operational semantics”, Technical report DAIMI
FN-19, Computer Science Department, Aarhus University, Denmark, September 1981

13. J. M. Spivey, “The Z Notation: A Reference Manual”, Prentice-Hall, New York, Second Edition,
1992.

