Semantic Essence of AsmL

Yuri Gurevich, Benjamin Rossman, Wolfram Schulte

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

Abstract

The Abstract State Machine Language, AsmL, is a novel executable specification
language based on the theory of Abstract State Machines. AsmL is object-oriented,
provides high-level mathematical data-structures, and is built around the notion
of synchronous updates and finite choice. AsmL is fully integrated into the .NET
framework and Microsoft development tools. In this paper, we explain the design
rationale of AsmL and provide static and dynamic semantics for a kernel of the
language.

Key words: Abstract State Machine, Executable Specification Language

Contents
1 Introduction
1.1 Language Requirements
1.2 Language Features
1.3 AsmL-S, a Core of AsmL
1.4 Related Work
1.5 Article Organization
2 Motivating the Design
2.1 Expressions
2.2 Object Orientation
2.3 Maps
2.4 Assignments
2.5 Parallel Composition

Preprint submitted to Elsevier Science

10

12

22 July 2005

2.6 Sequential Composition

2.7 Finite Choice

2.8 Exception Handling

2.9 Expressions with Free Variables
2.10 Maps as Objects

3 Syntax and Static Semantics
3.1 Abstract Syntax

3.2 Class Table

3.3 Subtyping

3.4 Well-Typed Expressions

3.5 Well-Formed Programs

3.6 Analysis: Type Contexts

4 Operational Semantics

4.1 Stores

4.2 Evaluation Contexts, Effects, and External Functions
4.3 Definition of the Effect Operator
5 Analysis

5.1 Type Soundness

5.2 Semantic Refinement

5.3 Discussion

References

1 Introduction

13

14

15

17

17

18

18

20

21

22

26

26

28

29

32

33

41

41

45

49

93

Microsoft develops a huge amount of software. But how do Microsoft em-
ployees document the requirements, design, data structures, APIs, protocols,
etc? Microsoft’s development practices are diverse. Seldom do employees use

mathematical models. Sometimes they use semi-formal notation like UML,
but most of the time they use more or less rigorous English. However, we all
know the drawbacks of semi-formal and informal specifications: unintended
ambiguity, missing important information, etc. Most importantly, such spec-
ifications lack a linkage to code. One cannot run and thus debug them, and
it is hard to impose such specifications. In spite of active interaction among
architects, developers and testers, the developer’s interpretation of an archi-
tectural specification may differ from that of the architect, and the tester may
not know the precise functionality of the system. We need readable but precise
specifications of what the software is supposed to do and we need the specifica-
tion to be linked to an executable code. We view specifications as models that
exhibit the desired behavior on the appropriate level of abstraction. AsmL is
a new language for writing such models.

1.1 Language Requirements

AsmlL is designed to be

e simple: easy to use and able to deal naturally with common features like
object orientation;

e precise: having a simple and uniform mathematical foundation based on
abstract state machines (ASMs);

e executable: allowing you to validate the model;

e testable: with models acting as test oracles for the developed code as well
as test case generators;

e inter-operable: able to interact with code in the existing Microsoft runtime
environments;

e integrated: acting properly in the existing Microsoft runtime and tool envi-
ronments;

e scalable: appropriate to write large industrial models;

e analyzable: amenable to efficient semantic analysis, like race condition or
deadlock detection.

AsmL was designed because no existing language satisfied these criteria; see
§1.4 in this connection. The group on Foundations of Software Engineering
(FSE) at Microsoft Research designed, implemented and integrated AsmL
with the Microsoft runtime and tool environment. The FSE group has also
built various tools on top of AsmL.

1.2 Language Features

The language features of Asml were chosen to give the user a familiar pro-
gramming paradigm. For instance, AsmL supports classes and interfaces in the
same way as C# or Java do. In fact all .NET structuring mechanisms are sup-
ported: enumerations, delegates, methods, events, properties and exceptions.
Nevertheless, AsmL is primarily a specification language. Users familiar with
the specification language literature, will find familiar data structures and fea-
tures, like sets, sequences, maps, pattern matching, bounded quantification,
and set comprehension.

But the crucial features of AsmL, intrinsic to ASMs, are massive synchronous
parallelism and finite choice [8]. These features give rise to a cleaner program-
ming style than is possible with standard imperative programming languages.
Synchronous parallelism allows you to perform a collection of parametrized
actions in parallel. For example, you may reverse simultaneously all edges of
the given finite directed graph. This leads to transactional semantics. The col-
lection of parametrized actions is treated as a single transaction. If something
goes wrong, the whole transaction is rolled back. This provides for a clean
separation between the generation of new values and the committal of those
values into the persistent state. For instance, when an exception is thrown, the
state is automatically rolled back rather than being left in an unknown and
possibly inconsistent state. Finite choice allows the specification of a range of
behaviors permissible for an (eventual) implementation. Finite choice leads to
a simple concept of program refinement: a finer program makes fewer choices
and is more defined (and having fewer cases of non-termination or termination
with an exception). Finite choice provides also a simple way of interleaving
parallel computations that are supposed to be asynchronous, which is good
enough for many distributed applications. An extension of AsmL with true
asynchrony is in progress.

1.8 AsmL-S, a Core of AsmL

AsmlL is rich. It incorporates features needed for .NET integration and fea-
tures needed to support various tools built on top of AsmL. It is also evolving.
There are several reasons for this. The Microsoft runtime and tool environ-
ments evolve, and AsmL needs to be constantly reintegrated. The FSE group
continues to build tools on top of AsmL and needs to be able to support these
tools. The group continues to enrich AsmL with new features and revise it
from time to time. But there is already a stable and mature core of AsmlL.

AsmL-S; where S alludes to “simple”, represents the stable core of AsmL. This

paper is a semantical study. So we allow ourselves to compactify the syntax
and ignore some features that do not add semantical complexity. In particular,
maps, sequences and sets are first-class citizens of the full AsmL. In AsmL-S
only maps are in the language. Sets of type t can be represented as maps from
t to the unit type.

1.4 Related Work

The semantics of abstract state machines was defined in [8] and elaborated in
[9]. The ASMs of [8] have the forall construct and the choose construct but
no intra-step sequential composition. Intra-step sequential composition was
accounted semantically in [10] (the simple non-iterative form) and in [6] (the
iterative form). ASMs with set-theoretic background were studied in [2].

A number of ASM tools preceded AsmlL; see Interpreters and Tools at [15]
in this connection. None of those tools was sufficient for our purposes, how-
ever. Of course, we looked into other tools as well. Precise specification lan-
guages like HOL [7], PVS [24], VDM [5], or Z [25] are difficult to use for
non-specialists; more importantly they are not inter-operable. Functional lan-
guages like Haskell [14] or SML [19] are attractive but they are not state
oriented and, in our opinion, do not deal satisfactory with state. Modern
object-oriented languages, like C# [13], Java [17], O’Caml [20], or Pizza [21],
lack some abstractions of great importance to us. In particular, they do not
support synchronous parallelism or non-determinism.

And so the group of Foundations of Software Engineering developed AsmL [1].
This development did not take place in a vacuum, though it is hard to pin-
point all the influences. The object-oriented aspects of AsmL were influenced
by mainstream imperative languages like Java [17] and C# [13]. The type sys-
tem was influenced by mainstream imperative languages as well as functional
languages like Haskell [14] or SML [19]. The use of maps was influenced by
VDM [5]. An early attempt to consider the semantics of AsmL is found in
[12].

1.5 Article Organization

This article is organized as follows.

§2, that is Section 2, illustrates the design of AsmL by means of examples.
For expositional purposes, the language is introduced piecemeal and certain
notions get revised along the way. For example, locations are first defined

as object fields. Later, maps are introduced and the notion of location is
generalized.

In §3, we give an abstract syntax for AsmL-S and explore its type system. In
84, we present operational semantics for AsmL-S. In §5 is devoted, we prove
the type soundness of AsmL-S, discuss semantic refinement and some other
issues.

Acknowledgements

Without the support from the FSE group this work would not be possible. In
particular, thanks to Wolfgang Grieskamp and Nikolai Tillmann for developing
the runtime mechanism of AsmL. Thanks to Robert Stérk for raising an issue
clarified in §2.10. Thanks to Klaus Havelund for going through the paper with
a magnifying glass and thus helping us very much to debug and clarify the

paper.

2 DMotivating the Design

This section serves the purposes of motivation and illustration only. The rest
of the paper does not depend on this section.

Asml is a rich language. One can see it as a fusion of the Abstract State Ma-
chine paradigm and the .NET type system, influenced to an extent by other
specification languages like VDM or Z. This makes it a powerful modeling
tool. On the other hand, we also aimed for simplicity. That is why AsmL is
designed in such a way that its core, AsmL-S, is small. AsmL-S is expres-
sion and object oriented. It supports synchronous parallelism, finite choice,
sequential composition and exception handling.

The rest of this section presents examples of AsmL-S expressions and pro-
grams. For the abstract syntax of AsmL-S, see Figure 1 in §3. We stress again
that this article is a semantical study. The syntax of the full AsmL, intended
to be user friendly and appropriate for substantial programs, was compactified
to fit our purposes in this paper.

Remark 1 The “definitions” in this section are provisional, having been sim-
plified for the purpose of explaining examples. The notions of value, type,
content map, store, etc., are formally defined in §3 and §4.

2.1 FExpressions

In AsmL-S, expressions are the only syntactic means for writing executable
specifications. Binding and function application are call-by-value. (The neces-
sity of .NET integration is a good reason all by itself not to use lazy evalua-
tion.)

Literal is the set of literals, such as 1, true, null or void. We write the value
denoted by a literal as the literal itself. Literals are typed; for instance, 1 is of
type Int and true is of type Bool. AsmL-S has various operations on Literal,
like the addition operation over Int or the conjunction operation over Bool.

Ezception is an infinite set of exceptions that is disjoint from Literal. Think
of exceptions as values representing different kinds of errors. We will discuss
exceptions further in §2.8.

If e is a closed expression, i.e. an expression without free variables, and v is
a literal or an exception, then e — v means that e evaluates to v. The “v”
above the arrow alludes to “value”. Examples 1-5 show how to evaluate simple
Asml-S expressions.

Evaluation of Simple Expressions

1+2 — 3 (1)
1/0 — argX (2)
letz =1doz+a2 —— 2 (3)
let z=1/0do2 —— argX (4)
if true then 0 else 3 —— 0 (5)

For instance, Example 4 shows that let-expressions expose call-by-value se-
mantics: if the evaluation of the binding fails (in this case, resulting in an
argument exception), then the complete let-expression fails, irrespective of
whether the body is used the binding.

2.2 Object Orientation

AsmL-S encapsulates state and behavior in classes. As in C# or Java, classes
form a hierarchy according to single inheritance. We use only the single dis-
patch of methods. Objects are dynamically allocated. Each object has a unique
identity. Objects can be created, compared and passed around.

Objectld is an infinite set of potential object identifiers, that is disjoint from
Literal and Exception. Normal values are either object identifiers in Objectld

or literals. Type is the collection of AsmL-S types. The types will be introduced
as we go; alternatively see Figure 1 in §3. Values are either normal values or
exceptions.

Nvalue = Objectld U Literal
Value = Nvalue U Ezxception

A type map is a partial function from Objectld to Type. It sends allocated
objects to their runtime types. A location is an object identifier together with
a field name drawn from a set Fieldld. A content map is a partial function
from Location to Nvalue. It records the initial bindings for all locations.

TypeMap = Objectld — Type
Location = Objectld x Fieldld
ContentMap = Location — Nvalue

If e is a closed expression, then e Sy, 0, w,v means that the evaluation of
e produces the type map 6, the content map w and the value v. Examples 6—
14 demonstrate the object oriented features of AsmL-S. A colon is used to
separate the class definitions from the expression that is the body of the
program.

class A {} :new A() 2% {0+ A},0,0 (6)

The execution of a nullary constructor returns a fresh object identifier o and
extends the type map. The fresh object identifier o is mapped to the dynamic
type of the object.

(One of the referees asked whether “the bindings in the type map ever get
‘garbage collected’ in the semantics.” On the semantical level of this paper,
garbage collection is not a semantical issue. In any case, garbage collection is
used in the full AsmL but not in AsmL-S.)

class A {i as Int}, class B extends A {b as Bool} : (7)

new B(1, true) S, {o+— B}, {(0,7) — 1,(0,b) > true}, o

The default constructor in AsmL-S takes one parameter for each field in the
order of their declaration. The constructor extends the type map, extends
the field map using the corresponding arguments, and returns a fresh object
identifier.

class A {i as Int} : new A(1).0 —— 1 (8)

Instance fields can immediately be accessed.

class A {Fact(i as Int) as Int do 9)
(if i =0 then 1 else i x me.Fact(i — 1))} : new A().Fact(3)
2OV, Lo A} 0,6

Method calls have call-by-value semantics. Methods can be recursive. Within
methods the receiver object is denoted by me.

class A {One() as Int do 1, (10)
Two() as Int do me.One() + me.One()},

class B extends A {One() as Int do —1} : new B().Two() — —2

As in C# or Java, method dispatch is dynamic. Accordingly, in this example,
it is the redefined method that is used for evaluation.

class A {i as Int} : (11)
let = = (if 3 < 4 then null else new A(1)) do z.i —> nullX

If the receiver of a field or method selection is null, evaluation fails and throws
a null pointer exception.

class A {}, class B extends A {} : new B() is A —— true (12)

The operator is tests the dynamic type of the expression.

class A {}, class B extends A {} : new B() as A S, {o— B},0,0
(13)
Casting checks that an instance is a subtype of the given type, and if so then
yields the instance without changing the dynamic type of the instance.

class A {}, class B extends A {} : new A() as B —— castX (14)

If casting fails, evaluation throws a cast exception.

2.3 Maps

Maps are finite partial functions. A map display is essentially the graph of the
partial function. For example, a map display m = {1 — 2, 3 — 4} represents
the partial function that maps 1 to 2 and 3 to 4. The map m consists of
two maplets 1 — 2 and 3 +— 4 mapping keys (or indices) 1,3 to values 2,4
respectively.

Remark 2 In AsmL, maps can be also described by means of comprehension
expressions. For example, {x — 2xx | x € {1,2,3}} denotes {1 — 2, 2 —
4, 3+ 6}. In AsmL-S map comprehension should be programmed.

The maps of AsmL-S are similar to associative arrays of AWK or Perl. Maps
have identities and each key gives rise to a location. Arbitrary normal values
can serve as keys. We extend the notion of a location accordingly.

Location = Objectld x (Fieldld U Nvalue)

Maps may be modified (see §2.4). Maps are often used in forall and choose
expressions (see §2.5 and §2.7). Examples 15-19 exhibit the use of maps in
AsmL-S.

new Int — Bool {1 — true,5 — false} (15)

0,w,v

— {0+ (Int — Bool)},{(0,1) + true, (0,5) — false},o
A map constructor takes the map type and the initial map as arguments.
new Int — Bool {1 — true,1 — false} —— argconsistencyX (16)

If a map constructor is inconsistent (i.e. includes at least two maplets with
identical keys but different values), then the evaluation throws an inconsis-
tency exception.

(new Int — Bool {1 — true}) 1] —> true (17)

The value of a key can be extracted by means of an index expression.
(if true then null else new Int — Int {1 — 7}> 1] == nullX (18)
(new Int — Int {1 — 7}) 2] — mapkeyX (19)

However, if the receiver of the index expression is null or if the index is not in
the domain of the map, then the evaluation throws a null-pointer exception
or a map-key exception, respectively.

Remark 3 AsmL-S treats maps differently than the full AsmL. The full AsmL
18 more sophisticated; it treats maps as values which requires partial updates
[11]. In AsmL-S, maps are objects. An example illustrating this difference is
given in Section 2.10.

2.4 Assignments

One of AsmL’s unique features is its handling of state. In sequential languages,
like C# or Java, assignments trigger immediate state changes. In ASMs, and

10

therefore also in AsmL, an assignment creates an update. An update is a pair:
the first component describes the location to update, the second the value to
which it should be updated. An update set is a set of updates. A triple that
consists of a type map, a content map and an update set will be called a store.

Update = Location x (Value U {DEL})
UpdateSet = SetOf(Update)
Store = TypeMap x ContentMap x UpdateSet

Note that we extended Value with a special symbol DEL which is used only
with locations given by map keys and which marks keys to be removed from
the map.

If e is a closed expression, then e — s,v means that evaluation of e pro-
duces the store s and the value v. Examples 20-23 show the three ways to
create updates. Note that in AsmL-S, but not in AsmL, all fields and keys can
be updated. AsmL distinguishes between constants and variables and allows
updates only to the latter.

class A {i as Int} : (20)
new A(1).i:=2 =% ({o— A}, {(0,i) — 1},{((0,1),2)}), void

A field assignment is expressed as usual. However, it does not change the state.
Instead, it returns the proposed update.

(new Int — Bool {1 — true}) 2] := false (21)
=7, ({0 — Int — Bool},{(0,1) — true}, {((o, 2),false)}), void

A map-value assignment behaves similarly. Note that the update set is created
irrespective of whether the location exists or not.

remove (new Int — Bool {1 — true}) 1] (22)
> ({o — Int — Bool},{((0,1) — true},{(o,1), DEL)}), void

The remove instruction deletes an entry from the map by generating an update

11

that contains the placeholder DEL in the location to delete.

class A {F(map as Int — A, val as A) as Void do map[0] := val}, (23)
class B extends A {} :
let « = new A() do a.F(new Int — B {}, a)

= maptypeX

class A {F(map as A — Int, val as A) as Void do map[val] := 0}, (24)
class B extends A {} :
let « = new A() do a.F(new B — Int {}, a)

5 maptypeX

Map types are covariant in both argument and result types. Since Int — B
(resp. B — Int) is a subtype of Int — A (resp. A — Int), it is reasonable
for Examples 23 and 24 to type-check successfully at compile time. However,
the assignments fails at runtime and throw map-assignment exceptions. Thus,
map assignments must be type-checked at runtime. (The same circumstance
forces runtime type-checks of array assignments in C# or Java.)

2.5 Parallel Composition

Hand in hand with the deferred update of the state goes the notion of syn-
chronous parallelism. It allows the simultaneous generation of finitely many
updates. Examples 25-28 show two ways to construct synchronous parallel
updates in AsmL-S.

let © = new Int — Int {} do (25)
(2[2] =4 | 2[3] :==9)
=5 (fors Int — i}, 0, {((0,2),4), ((0,3),9)}), void
Parallel expressions may create multiple updates. Update sets can be incon-

sistent. A consistency check is performed when a sequential composition of
expressions is evaluated and at the end of the program.

let + = new Int — Int {} do (26)
let y = new Int — Void {2 — void, 3 — void} do
forall i in y do z[i]| :==2 %1
=7, ({01 — Int — Int, 09 — Int — Void},
{(02,2) — woid, (02,3) — wvoid}, {((01,2),4), ((01,3),6)}), void

Parallel assignments can also be performed using forall expressions. In a forall
expression forall x in e; do es, the subexpression e; must evaluate to a map.

12

The subexpression es is then executed with all possible bindings of the intro-
duced variable to the elements in the domain of the map.

let © = new Int — Int {} do (27)
(forall i in z do x[i] := 1/i)
2% ({o Int — Int},0,0), void

If the range of a forall expression is empty, it simply returns the literal void.

let x = new Int — Int {2 — 4} do (28)
let y = z[2] do ((x[2] = 38) | y)
2 ({ors Int — Int}, {(0,2) = 4},{((0,2),8)}), 4

Parallel expressions can return values. In full AsmL; the return value is distin-
guished syntactically by writing return. In AsmL-S, the value of the second
expression is returned (see the remark after rule E24 in §4.3 in this connec-
tion), whereas forall-expressions return void.

2.6 Sequential Composition

AsmL-S also supports sequential composition. Not only does AsmL-S commit
updates on the state, as in conventional imperative languages, but it also ac-
cumulates updates, so that the result of a sequential composition can be used
in the context of a parallel update as well. Examples 29-32 demonstrate this
important feature of AsmL-S.

let © = new Int — Int {2 — 4} do (29)
((@[2]:=8) ; (a[2] = x[2] x 2[2]))
=% ({ors Int — Int}, {(0,2) = 4)}, {((0,2),64)}), void

The evaluation of a sequential composition of e ;e; at a state S proceeds as
follows. First e; is evaluated in S. If no exception is thrown and the resulting
update set is consistent, then the update set is fired (or executed) in S. This
creates an auxiliary state S’. Then ey is evaluated in S’, after which S’ is
forgotten. The current state is still S. The accumulated update set consists of
the updates generated by ey at S’ and the updates of e; that have not been
overridden by updates of es.

let © = new Int — Int {2 — 4} do (30)
(2[2]:=8 || 2[2] :=6) ; 2[2] = x[2] » 2[2]
— updateX

13

If the update set of the first expression is inconsistent, then execution fails
and throws an inconsistent-updates exception.

let © = new Int — Int {1 — 2} do (31)
(2[2] =4 || 2[3]:=6) ; 2[3] :=2[3] + 1
=% ({or Int — Int}, {(0,1) = 2)}, {((0,2),4), ((0,3),7)}), void

In this example, the update ((o, 3), 6) from the first expression of the sequential
pair is overridden by the update ((o,3),7) from the second expression, which
is evaluated in the state with content map {(o,1) — 2, (0,2) — 4, (0,3) — 6}.

let © = new Int — Int {1 — 3} do (32)
(while z[1] > 0 do z[1] := 2[1] — 1)
=% ({ors Int — Int}, {(0,1) = 3)}, {((0,1),0)}), void

While loops behave as in usual sequential languages, except that a while loop
may be executed in parallel with other expressions and the final update set is
reported rather than executed.

The question arises when are the updates fired? In principle, the updates are
collected while the body of the program is executed and fired at the end of the
execution. This does not mean that the execution proceeds in the initial state.
Consider for instance Example 32. Every round of the while loop is executed
in the state resulting from the execution of the previous rounds. Then why
should we collect the updates? There is no good reason to collect updates in
the case of Example 32. But, as we mentioned already, a while loop may be
executed in parallel with some other expression; then the updates need to be
reported. Also, something may go wrong with a while loop, in which case it
needs to be rolled back.

2.7 Finite Choice

AsmL-S supports choice between a pair of alternatives or among values in the
domain of a map. The actual job of choosing a value from a given set X of
alternatives is delegated to the environment. On the abstraction level of AsmlL-
S, an external function oneof (X) does the job. This is similar to delegating to
the environment the duty of producing fresh object identifiers, by means of an
external function freshid. (See §4.2 for more about these external functions.)

Evaluation of a program, when convergent, returns one effect and one value.
Depending on the environment, different evaluations of the same expression
may return different stores and values. Examples 33-37 demonstrate finite

14

choice in AsmL-S.
1]2 —> oneof{1,2} (33)
An expression e | e; chooses between the given pair of alternatives.

choose i in (new Int — Void {1 — wvoid,2 — voz’d}) do i (34)
=27, oneof{(({o — Int — Void}, {(0,1) — void, (0,2) — void}, D), 1)
(({0 — Int — Void}, {(o,1) — woid, (0,2) — void},), 2)}

Choice-expressions choose from among values in the domain of a map.

choose i in (new Int — Int {}) do i (35)

5 choiceX

If the choice domain is empty, a choice exception is thrown. (The full AsmL
distinguishes between choose-expressions and choose-statements. The choose-
expression throws an exception if the choice domain is empty, but the choose-
statement with the empty choice domain is equivalent to void.)

class Math{Double(x as Int) as Int do 2 xx} : (36)
new Math().Double(1] 2)

— oneof{2,4}

class Math{Double(x as Int) as Int do 2 xx} : (37)
new Math().Double(1) | new Math().Double(2)

— oneof{2,4}

Finite choice distributes over function calls.

2.8 Ezception Handling

Exception handling is mandatory for a modern specification language. In any
case, it is necessary for AsmL because of the integration with .NET. The
parallel execution of Asml.-S means that several exceptions can be thrown at
once. Exception handling behaves as a finite choice for the specified caught
exceptions. If an exception is caught, the store (including updates) computed
by the try-expression is rolled back.

In AsmL-S, exceptions are special values similar to literals. For technical rea-
sons, it is convenient to distinguish between literals and exceptions. Even
though exceptions are values, an exception cannot serve as the content of a

15

field, for example. (In the full AsmL, exceptions are instances of special excep-
tional classes.) There are several built-in exceptions: argX, updateX, choiceX,
etc. In addition, one may use additional exception names e.g. fooX.

class A {Fact(n as Int) as Int do (38)
(if n >0 then(if n =0 then 1 else n - Fact(n — 1))
else throw factorle)} :
new A.Fact(—5) —— factorialX

Custom exceptions may be generated by means of a throw-expression. Built-in
exceptions may also be thrown. Here, for instance, throw argX could appro-
priately replace throw factorialX .

Examples 39-41 explain exception handling.

let = new Int — Int {} do (39)
try (w[l] =2 x[3] = 4/0) catch argX : 5
27, ({0 — Int — Int},0, (Z)), 5

The argument exception triggered by 4/0 in the try-expression is caught, at
which point the update ((x,1),2) is abandoned and evaluation proceeds with
the contingency expression 5. In general, the catch clause can involve a se-
quence of exceptions: a “catch” occurs if the try expression evaluates to any
one of the enumerated exceptions. Since there are only finitely many built-in
exceptions and finitely many custom exceptions used in a program, a catch
clause can enumerate all exceptions. (This is common enough in practice to
warrant its own syntactic shortcut, though we do not provide one in the present

paper.)

try (throw fooX) catch barX,bazX : 1 —— fooX (40)
Uncaught exceptions propagate up.

throw fooX || throw barX —— oneof{fooX,barX} (41)

If multiple exceptions are thrown in parallel, one of them is returned nonde-
terministically.

throw fooX | 1 —— oneof{fooX, 1} (42)

Finite choice is “demonic”. This means that if one of the alternatives of a
choice expression throws an exception and the other one converges normally
the result might be either that the exception is propagated or that the value
of the normally terminating alternative is returned.

16

2.9 FExpressions with Free Variables

Examples 1-42 illustrate operational semantics for closed expressions (contain-
ing no free variables). In general, an expression e contains free variables. In
this case, operational semantics of e is defined with respect to an evaluation
context (b,r) consisting of a binding b for the free variables of e and a store
r = (0,w,u) where for each free variable x, b(x) is either a literal or a object
identifier in dom(6). We write e —;, v if computation of e in evaluation
context (b, r) produces value v.

THY —aetygen), 000 18 (43)

E[Q] L){ZHO}, ({o— Int—Bool},{(0,2) — false},0) false (44)

. s,V . .
A more general notation e ——;, s,v means that a computation of e in
evaluation context (b, r) produces new store s and value v.

2.10 Maps as Objects

This subsection expands Remark 3. It was prompted by a question of Robert
Stark who raised the following example.

class A {f as Int — Bool, g as Int — Bool} :
let a = new A(new Int — Bool {1+ true, 2 — true}, new Int — Bool {}) do
(45)
a.g:=a.f ; a.x(2):= false

s,V

— ({01 — A, 0y — Int — Bool, o3 — Int — Bool},
{(01,) = 03, (01,9) = 03}, {((01,9),02), (0,2), false)}), void

In this example, the first assignment a.g := a.f is responsible for the up-
date ((01, g), 02); the second assignment gives rise to the update ((09, 2), false).
Thus, a.g[2] has value false after all updates are executed.

This same program has a different semantics in the full AsmL, where maps
are treated as values rather than objects. In Asml, the assignment a.g := a.f
has the effect of updating a.g to the value of a.f, i.e., the map {1 — true, 2 —
false}. The second assignment, a.f[2] := false, has no bearing on a.g. Thus,
a.g[2] has value true after all updates are executed.

In treating maps as objects in Asml-S, we avoid having to introduce the
machinery of partial updates [11], which is necessary for the treatment of

17

maps as values in AsmL. This causes a discrepancy between the semantics
of AsmL-S and of AsmL. Fortunately, there is an easy AsmL-S expression
that updates the value of a map m; to the value of another map my (without
assigning ms to my):

forall i in m; do remove m[i| ; forall i in my do m4[i] := msli]

The first forall expression erases mq; the second forall expression copies ms to
my at all keys ¢ in the domain of ms.

3 Syntax and Static Semantics

The syntax of AsmL-S is similar to but different from that of the full AsmL. In
this semantics paper, an attractive and user-friendly syntax is not a priority
but brevity is. In particular, AsmlL-S does not support the offside rule of
the full AsmL that expresses scoping via indentation. Instead, AsmL-S uses
parentheses and scope separators like ‘: .

3.1 Abstract Syntax

We take some easy-to-understand liberties with vector notation. A vector
Z is typically a list z;...x, of items possibly separated by commas. A se-
quence x1 ayy,...,T, Y, can be abbreviated to ¥ a ¥, where « represents a
binary operator. This allows us, for instance, to describe an argument sequence
¢y as ty, ..., ¢, as t, more succinctly as ¢ as t. The empty vector is denoted
by e.

Figure 1 describes the abstract syntax of AsmL-S. The meta-variables ¢, f, m,
¢, prim, op, lit, and exc, in Fig. 1 range over disjoint infinite sets of class names
(including Object), field names, method names, local variable names (including
me), primitive type symbols, operation symbols, literals, and exception names
(including several built-in exceptions: argX, updateX,...). Sequences of class
names, field names, method names and parameter declarations are assumed
to have no duplicates.

An AsmL-S program is a list of class declarations, with distinct class names
different from Object, followed by an expression, the body of the program.
Each class declaration gives a super-class, a sequence of field declarations
with distinct field names, and a sequence of method declarations with distinct
method names.

AsmL-S has three categories of types — primitive types, classes and map types

18

pgm
cls
fid
mth
lit

op
prim,

erc =

cls : e

class ¢ extends c {fld mth}
fast

m(as t) as t do e

null | void | true | 0| ...
+|—=|/1l=|<|and]| ...
Bool | Int | Void | ...

prim | Null | c |t —t

argX | updateX | choiceX | ...

it | ¢

op(€)

let / =edoe

if e then e else e

new c(e)

new t —t {e+— €}

e.f | ele] | em(e)
e.f:i=e

ele] :==e | remove efe]
eist

east

elle | forall/inedoe
ele | choose/inedoe
e;e | whileedoe

try e catch ezc : e
throw ezc

programs

class declarations

field declarations

method declarations
literals

primitive operations
primitive types

normal types

exceptions

expressions

literals/local variables
built-in operations

local binding

case distinction

creation of class instances
creation of maps

field /index/method access
field update

index update

type test

type cast

parallel composition
nondeterministic composition
sequential composition
exception handling
explicit exception generation

Fig. 1. Abstract Syntax of AsmL-S

— plus two auxiliary types, Null and Thrown. (Thrown is used in the static
semantics, although it is absent from the syntax.) Among the primitive types,
there are Bool, Int and Void. Ironically, Void isn’t void but contains one
element. There could be additional primitive types; this makes no difference
in the sequel.

Objects come in two varieties: class instances and maps. Objects are created
with the new operator only; more sophisticated object constructors have to be
programmed in AsmL-S. A new-class-instance expression takes one argument
for each field of the class, thereby initializing all fields with the given argu-

19

ments. A new-map expression takes a (possibly empty) sequence of key-value
pairs, called maplets, defining the initial map. Maps are always finite. A map
can be overridden, extended or reduced (by removing some of its maplets).
AsmL-S supports the usual object-oriented expressions for type testing and
type casting.

The common sequential programming languages have only one way to com-
pose expressions, namely the sequential composition e ;es. To evaluate e; ;es,
first evaluate e; and then evaluate e;. AsmL-S provides two additional compo-
sitions: the parallel composition e; || e2 and the nondeterministic composition
e1 | ea. To evaluate e; || eq, evaluate e; and ey in parallel. To evaluate e; | ez
evaluate either e; or ey. The related semantical issues will be addressed later.
while, forall and choose expressions generalize the two-component sequen-
tial, parallel and nondeterministic compositions, respectively.

Asml.-S supports exception handling. In full AsmL, exceptions are instances
of special exception classes. In AsmL-S, exceptions are atomic values of type
Thrown. (Alternatively, we could have introduced a whole hierarchy of excep-
tion types.) There are a handful of built-in exceptions, like argX; all of then
end with “X”. A user may use additional exception names. There is no need
to declare new exception names; just use them. Instead of prescribing a par-
ticular syntactic form to new exception names, we just presume that they are
taken from a special infinite pool of potential exception names that is disjoint
from other semantical domains of relevance.

3.2 Class Table

It is convenient to view a program as a class table together with the expression
to be evaluated [16]. We assume that no class name is declared more than once
and that there is no declaration for Object. The class table associates class
names different from Object with the corresponding declarations.

Proviso 4 For the remainder of this paper, we restrict attention to an arbi-
trary but fized class table. In particular, classes will mean declared classes.

If ¢ is a class other than Object, then parent(c) is the class ¢ extended by
¢ according to the declaration of c. We assume that parent(c) either equals
Object or is declared earlier than c. addf(c) is the sequence of distinct field
names appearing in the declaration of ¢. The sequence of all fields of a class
is defined by induction using the concatenation operation.

fldseq(Object) = €
fldseq(c) = addf (c) - fldseq(parent(c))

20

We assume that addf (c) is disjoint from fldseq(parent(c)) for all classes c. If
f is a field of ¢ of type t, then fldtype(f,c) = t. If fldseq(c) = (f1,- .., fn) and

fldtype(f;, c) = t;, then
fdinfo(c) = fast = (f1 asty,..., f, as ty).

The situation is slightly more complicated with methods because, unlike fields,
methods can be overridden. Let addm(c) be the set of method names included
in the declaration of ¢. We presume for simplicity that different method dec-
larations of any class ¢ have different names. We define inductively the set of
all method names of a class.

mithset(Object) = ()
mthset(c) = addm(c) U mthset(parent(c))

For each m € mthset(c), delr(m,c) is the declaration
m(ly as 1y, ..., {, as 7,) ast do e

of m employed by c¢. We assume, as a syntactic constraint, that the variables
¢; are all distinct and different from me. The declaration dclr(m,c) is the
declaration of m in the class home(m, c) defined as follows:

m € addm(c) m € mthset(c) — addm(c)

home(m,c) = ¢ home(m, c) = home(m, parent(c))

3.3 Subtyping

The subtype relation < (relative to the underlying class table) is defined in-
ductively by the following rules, where ¢,t',t", 7,7/ are arbitrary types and ¢, ¢
are arbitrary classes.

tSt/ tlét,/

o t<t, < is a partial order
t S t//
parent(c) = ¢
° < extends the parent relation over classes
c<c
o 7 — 1< Object maps are objects
. T<7 t<{t maps types are covariant in argument and
(r—t) < (7 —t) result types

21

t < Object
- — Null lies beneath all object types

Null <t
o Throun <t Thrown lies beneath all other types

Note that map types are covariant in both argument and result types which
is consistent with the type system of Asml and which fits many purposes.
For example, maps are often used as lookup tables e.g. to represent dynamic
functions of abstract state machines [8]. (In §5.3.4 we discuss the advantages
and disadvantages of changing our type system such that map types are con-
travariant in argument types.)

The subtype relation is a partial order of a relatively simple form described
in the following proposition. Call two types comparable if one of them is a
subtype of the other; otherwise call them incomparable.

Proposition 5

1. The primitive types form an anti-chain with respect to < (i.e. they are
pairwise incomparable). No primitive type compares to Null.

2. Restricted to classes, the subtype relation is a (reflexive transitive) tree
relation. The class tree is rooted at Object and lies above Null. No class
compares to any primitive type.

3. The map types are located below Object and above Null. No map type com-

pares to primitive types or subclasses of Object.

Below all these types is located Thrown.

For all map types t; — ty and 7 — 1o, we have

Al

(t1 = ty) < (1 —) <= (L1 <7)A(t2 < 7).
The proof is straightforward. O

Corollary 6 FEvery two types ti,ts have a greatest lower bound t, Mty. Fvery
two subtypes of Object have a least upper bound ti Uty O

3.4 Well-Typed FExpressions

We assume that every literal /it has a built-in type littype(lit). For instance,
littype(2) = Int, littype(true) = Bool and littype(null) = Null. We also assume
that a type function optype(op) defines the argument and result types for every
built-in operation op. For example, optype(and) = (Bool, Bool) — Bool.

A type context T is a function mapping local variables, possibly including me,
to types. Tr is a function associating certain expressions e with types. If T (e)

22

is defined, then e is said to be well-typed with respect to T'.

The definition of Tr(e) is inductive. The induction step splits into many
rules, most of them self-explanatory. A comment, if any, follows the rule. As
a notational shorthand, we write Tr(ey,...,e,) = (t1,...,t,) to mean that
Tr(e;) =t; for all i = 1,...,n. The same applies to inequalities.

Note that, in the following rules, types ¢t and 7 may equal Thrown, but re-
member that Thrown is not available in the syntax and thus cannot occur in
expressions.

LITERALS AND LOCAL VARIABLES
T1. Zp(lit) = littype(lit)
¢ € dom(T)

T2, ——m——
TT(@ = T(ﬁ)

Tr(¢) is undefined when ¢ ¢ dom(7'). It will follow that an expression e is
well-typed with respect to 7" only if dom(7") contains all free variables in e.

OPERATIONS

optype(op) =T — ¢ Tr(e) <7
Tr(op(e)) =t

LocAL BINDING

‘ZT(el) =1
TT(let E = €1 dO 62) = ‘ZT@{g,_,t}(eg)

T4.

Here T'© {¢ + t} is the type context obtained from T either by adding
¢ —t,if £ ¢ dom(T), or else by replacing ¢ +— T'(¢) with ¢ — t. The override
operation & is defined formally in §13.

CASE DISTINCTION

Tr(e1) = Bool
T5.

Tr(if e; then e, else e3) = Tp(eg) U Tr(es)

Thus, if e; then ey else e3 is well-typed with respect to T only if the least
upper bound of Tr(ey) and Tr(es) exists.

CLASS INSTANCES

23

fidinfo(c) = fast Tp(e) <t

T6.
Tr(new c(e)) =c¢
T7. trle)=c
Tr(e.f) = fldtype(f, c)
- Tr(er) =c delr(m,c)=m(lasT)astdoes FIr(ez) <7
TT(el.m(?g)) =1
To. Tr(ez) < Tr(er-f)
Tr(er.f :=ey) = Void
MAPS
Cr(er) <t Tr(ey) <t
10 r(@) <t r(€2) <ty
‘ZT(IIGW tl — tz {671 — 672}) = tl — t2
TiL ‘ZT(el) =71 ‘ZT(GQ) S T
r57‘(61[62]) =t
T19. TT(el) =71 ‘ZT<€2) S T ‘ZT(€3) S t
Tr(erfes] := e3) = Void
13 Tr(er) =7 —t Tr(e) <7

Tr(remove e;[es]) = Void

Note that map assignments require runtime type checking (for the same reason
that array assignments of C# or Java require runtime type checking). For
example, we may have a method that, given a map = of type Int — Point,
performs assignment z[3] := new Point(), which is statically correct. Later
on, we extend Point to ColoredPoint so that the type Int — ColoredPoint is
a subtype of Int — Point. But passing a map of type Int — ColoredPoint to
our method causes a problem. See also examples 23 and 24.

TYPE TEST AND TYPE CAST

t < ‘ZT(e)
T14.
Tr(e is t) = Bool
t<%r(e
T15. rle)
Tr(east)=t

24

Casting into a subtype is viewed valid at compile time but may turn out to
be invalid at runtime. Thus, casts must be rechecked at runtime.

The premise t < Tp(e) requires an explanation. Why do we restrict type
casting to this one case? If Ty(e) < ¢, then, by type soundness (theorem 18),
e is t must evaluate to true unless an exception occurs. If Tr(e) and ¢ have
no lower bound other than Thrown, then type soundness implies that e is ¢
must evaluate to false. In either case, the expression e is t is superfluous and
can harmlessly (perhaps usefully) be disallowed. There is a third possibility:
Tr(e) and t are incomparable but have a lower bound ¢ > Thrown. In this
case, we can replace e is ¢ with the more reasonable e is ¢t M Ty (e). (Note that
the greatest lower bound exists by corollary 6.)

PARALLEL, NONDETERMINISTIC AND SEQUENTIAL COMPOSITION

Tr(eq) is defined
Tr(er [e2) = Tr(es)

T16.

This reflects the intention that an expression e; || es outputs the value pro-
duced by ey unless an exception is thrown. There are good ways to restore the
symmetry of the parallel composition. This issue will be discussed later on.

Tr(er) =7 —t Trofesry(€2) is defined

T17.
Tr(forall £ in e; do ey) = Void

T18. TT(el I] 62) = TT(el) L ‘IT<€2)

Tr(e) =7 —t
T19. r(e)

Tr(choose ¢ in e; do e3) = Trgpi.ry(e2)

The part choose ¢ in ey refers to choosing an element in the domain of e;
(rather than choosing an entire maplet).
Tr(ep) is defined
Tr(er; ex) = Tr(es)
Tr(e1) = Bool Tr(es) is defined
Tr(while e; do ey) = Void

T20.

T21.

EXCEPTION GENERATION AND HANDLING

T22. Tp(throw exc) = Thrown

25

T23. Tr(try e; catch ezc: es) = Tr(ey) U Zr(er)

Remark 7 Typing rules T1-T23 could be strengthened so as to filter out
certain degenerate expressions like 74 (throw fooX) which always evaluates
to an exception even though it is well-typed. See §5.3.6 in this connection.

3.5 Well-Formed Programs

A program is well-formed if all of its classes are well-formed and its body is
well-typed in the empty type context. A class ¢ is well-formed if every method
m € mithset(c) is well-formed relative to ¢, symbolically m ok in c.

Suppose dclr(m,c) =m(¢y as 1, ..., {, as 7,) as t do e and parent(c) = .

Let T denote the type context {me — ¢} U{l; — 7, ..., 4, — 7,}. The
definition of m ok in ¢ is inductive.

m € addm(c) — mthset(c) Trle) <t

o
m ok in ¢
m € mthset(c) — addm(c) m ok in ¢
) m ok in ¢
m € addm(c) N mthset(c) Trle) <t m ok in ¢
delr(m,d)=m(¢y as 7], ..., ¢ as 7)) ast do ¢ T—ot<7 =1t
) m ok in ¢

The statement 7 — t < 7/ — ¢/, in the final premise, abbreviates the inequal-
itiesy <7, ..., 7, <7, and t <.

Proviso 8 In the sequel, we assume that all classes in the underlying class
table are well-formed.

3.6 Analysis: Type Contexts

The results in this subsection are not used until §5. We include them here
because they belong naturally in the present section on static semantics.

26

3.6.1 Induced type contexts

Let o be a distinguished element of LocalVar. A punctured expression is an
expression e with a unique free occurrence of variable o; this is sometimes writ-
ten as e(o). For any expression €, let e(¢’/o) denote the expression obtained
from e by substituting the unique free occurrence of o with e’.

For every punctured expression e(o) and type context T', we define the induced
type context T ® e(o) at o in e with respect to T.

o Ifeisothen T®e(o)="T.

e If e has any of the forms
let ¢ = ¢’ do €”(0), forall £ in ¢’ do €”(o), choose ¢ in ¢’ do (o),

then T ® e(o) = (T © {¢ — Tr(e)}) ® €”’(0). For example,
T® (let { =7do (11+0)) =T e {(— Int}.

e Otherwise T'® e(o) = T ® eg(0) where ey(0) is the unique maximal proper
punctured subexpression of e. For example, if e = ¢’ || €”(0) then T®e(0) =
T ®e"(o).

Proposition 9 If Trgeo)(€') = Trgeo)(€”) then Tp(e(e’ /o)) = Tr(e(e”/0)).
The proposition is proven by a straightforward induction on e(o). O

We will not need the concepts of punctured expressions or induced type con-
texts until §5.2.

3.0.2 Dominating type contexts.

Let T and T” be any type contexts. We say 1" dominates T, written T < T,
if T(¢) <T'(¢) for all £ € dom(T).

Theorem 10 If T < T and both Tr(e), T (e) are defined, then Tr(e) <
TT/(«E).

Proof Proof is by induction on e. Assume that the statement hold for all
proper subexpressions of e. By examination of typing rules T1-T23, we show
that the statement holds for e as well.

T1-T3, T6, T9-T10, T12-T17, T20-T22: These cases are obvious. For instance,
if e is of the form remove e [es] then Tr(e) = Ty (e) = Void by rule T13.

T4: Suppose e is of the form let £ = e; do es. Let t = Tr(eg) and t/ = Ty (ey).
Then ¢ < ¢’ by the induction hypothesis. Therefore, T©{¢ — t} X T'©{l

27

t'}. Using the induction hypothesis again, we have
Tr(e) = TT@{@ —t} (e2) < Lre Ht/}(GQ) = Tp(e).

T5, T18, T23: Suppose e is any of the following: if ey then e; else ey, €; | ea,
or try e; catch ezc : e5. Then Tr(e;) < Tp(e;) for i = 1,2 by the induction
hypothesis. Therefore,

‘IT(e) = ‘IT(el) L IT(eg) S ‘ZT/(el) L TT/(eQ) = C{T’<€)-

T7: Suppose e is of the form eg.f. Let ¢ = Tr(ep) and ¢ = Ty (ep). Then
f is a field of both ¢ and ¢. Since ¢ < ¢, well-formedness of the underlying
class table implies that f is declared in a unique common ancestor of ¢ and
c’. Therefore,

Tr(e) = fldtype(f,c) = fldtype(f,c) = Tr(e).

T8: Suppose e is of the form eg.m(e). Let ¢ = Tr(ey), ¢ = Tp(eg), T —
t = mithtype(m,c), and 7 — t' = mthtype(m,). Since ¢ < ¢, the well-
formedness of m relative to ¢ and ¢ implies that 7 — ¢t < 7 — t'. In particular,
TT(S) =t S t/ = ET/(€).

T11: Suppose e is of the form e [es]. Let 7 — ¢ = Tp(eg) and 77 — t/ = T (ey).
Invoking the induction hypothesis, we have Tr(e) =t < t' = Ty (e).

T19: Suppose e is of the form choose £ in e; do ey. Again, let 7 — t = T (eq)
and 7" — t' = T (e1). By the induction hypothesis, 7 < 7/. It follows that
Te{lw— 1} <T'e©{l — 7'}. Using the induction hypothesis again, we have

Tr(choose (in ey do e;3) = Trgprry(e2)
< Tropry(e2) = Trr(choose £ in e; do ey). O

4 Operational Semantics

By induction on expressions e, we define the effect €, ;(e) of executing e (start-
ing) at a given store s under a binding b for the free variables of e. This allows
us to define the effect of executing a program.

Our semantics is structural operational semantics (SOS) in the sense that it
is operational and is defined by induction on syntactical structure. It is thus
similar to Plotkin’s structural operational semantics [23]. People distinguish
between small-step and big-step styles of structural operational semantics [22].
The latter is sometimes called natural semantics [18]. Our semantics is of the
big-step variety.

28

However, we break the SOS tradition as far as the interaction with the outside
world is concerned. To query the outside world, we use external functions;
we use them the same way they are used in abstract state machines [8]; we
do not presume any familiarity with abstract state machines, however. The
question arises why to break the tradition. (One of our referees insisted that
we address this question.) Well, there are two aspects of AsmL-S that require
the intervention of outside world. One is nondeterminism™ and the other is the
creation of new objects. Traditional SOS deals elegantly with nondeterminism.
It is more awkward to account for new-object creation in traditional SOS,
especially when, as in our case, multiple new objects are created in parallel.
More importantly, the full AsmL is highly interactive, and so our semantics
should scale up with respect to additional kinds of interaction with the outside
world.

Remark 11 We speak here about intra-step interaction, a kind of interaction
that occurs within one step of a program. The resolution of nondeterminism
and new object creation are examples of such intra-step interaction. Other
examples include calling library routines or foreign methods. Without loss
of generality, intra-step interaction can be conducted by issuing queries and
receiving replies [3]. Call an interactive algorithm ordinary if it completes a
step only after all the queries from that step have been answered and if it uses
no information from the outside world except for the answers to its queries. An
axiomatization of ordinary sequential algorithms with intra-step interaction is
found in [3]. It turns out that external functions are sufficient to support
ordinary interaction with the outside world [4].

The rest of this section is as follows. In §4.1, we define some semantic domains
and functions that are needed in the definition of &, ;(e). In §4.2, we introduce
evaluation contexts, effects and two external functions that take care of object
construction and nondeterminism. §4.3 is devoted to a recursive definition of
&, s(e) and a definition of the effect Effect(r) of a program 7. A type soundness
theorem is formulated in §4.2 and proved in §5.1.

4.1 Stores

Let Literal, LocalVar, Objectld, Class, Fieldld, MapType, Exception be the
following disjoint sets: the AsmL-S literals, an infinite set of local variables
including me, a pool of potential object ids, the classes of the underlying
class table, the field names of these classes, the map types generated by these
classes, the set of built-in exceptions plus an infinite set of potential custom

! The point that an algorithm needs an outside world to resolve nondeterminism
is argued in [10, Section 9.1].

29

exceptions. Let DEL be a fresh symbol, not occurring anywhere in the AsmL-S
syntax.

We define a few additional sets of interest. Some of them have been described
— in a preliminary way — in §2. If o, 3 are sets, then o — 3 denotes the set
of partial functions from « to 8. p(«) denotes the powerset of a.

Nvalue = Objectld U Literal
Value = Nvalue U Ezxception

Elements of Nvalue are called normal values.

TypeMap = Objectld — (Class U Map Type)

Index = Fieldld U Nvalue

ContentMap = Objectld — (Indexr — Nvalue)

Update = (Objectld x Index) x (Nvalue U{DEL})
UpdateSet = o(Update)

If 6 is a type map and t is a type, then we define
Nuvaluey(t) = {o: 0(o) <t} U{lit : littype(lit) < t}.

States of a computation are represented by stores. Formally, a store is a triple
s = (0,w,u), where 6 is a type map, w is a content map and u is an update
set, that satisfies the following three conditions.

(a) dom(f) = dom(w) 2D {o: ((0,7),v) € u} where v could be DEL

(b) if 8(0) = c € Class and fldinfo(c) = f as t then

e dom(w(0)) ={f1,., fn}
e w(0)(f) € Nvaluey(t)
e ((0,1),v) eu = i €{f1,..., fn} and v € Nvaluey(fldtype(i,c))

(c) if (o) =T — t € MapType then
e dom(w(0)) C Nvaluey(T)
e rmg(w(o)) C Nvaluey(t)
e ((0,1),v) € u = i € Nvaluey(r) and v € Nvaluey(t) U {DEL}.

If s is a store, we will sometimes write #,, ws and u, to denote the components
of s. To clarify our intentions, here are explanations in plain language.

The domain of # and w is the set of object ids allocated prior to the evaluation
of the expression. Once an object is created, its id persists until the end of
the run of the program. That is, unless the object becomes unreachable and is

30

garbage-collected; however, for purposes of semantics, garbage collection can
be ignored.

6 maps allocated objects to their runtime types. Once declared, an object’s
runtime type never changes. The content map w associates objects with func-
tions representing their, well, contents. If o is an instance of class ¢, then w(0)
maps the field names of ¢ to their values in o. If 0 is an object of type 7 — ¢,
then w(o) is the map represented by o.

Remark 12 Alternatively (and closer to the traditional ASM paradigm), let
Location = Objectld x Index. Then ContentMap can be defined as Location
— Nuvalue. This explains why updates are represented as pairs in Location X

(Nvalue U {DEL}).

There are two kinds of updates: modifications and removals. A modification
update puts a new value into a given location. Formally, this is a pair ((o, f),v),
where 0 is a class instance, f is a field of 0 and v is a value of the appropriate
type, or else ((0,v1),v2), where o is an object of map type and wvy,vs are
values of the appropriate domain and codomain types, respectively. It is not
required that the new value differs from the old one. Since updates may be
performed simultaneously, a trivial update, where the new value equals the
old one, may have semantical significance: it may clash with another update
of the same location. A removal update, formally a pair ((o,v), DEL), removes
a given map location. We say u is inconsistent if it contains distinct updates
of the same location; otherwise, it is consistent. A consistent update set thus
gives rise to a content map in the alternative sense: from Objectld x Index to
Nvalue U { DEL}.

Notation 13 Let R;, Ry be any binary relations and my, my any maps.
e The override of Ry by Ry is defined by

Ri© Ry = {(m,y) ER:Pz.(z,2) € Rg} U Rs.
e The override of my by msy is defined by

my(z) if x € dom(m,) — dom(my)

me(z) if z € dom(my).

(m1 © my)(x) = {

e The union of Ry and Ry is defined, in the usual way, as R; U Rs.

o If my; © my = my © mq, then the union of m; and mo is defined by

my(z) if z € dom(m;)

(my Umg)(x) = {

ma(z) if z € dom(my).

If my © mg # mo © my, then m; U my is undefined.

31

e By extension, for any stores s; = (61, ws,u;1) and sy = (0, wq, uz) we define
S1 U So = (91 U 92, w1 Uwg, U1 U UQ)

provided that maps 6; U6, and w; Uws are defined. (u; Uuy is always defined,
since u; and uy are binary relations.) Check that if s; U sy is defined then
it meets the definition of a store.

o We say sy extends sy, written s; C so, if 51 U 59 = s9.
Remark 14 If G(m) = {(z,y) : m(x) = y} denotes the graph of a map m,
then G(m; ©@ ms) = G(mq) © G(my) and G(my Ums) = G(my) U G(my) when

mq Umsy 1s defined.

Remark 15 Representing ContentMap in the form o« — (6 — =), rather
than (a x) — =, allows us to use the convenient override operation ©.

Firing updates

Let s = (0,w,u) be any store. If u is consistent, then it gives rise to a new
store § = (0, ©,) where content map @ is defined by

{v if ((0,7),v) € w and v # DEL
w(o)(i) if ((0,7), DEL) ¢ u.

s is the store obtained from s by “firing” all updates in w. If u is inconsistent,
then § is undefined.

4.2 FEvaluation Contexts, Effects, and External Functions

An evaluation context is a pair (b, r) consisting of a store r and a binding b,
which is a partial function from LocalVar to dom(6,)ULiteral. Every evaluation
context (b, r) gives rise to a type context [b, r] where

b, 7](¢) = {QT(b(é)), if b(¢) € dom(6,)
| littype(b(0)), if b(¢) € Literal.

Check that, if a store s extends 7, then (b,s) is an evaluation context and
[b,r] = [b, s]. (We will use this fact extensively in the type soundness proof.)

An expression e is (b, r)-typed if it is well-typed with respect to the type
context [b, 7], that is, if Ty, (e) is defined.

32

An effect is a pair (s,v) (the angular brackets are used only for the purpose of
visual distinction) consisting of a store s and a value v in dom(fs) U Literal U
Ezception. The type of effect (s,v) is defined in the obvious way:

0s(v) if v € dom(6;)
type((s,v)) = < littype(v) if v € Literal
Thrown if v € Exception.

In the next subsection, we define an operator €, ,. over (b, r)-typed expressions.
The computation of &,,(e) is in general nondeterministic and it may diverge.
If it converges, it produces an effect &, (e) = (s,v). In §5.1 we prove:

Theorem 18. (Type Soundness) type(&,(e)) < Tpy(e) for all b,7,e and
any converging computation of &, (e).

The definition of the effect operator €, , utilizes two external functions. One of
them is a nullary function freshid. Every evaluation of freshid produces a new
object id. Different invocations of freshid produce different objects. The other
external function is a unary function oneof (X). It takes a nonempty set X as
an argument and returns one of its elements. We presume that the outside
environment guarantees that the two external functions work properly.

The effect &,,(e) is nondeterministic only because of the use of external func-
tions. Due to the use of external functions, the effect depends on the outside
environment. We keep the dependence of the effect &,,.(e) on the environment
implicit. The equality &,,.(e) = (s,v) means that some convergent computa-
tion of & ,(e) produces the effect (s, v). The equality & ,(e) = &y, (¢') means
that

— the range of possible convergent effects of &, ,(e) equals the range of possible
convergent effects of & ,/(€'), and

— there is a divergent computation of &,,(e) if, only if, there is a divergent
computation of & ,/(e’).

The range of possible effects of &, (e) does not depend on the environment.

4.8 Definition of the Effect Operator

This section is devoted to a recursive definition of the effect operator &, (e)
over (b, r)-typed expressions. The recursion reflects the inductive definition of
the abstract syntax of AsmL-S.

33

Proviso. In rules E1-E32, the symbols v, v/, vq, v9, ... stand for normal values,
not exceptions. In rules E33-E40 (dealing with exception generation, handling
and propagation), these same symbols represent any values (normal or excep-
tional). In this way, we separate the rules for normal evaluations from those
for exception handling and propagation.

LITERALS AND LOCAL VARIABLES

El. &, (lit) = (r, lit)
E2. &,,.(0) = (r,b(¢))

OPERATIONS
¢y () = (5,0) op(v) is defined
& (op(€)) = (Us, op(v))

E3.

¢y (e) = (5,0) op(v) is undefined
Ey(op(e)) = (r, argX)

EA4.

LocAL BINDING

sz,r(el) = <57U>
bem(let (= €1 do 62> = @b@{é»—w;},s(e2)

E5.

CASE DISTINCTION

&y r(e1) = (s, true
o poler) = (5. truc)

¢, (if e; then e, else e3) = &, ;(e2)

& (e1) = (s, false)

¢, (if e; then e, else e3) = &, ;(e3)

E7.

NuLL EXCEPTIONS

&y (e1) = (s, null)
Epr(er.f) = €, (forall ¢ in e; do ey)

= €&, (choose (in e; do ey) = (r, nullX)

ES8.

&y (e1) = (s, null) type(€y,.(e2)) # Thrown
Cpr(er.f = e2) = € (e1[ea]) = &, (remove e[eq]) = (r, nullX)

34

& (e1) = (s, null) type (€, (e23)) # Thrown
& (er]ea] == e3) = (r, nullX)

€. (e1) = (s, null) type(€y,.(e2)) # Thrown
& (e1.m(ez)) = (r, nullX)

CLASS INSTANCES

¢y (e) = (5,7) freshid() = o
¢, (new c(€)) = <r UUyUsu ({0 —c},{o— {f—T}}, (Z)), 0>

E9.

We include “r U” in case fldseq(c) is the empty sequence e.

¢y (e) = (s,v) v # null

E10.

Epr(e-f) = (s, ws(v)(f))

Cprler) = (s,v1) Cor(E2) = (52,72) type((s1,v1)) = ¢
- delr(m,c) =m(l as 7) as t do e

Qib,?“(el'm<€72)) = Qi{mer—wl,ZH@},slU U§(€3>

Note that both e; and & are evaluated in store r. A similar remark applies
to a number of other rules. The binding in the latter evaluation context is
{me + vy, { — D3} rather than b& {me +— vy, { — T3} since the free variables
in e3 are contained among ¢ U {me} as a consequence of the well-formedness
of m relative to c.

Remark 16 Almost every rule in the recursive definition of &, (e) reduces
& (e) to effects €, 4(e’) where €' is a proper subexpression of e. Rules E11
(method calls) and E32 (while-expressions) are the only exceptions. Conse-
quentially, these rules are the only reasons that computation of €, ,(e) may
diverge.

QEb,T(el) = <817U1> sz,r(62) = <32,U2> U1 7é null
Cprler.f =€) = <$1 U sq U (@,@, {((Ul,f>,’l)2>}>, voz’d>

E12.

The empty type map as well as the empty context map are denoted by ().

Maps

35

(eb,r<e1> — (57,7) ¢ (@) = (55, vz>)

consistent (v, Us) freshid() = o
E13.
¢ (new 7 — t {&] — e3})
= <rU Usiu Usz U ({or—>7—>t},{or—> {UTHE}},@), o>
where consistent(ay, ..., ap, by, ..., b,) = /\ (a; = aj) < (b; =b;)
1<i,j<n
514 ¢ (e1) = 51,01) C(e2) = (32,T2) —consistent(vr, T3)
' ¢y, (new 7 — t {e7 — e3}) = (r, argconsistencyX)
B15 &(e1) = (51,01) &yr(e2) = (s2,02) vy € dom(ws, (v1))
€, (erfea]) = (51U s2, wy, (v1)(v2))
£16 &r(e1) = (51,01) €y (e2) = (52,02) vy & dom(ws, (v1))

Epr(e1]ea]) = (r, mapkeyX)

(emel) = (s,01) Coles) = (sp,vn) Cyules) = <33,v3>)
E17

type(s2, v2) — type(ss, vs) < type(si,v1)

Epr(erfea] :=e3) = <81 U sy U sg U (@, 0, {((vy, m),v;;)}), void>

(emel) = (snv1) Coled) = (spu) Cpules) = <33,v3>)
E18

type((s2,v2)) — type((s3,vs)) £ type({s1,v1))

Cpr(e1ea] == e3) = (r, maptypeX)

&y (e1) = (s1,01) Epr(e2) = (s2,v2) vy # null
¢, (remove e;[ey]) = <31 Usg U (Q), 0, {((v1,va), DEL)}), void>

E19.

TYPE TEST AND TYPE CAST

Epr(e) = (s,v) type((s,v)) <t

€y, (e is t) = (s, true)

E20.

€p(e) = (s,v) type((s,v)) £ 1
Epr(eis t) = (s, false)

E21.

36

Er(e) = (s,v) type((s,v)) <t
¢y (e ast) = (s,v)

E22.

¢(e) = (s,v) type((s,v)) £ t
¢y (e as t) = (r, castX)

E23.

PARALLEL, NONDETERMINISTIC AND SEQUENTIAL COMPOSITION

be,r(el) = <51,U1> be,r(€2) = <52,U2>

Epr(er || e2) = (51U s9, v2)

E24.

The do-in-parallel operation || returns the combined stores of both effects
together with the value of the second effect. (An alternative semantics in
which e; || e5 returns void is discussed in §5.3.2.)

€ (e1) = (s,0)
Craftrp),s(€2) = (5,,0,) for each p € dom(ws(v))
€, (forall in e; do e3) = (sU |J s, void)

pedom(ws(v))

E25.

A forall-expression computes the combined store of multiple parallel execu-
tions of ey with respect to evaluation contexts which vary as the local variable
¢ ranges over the domain of the map given by e;. The value returned is void.

06 oneof {left, right} = left oneof{left, right} = right
€yr(er] e2) = &Erlen) Cyr(er] e2) = & r(en)

Recall that oneof (X) is an external function computed by the outside world.
Different calls to oneof (X) can give different results.

. Epr(er) = (s,v) dom(w,(v)) =0

¢, (choose /¢ in e; do eq) = (r, choiceX)

Epr(e1) = (s,0) dom(ws(v)) # 0 oneof(dom(ws(v))) = p

E28.
€;-(choose ¢ in e, do e3) = Epopripys(€2)

In choose-expressions, like in forall-expressions, ¢ is bound to a value in the
domain of the map given by e;.

37

Epr(er) = (s,v) U, 1s inconsistent

E29.
&y (e1; e2) = (r, updateX)
= (0w, 0) Ep(er) = (si,v1) s1= (01, w1, u1)
530, uy is consistent €3 (e2) = (s2,v2) Sy = (02, w2, us)

Epr(er;er) = <(92, wr ©wy, Uy U (ug © Uz)), U2>

Recall how we compute the update set of e ; e5. First we evaluate ey in the
present store, then we evaluate ey in the modified store obtained by firing all
updates generated by e; and we return the specially combined store in which
updates generated by ey override updates generated by e;. We compute e in
the evaluation context 7/, rather than r, in order to isolate updates generated
by e; from those accumulated in u,. We then compute e, in the store sy
obtained from s; by firing u; (see the end of §4.1 in this connection) and
return u, U (u3 © ug).

We return the type map 6 since, by monotonicity, 6, C 6, = 0 C 6. Thus,
dom(6,) includes all existing objects as well as all objects created by e; and
es. Also by monotonicity, w, C w; and wg € wo. However, it can happen that
w1 # wg . It remains to explain the content map wy © w;. One may have an
impression that the content map should be just wy. But this is not necessarily
so. Recall that ey is evaluated in the auxiliary store s; obtained from s; by
firing uy. After the evaluation of ey, the auxiliary store is thrown away. The
objects altered by firing u; should be returned to their virgin status. This is
achieved by overriding w, with wy.

& (e1) = (s,v U, 1S inconsistent
g, (@) = (5v)
&y (€15 e2) = (r, updateX)
Ep.(e1) = (s, false) u, 18 consistent
¢, (while e; do ey) = (s, void)
= (0p,wr,0) &E(er) = (51, true) s1 = (01, w1, u1)
uy is consistent €3 (e2) = (52,v2) Sg = (09, wq, uz)
_— 5 = (92, wy ©wi, U, U (up © UQ))

¢ (while e; do ey) = &, (while e; do e,)

If the evaluation of e; creates no updates, then Rule E32 can be simplified
to contain only the premises &,,(e1) = (s1, true) and €, (e3) = (s,v). In

38

general, however, the evaluation of e; does produce updates, and they need
to be taken care of. Further, if the guard e; is deterministic, Rule E32 can be
simplified to contain only the premises &, (e;) = (s, true) and &, (e1;e3) =
(s,v). But if e; contains calls to the external function oneof then the simplified
form is not appropriate: we have to ensure that e; is not evaluated twice.

Rule E32 is one reason that computation of &,,.(e) may diverge (see remark 16
following rule E11).

EXCEPTION GENERATION AND HANDLING

In the remaining rules, v, v, vy, vs, ... represent any values, normal or excep-
tional.

E33. &, (throw exc) = (r, exc)
Epr(er) = (s,v) v ¢ exc

¢, (try e; catch exc : eg) = (s,v)

E34.

Epr(er) = (s,v) v € exc

E35.
¢, (try e; catch exc : eg) = €, (e2)

Here e, is evaluated in store r. The updates produced during the evaluation
of e; are lost. (In fact, s = r by the part 3 of theorem 17.)

EXCEPTION PROPAGATION

Cpr(ery ooy €n) = (S1,01) 4oy (Spy Up) {v1, ..., v, } N Exception # ()

E36.
& (eo) = <r, oneof ({vy, ..., v, } N Exception)>
where eq is any of the following:
new c(ey,...,e,) newrT —t{ej ey ..., e, 1€, eist
er.f e1]es] e ast
er.mles, ..., e,) e1les] == e3 er || e
er.f :=e remove e [es]
E(e1) = (s,v v € Fxception
—_— (e1) = (s,0)

&y (eo) = (r,v)

where ¢ is any of the following:

let / = e; do ey forall / in e; do e, e1; e
if ¢; then e, else e3 choose f in ¢; do e; while ¢; do e,

39

This is different from E36: e; is evaluated first.

T/ - (97'7 Wy, Q) Q:'b,r"(€1> == <817 Ul) U1 ¢ Exc@ption

38 us, is consistent €3 (e2) = (52,v2) vy € Exception
& (€15 €2) = (r,va)

= (0, wr, 0)& v (e1) = (51, true) us, 18 consistent

30 €5 (e2) = (s2,v2) vy € Exception
' ¢, (while e; do ey) = (r, v2)
Epr(er) = (s,v) v & Fzception
Crofrpys(€2) = (8p,v,) for each p € dom(ws(v))

240 {v, : p € dom(ws(v))} N Exception # ()

¢, (forall £ in e; do ey) =
<r, oneof ({v, : p € dom(ws(v))} N Exception)>
This concludes the definition of &,,.

Check that the premises of rules E1-E40 are mutually exclusive. However,
the premises are not complete, i.e. they do not cover all possibilities. If e is
(b, r)-typed but does not satisfy any premise, then &, (e) is said to diverge.
If &,,(e) = (s,v) converges, then check that E1-E40 guarantee that (s,v) is
indeed an effect (i.e. s is a store and v € dom(0s) U Literal U Exception.

The following theorem describes an important property of &, ,.
Theorem 17 (Monotonicity of Stores) Suppose &, (e) = (s,v).

1. rCs
2. [b,r] = [b, s]
3. v € Fxception —> r =35
Proof Statements 1 and 3 are easily verified by inspection of effect rules E1-

E40. Statement 2 follows trivially from 1. O

Effect of the Program

Programs 7 are also evaluated (or executed) for its effect. Let e be the body
of 7. By abuse of notation, we write () for both the empty binding and the

40

initial store (with no objects or updates). The effect of 7 is defined as follows.
Recall that § is the store resulting from firing updates u, at store s.

Epole) = (s,v) v € Nvalue us is consistent
[]
Effect(m) = (8, v)
Epole) = (s,v) v € Novalue us is inconsistent
[]

Effect(m) = (0, updateX)
Epole) = (s,v) v € Exception
Effect(m) = (0, v)

(S}

Analysis

The precise semantics of a programming language allows one to prove various
properties of the language. In § 5.1 we prove the type soundness of AsmL-S.
In § 5.2, we prove a refinement theorem. Some additional issues are discussed
in § 5.3.

5.1 Type Soundness

This subsection is devoted to a proof of type soundness for AsmL-S.

Theorem 18 (Type Soundness) For every evaluation context (b,r) and every
(b, r)-typed expression e, we have

type (€. (€)) < Ty (e)

for any converging computation of &, (e).

Proof Proof is by induction on e. Assume that the statement holds for any
b',r', e where € is a proper subexpression of e. By examination of effect rules
E1-E40, we will show that the statement also holds for b, r, e.

E4, E8, E14, E16, E18, E23, E27, E29, E33, E36-E40: Each of these rules pro-
duces an exceptional value with type Thrown. Thus, if e satisfies the premise
of any of these rules then

type(€yr(e)) = Thrown < Ty, (e)

41

since Thrown lies below every other type.

Proviso. In all cases below except E34 and E35, v,v',vq,v9,... represent
normal values (not exceptions).

E12, E17, E19, E20, E21, E25, E31: Each of these rules returns a particular
literal: E20, E21 return true, false, respectively; the other rules return void.
The corresponding typing rules assign Bool or Void, accordingly. Therefore,
type soundness holds with equality.

E1-E3: Type soundness follows immediately from T1-T3. To wit:
type (&, (lit)) = type((r, lit)) = littype(lit) = Ty (i),
type(&,r(€)) = type((r,b(0))) = [0, 7](£) = T,y (¢).

If e = op(€) where &, ,.(€) = (5,0), optype(op) = T — t and op(v) is defined,
then

type(€y,.(e)) = type({Us, op(v))) = littype(op(v)) =t = Tp(e).
E5: Suppose e is of the form let ¢ = e; do ey where &,,(e;) = (s,v) and

T (€1) = t. By the induction hypothesis, type((s,v)) < t. By theorem 17
(statement 2), [b, s] = [b,r]. Thus, we have

[b&{l = v}, s] = [b, s]@{l — type((s,v))} = [b, s]©{l — 1} = [b,r]©{l — t}.
By effect rule E5, €;,(e) = €yo(s-v},s(€2). By the induction hypothesis,
type(Crofr—v}s(€2)) < Tpogr—}.s(e2).
By typing rule T4, T, (e) = Tprjoqe -1y (€2). Theorem 10 yields the inequality
To(tv)s(€2) < Tpefen(e2).
We conclude that type(&;,(e)) < Tp(e).
E6, ET: Suppose e = if e, then e, else e3 where &,,(e;) = (s, true). Then

hyp.

type(€p(€)) = type(€psle)) < Tpg(e2)
= Tp(e2) < Tpylea) U Tpp(es) = T (e)

where the middle equality is by theorem 17 (statement 2). The argument for
E7 works the same way.

42

E9, E13: Type soundness follows immediately from T6, T10.
type(&y, . (new c(€))) = type({...U ({or>c}, ...), 0)) = ¢ = Tpp,(new c(€))

type(&, . (new 7 — t {e7 — 3})) = type((...U (o7 — 1}, ...), 0))

=7 —1t= Ty, (new 7 —t {&7 — &})

E10: Suppose e = ey.f where &,,.(e1) = (s,v) and v # null. By typing rule
T7, Tpp(e1) = c for some class ¢ with field f. By the induction hypothesis
(and the fact that v # null), type({s,v)) = ¢ for some class ¢’ < ¢. Thus, f is
a field of ¢ and fldtype(f, ") = fidtype(f,c).

By definition of store, f € dom(ws(v)) and ws(v)(f) € Nvalueg, (fidtype(f,)).
Consequentially, type((s,ws(v)(f))) < fldtype(f,). Putting it all together, we
get

type(&y,(€)) = type((s, ws(v)(f))) < fldtype(f,c) = fldtype(f,c) = Tpr(e).

E11: Suppose e = e1.m(€3), € (e1) = (s1,11), €, (€2) = (52, T2), type((s1,v1))
= c and delr(m,c) =m(¢ as 7) as t do eg.

By El11, €,,.(e) = G{methzHE}781UU§(eg). By the induction hypothesis,

type<€{me>—>v1,2|—>ﬁ}7slu U@(eB)) S (:[{methZH@},slu U@] <€3)'

It suffices to show that the latter type is dominated by ¥p,,1(e). The induction
hypothesis also implies type({s1,v1)) < Tpry(e1) and type((52,72)) < Ty (€2)-
We thus obtain the following dominance relation among type contexts:

[{me — v1, € — T3}, 51 UUsa] = {me — Tpi(er), £ — Tpa(ez)}-

Theorem 10 now yields:

g[{me»—»’uhz»—>@},slu U@] (63) S S{me’_":[b,r](el)vz'_":[b,r] (6)}(63)'
The well-formedness of m relative to ¢ implies

g{meHz[b,T](el),zHz[,,m]@)}(63) <t

It suffices to show that t < T, ,1(e). Let ¢ = Ty ,y(e1) and suppose delr(m, ') =
m(C as 7) as t' do ¢}. Then ¢ < ¢ by the induction hypothesis. The well-

formedness of m relative to ¢ and ¢ implies ¢ < t'. By typing rule TS,
T[bm](e) =t Thust < ‘Z[bﬂ(e).

E15: Suppose e = eqfea], €y, (e;) = (s4,v;) for i = 1,2, type((s1,v1)) = t,
Tpr(er) =1, and vy € dom(wy, (v1)). By E15, type(&,(e)) = (51U 52, va).

43

By the induction hypothesis, ¢t < t'. Letting t =77 — 7 and t' = 71 — 75, we
have 7, < 75 and Ty, ,(e) = 75 by T11.

The definition of store implies vy € Nvaluey, (1), since wy, (v1) = v2. Con-
sequentially, type((s1,vq)) < 7. Clearly, type((s1,v2)) = type({s1 U s2, v2)).
Putting it all together, we get

type(€p.-(€)) = type({s1 U s, v2)) = type((s1,v2)) < 1o < 19 = T, (€)-

E22: If e = ey as t where &,,(e1) = (s,v) and v < ¢, then

ot

type(€s,r(€)) = type((s,v)) <t = Tp(e).

E24: Suppose e = e || ea where &,,.(¢;) = (s;,v;) for i = 1,2. Then

where the middle equality follows from the observation that v € dom(f,).

E26: Suppose e = e | e3 and oneof{left, right} = left. Then

hyp.

type(€yr(e)) = type(€prler)) < Tpai(er) < Tpai(er) U Tpay(ea) = Tpa(e).
The case where oneof{left, right} = right is handled the same way.

E28: Suppose e = choose ¢ in e; do es, €,,.(e1) = (s,v), dom(ws(v)) # 0,
and oneof (wy(v)) = p. By theorem 17 (statement 2), [b, s] = [b,7].

Let type((s,v)) = 7 — t. Then p € Nvaluey, (1) by definition of store. Conse-
quentially, type((s, p)) < 7. Letting T, (e1) = 7" — t/, the induction hypoth-
esis implies (7 — t) < (7' — t') and therefore 7 < 7/. Thus, we have

be{l—p},s] = [b, s]o{l type((s,p))} 2 [b, s]o{l— 7"} = [b,r]©{t—7"}.

We conclude

type(€y(€)) = type(Epopopy.s(ez))

< Tpoitmpys (€2) < Tprjapery(e2) = Tpa(e)
where the latter inequality is by theorem 10.

E30: Suppose € = e; ; ey and let 7 = (0,,w,,0), & (e1) = (s1,v1), 51 =
(01, w1, u1), up be consistent, &, ~(ez) = (s2,v2), and sy = (0o, wy, uz). Then

t?/pe((’fb,r(e)) = typ6(<(92, we © wr, U, U (U1) UQ)); U2>)
hyp. T20
= type((s2,v2)) < Ty 51(e2) = Zpi(e) = Tpaylea).

44

Both unmarked equalities above are trivial to establish. The first follows from
the observation that 65, = 6. The second follows from the observation that
0, C 0 and therefore [b,r] = [b, 51].

E31, E32: Suppose e = while e; do e,. Recall that we consider a converging
computation of &,,(e). Eventually it returns value void by rule E31, assuming
the recursion implied by rule E32 is well-founded. Type soundness clearly
holds, since Ty, ,1(e) = Void by typing rule T21.

E34, E35: Suppose e = try e; catch ezc : e; and €, ,(e1) = (s1,v1) where the
value v; may be exceptional. If v; ¢ €zc then

hyp.

type(€y,(€)) = type((s1,v1)) < Tpi(er) < Tpayler) U Tpalen) = Tpale).
On the other hand, if v, € ezc and &, ,(e2) = (sg,v2) then

hyp.

type(€pr(e)) = type((s2,v2)) < Tppai(e2) < Tpajlea) U Tpa(e2) = Tppay(e).

O

5.2 Semantic Refinement

First we formalize the idea that one expression semantically refines the other
with respect to a given type context T'. Then we prove that an expression e;
semantically refines an expression e; with respect to T if e; is obtained from
es by replacing a subexpression €’ of e, with some €’ that semantically refines
e’ with respect to the appropriate type context T".

Let s be any store and let V' C Value. The s-span of V', symbolically span,(V'),
is the least superset O of V' N dom(;) satisfying the following conditions.

e If 0 € O then (dom(ws(o)) U rng(ws(o))) N dom(fs) C O.
e Ifoec O, ((0,z),y) € us and uyg is consistent, then {x,y} N dom(ds) C O.
Think of span (V') as the set of objects reachable in s from V.

The triple sy = (5,&),11) is defined as follows, where —+«— is a fresh symbol
connoting inconsistency.

S
|

= 05 | spany(V)

s

ws [span, (V)
. {{((0, T),y) Eus : 0€ spans(V)} if us is consistent
o

—r— if ug is inconsistent

&
|

45

sy is called the V-essential part of s. Check that sy is a store if u, is consistent.
Think of sy as the result of garbage-collecting all unreachable objects and
irrelevant updates in s, where V' is a set of accessible values (such as those
named by local variables). If ug is inconsistent, then the updates in us can be
ignored.

Lemma 19 Suppose that r, s, s’ are stores and U,V are subsets of Value.

! I
(a) sy =5'v <= Svnobjectid = S’V Objectid -

)
b) syuy = sy = (SUIS’U/\SV::;’V).
(c) IfUCV then sy = sy = sy = s'y.

)

(d) If r € s and r C 5" then Sdom(s,) = 5 dom(o,)-

Proof (a)—(c) are obvious. (d) follows from the definition of the inclusion
relation over states. O

For any (b, r)-typed expression e, the set

‘) = U { (s,v) : some convergent computation of &, (e) returns (s,v)}
b,r €)=

{oo : some computation of &, (e) diverges}

is the set of possible effects of e. It is presumed that the symbol oo is not used
for anything else.

Now suppose e and €’ are arbitrary expressions. We say that e refines ¢’ with
respect to type context T (written e Sp €') if Tr(e) = Tr(e’) € Type and each
evaluation context (b, r) with [b,r] = T satisfies I and II, below.

[If oo € &, (e) then oo € & (€).

IL. For every effect (s,v) € & (e), there exists an effect (s',v) € & (¢)
SUCh that Srng(b)u{’u} == S,rng(b)U{U}'

We say that e and €' are semantically equivalent with respect to T' (written
exrpe)ifeSre and ¢ Spe.

As expected, refinement is transitive.
Proposition 20 Ife <re and e’ <re” thene <re’. O

Another important property of refinement is monotonicity with respect to
subexpressions. Recall punctured expressions defined above in §3.6.1.

46

Theorem 21 (Refinement) Suppose e(o) is a punctured expression and €', e”
are expressions such that e(€'/o) is T-well-typed and " Srgeo) €. Then

e(e"/0) Sr e(€/o).

Proof Let e(o), ¢ and €’ be as in the hypothesis. Proof of the statement
e(e” /o) <r e(€'/o) is by induction on the depth of the variable o in the punc-
tured expression e(o), defined recursively by the rules:

o depth(o) =0,

o if e # o then depth(e(o)) = 1 + depth(eg(o)) where eg(o) is the unique
maximal proper punctured subexpression of e.

The case of depth(e(o)) = 0, i.e. the case e = o, is trivial.

It suffices to prove the theorem in the case of depth(e(o)) = 1. Indeed, suppose
that depth(e) > 1. Let ey be the maximal proper punctured subexpression of
e and let e; be the result of replacing ey by o in e so that e(o) = ej(eg(0)/0)
and depth(ei(o)) = 1. Check that T®e(o) = (T ® e1(0)) ® eg(0). Invoking the
induction hypothesis twice, we have

e’ S(Teer(o)@eo(0) €
= eo(e”) Stee (o) eo(e’)
— ei(eo(€”) Sr er(eo(¢))-

So we restrict attention on the case of depth(e(o)) = 1. Since €” Srge(o) €', We
have Trgeo)(€) = Trge(o)(€”) € Type. Thus, by Proposition 9, Tr(e(e' /o)) =
Tr(e(e”/o)) € Type. Let (b,r) be any evaluation context such that [b,r] =T.
We must show that statements I and II in the definition of the refinement

relation hold.

There are numerous (sub)cases to consider, for instance, three cases where e is
of the forms if o then e; else e, if ¢y then o else e; and if eg then e; else o.
In most cases, proof follows straightforwardly from the typing and effect rules.
When o falls under the scope of a fresh binding (i.e. is the body of a let-, forall-
or choose-expression), proof is a matter of definition-chasing. We consider here
a single case where e is of the form let ¢/ = e; do o.

Claim 22 [and II hold if e is of the form let ¢ = e; do o.

For any expression ey such that let ¢ = e; do ey is T-well-typed, effect rules
E5 and E37 (those mentioning let-expressions) imply that &, ,.(let ¢ = e; do eg)
diverges if, and only if, either &,,(e;1) diverges or else &, (e;) = (s,v) and v
is normal and €0}, s(e2) diverges. Since €’ Srgeo) € and [{€ — v}, s] =

47

T ® e(o), we have
o0 € Qf?eHu},s(eﬂ) = X0 € QEZHU},S(QI)'
We conclude co € & (e(e”/0)) = oo € & (e(€’/o)), confirming statement I.

As for statement 11, suppose (s,v) € €; (e(e”/0)). By E5 and E37, it follows
that there is an effect (s;,v1) € € (e1) such that

(vl € Exception \ vy = v) Y (vl € Nvalue A (s,v) € GZ@{szl},sl(eH))-
If vy € Exception, then E37 implies (s, v) € & . (e(ez/0)) for any expression e,
such that e(eq/0) is [b, r]-typed, so in particular for es = ¢’. We will therefore

assume that v; € Nvalue.

Since [{{ — v1},51] = T ® e(o), the refinement relation €’ Spgeo) € means
that there is an effect (s',v) € &,y 5, (€') such that

S mg(bo (£ —v1 HU{v} = S mg(Bo{l v NU{0}-

Note that rng(b) N Objectld C dom(6d,). By monotonicity of stores (Theo-
rem 17), 7 C s and r C s'. Lemma 19 implies S qom(9,)ufvr,0} = 5 dom(8,)Ufvr,0}-
Hence, by Lemma 19(c),

S mg(b)Ufv} = S mg(b)U{v}-

Effect rule E5 implies (s, v) € & (e(€'/0)), so we are done. O Theorem 21

We now describe a few canonical refinements involving nondeterministic ex-
pressions of the forms e; | e; and choose ¢ in e; do es.

Proposition 23 Suppose e | ey is T-well-typed and ey St true | false. Then
(if eo then e; else 62) <Sr e] ea.

Furthermore, fori=1,2, if Tr(e;) = Tr(er | e2) then e; Sroeq | e,

The proof is straightforward. O

In order to state a similar proposition for choose-expressions, we must first
define a specialized notion of refinement. We say that e choice-domain refines
¢/ with respect to T (written e <7 ¢') if Tr(e) = Tr(e') € MapType and each
evaluation context (b,r) with [b, 7] = T satisfies I“ and 11", below.

I"". If 0o € €, (e) then oo € &, (¢').

48

I1°". For every effect (s, v) € €. (e), there exists an effect (s',0v") € & (€')

such that type((s,v)) = type((s’,v")) = t and one of the following
holds:

i. t € {Null, Thrown}and v = v/,
ii. t € MapType and w,(v) = wy (V') = 0,
i. t € MapType> @ 7é ws(v) g W' (U/) and Srng(b) == S/rng(b)-

We are now able to state the following:

Proposition 24 Suppose choose (in e; do es is T-well-typed and € Sch .
Then
(choose ¢in €] do 62) <r (choose ¢ in e; do 62).

The statement follows straightforwardly from the relevant definitions, includ-
ing typing rule T19 and effect rules E8, E27, E28, E37 (i.e. those mentioning
choice-expressions). O

5.8 Discussion

There are numerous additional issues related to the analysis of AsmL-S. Here
we touch on some of them without developing them in depth.

5.3.1 Simultaneous Let

Currently the let bindings are evaluated sequentially. Consider for example
the expression
let 51 = €1 do (let £2 = €9 do 63)

where /1 does not occur in es. It would not hurt to evaluate ey, e; in parallel
(unless e; produces an exception) but our rules dictate to evaluate e; first
and ey second. In the spirit of ASMs with its emphasis on parallelism, we
generalize the current let construct to a new simultaneous let construct:

161361:61, ce En:endoenﬂ

where /1, ..., ¢, are distinct local variables. To evaluate the above expression,
evaluate all binding bodies e, ...,e, at the present evaluation context. Let
us presume that all n computations converge. If all n computations return
normal values, then proceed to evaluation e, in the new evaluation context.
Otherwise, return one of the exceptional values nondeterministically. The only
reason we did not introduce this simultaneous let construct in AsmL-S above
was to simplify notation.

49

5.8.2 Parallel Composition

& (e1 || e2), when convergent, returns the value of &, ,.(e2), as defined in rule
E24. Why do we want that the expression e; || e5 returns anything? Because
the return value may be useful in programming. Unfortunately, our decision
to return the value of ey breaks the symmetry between e; and ey, that is,
e1 || e2 # ey || e;. Furthermore, this contrasts with the symmetry of forall-
expressions, which always return void. The operator || can be made symmetric,
and consistent with the semantics of forall-expressions, by modifying rule E24
so that &, ,(e; || e2) always returns void. (Note that this can be simulated in
the present semantics by writing (e; || e2) || void, though this does not change
fundamental asymmetry of the ||.)

Making || symmetric exacts some price. Suppose that we would like to simulate
the asymmetric version of || that returns the value of the second expression.
This would be possible to achieve, but awkward, in the present syntax. For
example, we could write

(new Bool — T {false — ey, true — 62}> [true]

for the appropriate T'. The asymmetric e; || es could be expressed more natu-
rally by means of simultaneous let as let /1 = e;, {5 = e5 do /5.

5.3.83 Coverage

Our definition of & (e) in §5.2 tacitly assumes that the definition of &, is
complete and covers all the cases, so that every finite computation of &, (e)
returns a value, possibly exceptional. The assumption is not immediately ob-
vious but can be proven.

5.8.4 Covariance vs. Contravariance in Argument Types

In the type system of AsmL-S, maps are covariant in both argument and
result types (see §3.3). This is consistent with the type system of the full
AsmL. On the other hand, in functional languages, functions are convention-
ally contravariant in argument types [22]. The rationale for contravariance in
argument types is that a function of type 7 — t could be safely placed in any
context expecting a map of type 7/ — ¢ where 77 < 7. One can argue that
maps should be contravariant in argument types. Either variant has benefits
and drawbacks. Ultimately the most important consideration is how maps are
supposed to be used. In AsmL they have been used more as look-up tables
than as functions in functional programming, and so covariance is appropri-
ate. For those familiar with abstract state machines, let us mention that maps
are often used to represent dynamic functions of ASMs; in that role they are

20

essentially look-up tables.

We make a couple of technical points related to the controversy. One benefit
of contravariance in argument types is preclusion of the maptypeX exception
that arises in computing &, ,(e;[es] := e3) when type(&,,.(e1)) =T — T" and
type(€p,(e2)) £ T, as in example 24. Obviously, we want to have as few
built-in exceptions as necessary. But contravariance in argument types has
a price. The problem with contravariance lies in computing the forall- and
choose-expressions of AsmL-S

¢, (forall ¢ in e; do ey) ¢, (choose / in e; do ey)

where the binding of ¢ ranges over the domain of the map given by e; (which,
as a set, should be viewed as naturally covariant).

Suppose for a moment that map types are contravariant in argument types but
the type system of AsmL-S is otherwise unchanged. We encounter problematic
programs such as the following:

class A, class B extends A {i as Int} :
let [= (new A — Int {new A() — 0}) do
let g = (if true then f else new B — Int {}) do

choose ¢ in g do (.i

We check that this program is well-typed: the static type of g is the least
upper bound of A — Int and B — Int, that is, B — Int; the static type
of ¢ is therefore B; the body /.7 of the choose-expression is thus well-typed.
However, in evaluating this program we run into the problem of computing
(i when ¢ has runtime type A and 7 is not a field of A. This calls for a new
exception (for undefined object fields) precluded in the current semantics of
AsmL-S. An alternative fix is to require explicit type casting in forall- and
choose-expressions, as e.g. forall ¢ as t in e; do e,.

5.83.5 Side-Effect-Free Expressions

Since AsmlL is primarily a specification language, it may be reasonable to
require that expressions eq in

let-expressions let ¢ = ¢y do ey,
conditional expressions if ey then e; else ey,
class-field expressions eo-f,

type tests e is t.

be side-effect free. The list is not exhaustive list. Our purpose here is just to
illustrate the idea.

o1

The requirement that e be side-effect free means that no evaluation of ey can
produce updates, and it can be enforced by simple syntactical constraints.

It is less reasonable to impose such restrictions of the full AsmL because it is
also used as a programming language. The guard of a conditional expression
could be instrumented for example to collect certain data. In this semantical
study, we have not been opposed in principle to restrictions of that kind. It
turns out, however, that the fact that we did not impose such restrictions did
not cause any problems. If one takes a route of imposing such restrictions on
AsmL-S; one should consider enriching the language with additional constructs
to compensate for the lost expressivity.

5.83.6 Well-Typed FExpressions with Subexpressions of Static Type Thrown

If an expression e has static type Thrown in some type context T', then type
soundness (Theorem 18) implies that the value of &,,(e) is exceptional for all
evaluation contexts (b, r) such that [b,r] = T. Most of such expressions e are
nonsense expressions, with the obvious exception when e is a throw-expression
throw ezc. For example, the map-creation expression

new Int — Bool {(throw fooX) — true}

is well-typed in the present semantics. Its static type is Int — Bool, even
though any evaluation will return fooX. This does not contradict type sound-
ness, since type(fooX) = Thrown < (Int — Bool). However, the fact that this
expression will always result in an exception can be recognized — and pre-
vented — at compile time. In this particular example, we can change typing
rule T10 from its present formulation

Tr(er) <ty Tr(ez) <t

‘ZT<IIGW tl — tQ {a — 672}) = tl — t2
to the following:

Thrown < Tr(er) <ty Thrown < Tr(ez) < tq

TT<1’16W tl — tQ {671 — ?2}) = tl — tg

The effect of this change is that the above degenerate map-creation expression
is no longer well-typed. A similar observation applies to several other type rules
with explicit premises. Note that such a strengthening of type rules does not
jeopardize type soundness, or any other theorem, as the only consequence is
that fewer expressions are well-typed.

o2

Notice that the qualifier “static” in the heading of this discussion item is there
for good reason. It is undecidable whether a given subexpression produces
only exceptions. These improvements in type checking catch only the most
egregious offenders.

References

1]

The AsmL webpage,
http://research.microsoft.com/foundations/AsmL/.

Andreas Blass, Yuri Gurevich and Saharon Shelah, “Choiceless Polynomial
Time”, Annals of Pure and Applied Logic 100 (1999), pp. 141-187.

Andreas Blass and Yuri Gurevich, “Ordinary Interactive Small-Step
Algorithms, I”, ACM Transactions on Computation Logic, to appear. See
Microsoft Research technical report MSR-TR-2004-16.

Andreas Blass and Yuri Gurevich, “Ordinary Interactive Small-Step
Algorithms, IT”, Microsoft Research, Technical Report MSR-TR-2004-88.

Dines Bjoerner and Cliff B. Jones (Editors), “Formal Specification and
Software Development”, Prentice-Hall International, 1982.

Egon Boerger and Joachim Schmid, “Composition and Submachine
Concepts for Sequential ASMs”, in Computer Science Logic (Proceedings
of CSL 2000), Editors P. Clote and H. Schwichtenberg, Lecture Notes in
Computer Science 1862, pp. 41-60, Springer Verlag, 2000.

M. J. C. Gordon and T. F. Melham, “Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic”, Cambridge University
Press, 1993.

Yuri Gurevich, “Evolving Algebra 1993: Lipari Guide”, in “Specification
and Validation Methods”, Ed. E. Boerger, Oxford University Press, 1995,
9-36.

Yuri Gurevich, “May 1997 Draft of the ASM Guide”, Technical
Report CSE-TR-336-97, EECS Department, University of Michigan, 1997
(available at the author’s website).

Yuri Gurevich, “For every Sequential Algorithm there is an Equivalent
Sequential Abstract State Machine”, ACM Transactions on Computational
Logic 1:1 (2000), pages 77-111.

Yuri Gurevich and Nikolai Tillmann, “Partial Updates: Exploration”,

Springer J. of Universal Computer Science, vol. 7, no. 11 (2001), pages
918-952.

23

[17]

[18]

Yuri Gurevich, Wolfram Schulte and Margus Veanes, “Toward Industrial
Strength Abstract State Machines”, Technical report MSR-TR-2001-98,
Microsoft Research, October 2001

Anders Hejlsberg, Scott Wiltamuth and Peter Golde, “The C#
Programming Language”, Addison-Wesley, 2003.

Paul Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel,
M. M. Guzman, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz,
R Nikhil, W. Partain, and J. Peterson, “Report on the Programming
Language Haskell, Version 1.2”, SIGPLAN Notices 27(5), May 1992.

James K. Huggins, ASM Michigan web page,
http://www.eecs.umich.edu/gasm.

Atsushi Igarashi, Benjamin C. Pierce and Philip Wadler, “Featherweight
Java: a minimal core calculus for Java and GJ”, ACM Transactions on
Programming Languages and Systems (TOPLAS) 23:3 (May 2001), 396—
450.

Bill Joy, Guy Steele, James Gosling and Gilad Bracha, “Java (TM)
Language Specification”, Addison-Wesley, 2nd edition, 2000.

Gilles Kahn, “Natural semantics”, In Proc. of the Symposium on
Theoretical Aspects of Computer Science, Lecture Notes in Computer
Science 247 (1987), 22-39.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen, “The
Definition of Standard ML (Revised)”, MIT Press, 1997.

Objective Caml Website http://www.ocaml.org/.

Martin Odersky and Philip Wadler, “Pizza into Java: Translating theory
into practice”, Proc. 24th ACM Symposium on Principles of Programming
Languages, Paris, France, January 1997.

Benjamin C. Pierce, “Types and Programming Languages”, MIT Press,
Cambridge, Massachusetts, 2002

Gordon D. Plotkin, “Structural approach to operational semantics”,
Technical report DAIMI FN-19, Computer Science Department, Aarhus
University, Denmark, September 1981

PVS Website http://pvs.csl.sri.com/.

J. M. Spivey, “The Z Notation: A Reference Manual”, Prentice-Hall, New
York, Second Edition, 1992.

o4

