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Abstract. Memory subsystems often turn out to be the main perfor-
mance bottleneck in current computer systems. Nevertheless, the archi-
tectural features of common RAM chips are not utilized to their limits.
Therefore, a complex Petri Net model of a memory subsystem was de-
veloped and investigated to explore possible improvements. This paper
reports the results of a case study in which widely used synchronous
RAMs were examined. It demonstrates how impressive throughput in-
creases can be obtained by an enhanced memory controller scheme that
could even make second level caches redundant in cost or power dissipa-
tion critical systems.

Furthermore, using colored time Petri nets such as they are supported by
the CodeSign' tool leads to a descriptive view of the memory subsystem
because a Petri Net model combines data and control flow as well as
structural information in a natural way. The case study finally underpins
the advantages of the CodeSign approach.

1 Introduction

The memory subsystem (see Fig. 1) in a computer usually consists of a controller
and several memory chips. The controller receives read and write requests from
the central processing unit, modifies them, and generates additional instruc-
tions for the memory chips if necessary. Common memory chips like Fast Page
Mode (FPM) [11] or Extended Data Output (EDO) [11] chips are not able
to process several instructions concurrently. Thus, common controllers sched-
ule requests from the CPU sequentially for the memory chips. However, recent
trends in memory architectures show an evolution towards concurrent structures,
e.g. synchronous DRAM chips (SDRAMSs [11]). Ordinary controllers supporting
FPM/EDO and SDRAM chips do not distinguish between these two types of
memory. Therefore, SDRAMSs are rarely utilized to their full potential, that is,
they are not capable of obtaining higher throughput rates than FPM and EDO

! CodeSign [4] is developed at the Computer Engineering and Networks Laboratory
(TIK) and is available at http://wwuw.tik.ee.ethz.ch/ codesign.



chips. At the same time, clock rates and throughput demands of modern CPUs
grow constantly.

One reaction of the computer manufacturing industry is the increase of the
clock frequency of memory interfaces (not the memory array itself). Moreover,
memory array sizes can be reduced in order to decrease RAM access delays
accepting a certain cost penalty because more arrays are needed in parallel. New
trends and a good overview of current DRAM technology are given in [9]. Finally,
the costs for cache memories are not negligible within the memory subsystem.
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Fig. 1. Generic view of a computer system.

Nevertheless, a major part of wasted memory throughput is explained by the
fact that memory controllers are still not able to take advantage of concurrently
operating structures within memory chips. The case study in this paper there-
fore indicates the potential in terms of throughput increases by modifying the
memory controller instruction schedules.

Requirements for a modeling tool

The design of complex computer systems usually involves people from different
fields of expertise, e.g. control and data flow dominant parts of the system could
be developed by separate teams in parallel. Accordingly, the following require-
ments for a suitable modeling tool can be deduced:

— Support for structuring the model into modules and components and reusabil-
ity has to be offered.



— The process of modeling must be supported by a natural representation of
control and data flow as well as structural properties.

— Simulation and documentation (e.g. getting statistics data out of a simula-
tion run) of the system must be provided.

— Configurability and parameterization of modules and components should be
possible.

— Modeling of concurrency and a notion of time are mandatory for the detec-
tion of timing violations, for performance evaluation, and for verification of
run-time behavior.

Modeling alternatives

In this section, several common modeling formalisms and environments are
briefly reviewed.

State machine based approaches, such as StateCharts [5] or ROOMchart [13],
are best suited for control dominated systems and suffer from their inability to
express data flow. Another discrepancy between a system and its model rep-
resentation can be found looking at all the tools that do not allow to express
structural similarity between a system and its model, e.g. spreadsheet based
models and models written exclusively in the form of programming language
code. Recently, the use of object-oriented modeling [2],[12] becomes more and
more common. Although OO-formalisms contain several features to produce de-
tailed models, they are not intended to be executable as such. Place/Transition
Petri nets [10] have several desirable properties, such as being intuitive, graphi-
cal, able to express concurrency and data flow. However, they are confined to the
use in small scale models because a concept of hierarchy is missing. High-level
Petri nets (such as Coloured Petri Nets [8]) are better suited, since they have an
expressive inscription language and also some structuring features.

In the next section, a short overview of present memory systems is given
including currently available cache and main memory technologies. In section 3,
the main features of the CodeSign modeling and simulation tool are outlined
and checked against the mentioned requirements. In the remaining part of the
paper, section 4, the modeled memory system is presented in detail.

2 Memory bottlenecks

2.1 Commonly used memory chips

Presently, asynchronous memory chips like FPM or EDO RAMs are found in a
variety of personal computers, printer devices, workstations, digital assistants,
etc. and hence dominate the memory market. The term asynchronous describes
the fact that a memory controller has to hold control signals for the memory
array on the same voltage during the whole memory transfer. In consequence,
the controller cannot issue another memory instruction unless the previous one is



finished. That way, even though several memory banks are available on a single
chip, the controller is forced to schedule memory instructions strictly sequentially
since only one set of control signals can be accessed by the controller at a time.

2.2 Synchronous memories and caches

Synchronous memories: RAMs like SDRAM, SLDRAM [15] or RDRAM [16]
are enhanced versions of asynchronous RAMs. They additionally have a syn-
chronous interface that isolates the main memory cell array from the signals
of the memory controller. As the interface has one command pipeline for every
memory bank, the controller now has the option to issue memory instructions on
each clock cycle. Undoubtedly, it is normally not advisable to transfer a memory
instruction on each clock cycle since parallel memory banks have to share a single
data bus and an input/output buffer pair. But a memory bank can be prepared
for a data transfer while another bank is actually transferring data concurrently.
This preparation is required due to address decoding and memory access times
as well as the fact that dynamic memory cells must be precharged after they
were accessed. That is, an intelligent memory controller should be able to hide
most of the delays that are caused by access changes between or within mem-
ory banks. However, it has to be pointed out that not all delays can be hidden
completely. For instance, when the memory access pattern changes from read to
write or vice versa, the data pipeline has to be fully cleared until the next access
can occur because the direction of data flow through the input/output buffers
has changed.

Moreover, if timing constraints of the memory chips (e.g. pipeline and mem-
ory array timings) are not met when transferring instructions, there is a danger
of data contention inside the memory arrays, that is, memory chips do not check
against forbidden control sequences. Furthermore, the controller has the ability
to schedule commands in different ways since parallel memory banks can be used
in many fashions concurrently (e.g. burst or interleaved data transfers).

Unfortunately, current controllers schedule memory instructions in almost
the same sequential manner for synchronous RAMs as for asynchronous ones.

Second level caches: Typical second level caches and synchronous RAMs
exhibit almost identical behavior. They are both synchronous and pipelined and
can be programmed to burst transfers, that is, data on successive addresses are
transferred without the help of the memory controller. In systems where external
caches run at the same cycle frequency as the main memory (as in most currently
used personal computers), the speed difference is less than a factor of two (see
section 4.4 and Tab. 1 for a quick overview). Even though caches are still a
little bit faster because their charge does not need to be refreshed using static
RAM technology and their memory bank size is usually smaller, an optimized
memory controller could compensate the need for caches in power dissipation or
cost critical systems.



3 The modeling environment

In this section, the CodeSign tool is presented and it is pointed out how the
requirements for a modeling tool are met. A more detailed description can be
found in [4]. CodeSign is based on a kind of colored Petri nets that allow efficient
modeling of control and data flow.

Components, composition, and hierarchy: Components are subnets of
Petri nets with input and output interfaces that are applied to interconnect
components. Inside components, input interfaces are connected to places and
transitions are connected to output interfaces. Linking output with input inter-
faces, components are directly interconnected maintaining Petri Net semantics.
In Fig. 2 the model of a RAM basic cell with its interfaces is shown as an exam-
ple. The model is explained in detail in section 4.1.
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Fig. 2. Petri Net model of a RAM cell component.

If input interfaces of components are connected together, a single token will
produce several tokens with the same data value for each component. Connecting
output interfaces together is the same as connecting several transitions to a single
place. Therefore, the examples in Fig. 3 are equivalent.

Thus, models can be hierarchically structured and verified components can
be reused. Moreover, as interfaces do not disturb Petri net semantics, a flat Petri
Net with the same functionality can always be generated from the hierarchically
structured net.

Object oriented concepts: Components are instances of classes that are ar-
ranged within an inheritance tree. That is, classes inherit features and (token)
data types from their parents. They may contain functions which can be used in
transitions. Functions are written in an appropriate imperative language. With
these facilities, incremental updates and evolution of models and components
are supported as well as configurability and parameterization.
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Fig. 3. Using interfaces in CodeSign.

Notion of time and simulation properties: An enabling delay interval can
be associated with each transition. As a consequence, tokens carry time stamps
containing information about their creation date.

Models and components can be inspected and simulated at all levels of ab-
straction. That is, performance evaluations and functionality checks like race
conditions and timeouts can easily be performed. Finally, the simulation can be
animated at runtime if desired.

Instrumentation: Observation of the system is possible without affecting the
main model structure. This is realized by introducing so-called probe elements
which collect statistical data like firing times of transitions or generation dates
of certain tokens in certain places. This information can be further processed by
Petri Net components or stored. Probes are invisible in the main model because
they are defined in a special editor. Bindings associate probes with transition or
place elements.

4 Petri Net model of a memory subsystem

In this section, the modeled memory subsystem is described which includes a
memory controller, a synchronous memory chip as well as the relevant parts of
the CPU and the data bus. In Fig. 4 an overview of the main system structure
is given.

The CPU issues data read and data write requests. They are modeled as to-
kens which contain a list of values. Each request token carries information about
the type of the request (read or write) and the address (an integer value) where
the data can be found in memory. The sequence of requests can be arbitrarily
chosen and may be extracted from address traces generated by a tool like [3].

After having received a request token from the CPU, the memory controller
preprocesses the token for the SDRAM chip. The address value of the token has
to be split into memory bank, row, and column addresses as these values must
be transferred at different times to the RAM chip. Besides, additional tokens
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Fig. 4. Screen shot of the CodeSign [4] tool showing the model of a memory subsystem.

are generated which are necessary in order to prepare the memory, in particular
tokens that initiate activate or precharge behavior of the memory cells. The
memory controller is explained in more detail in section 4.2. At this stage, the
request tokens may be seen as micro instructions for the control logic of the
memory chip which were created from the relatively coarse grained read and
write instructions of the CPU.

Finally, the memory chip obtains the modified request tokens from the mem-
ory controller. Depending on the token values, the appropriate memory data
transfer is initiated. The model of the memory chip is described in the next
section. At last, the requested data item (that is, a token with an integer value)
is put on the data bus and either received by the CPU in case of a read request
or received by the RAM in case of a write request.



The explanation of the model is organized “bottom-up” beginning with a
description of the memory chip itself and ending with the subsystem overview.

4.1 SDRAM architecture

Asynchronous RAM array: As already stated in section 2.2, the core logic
and the memory array of synchronous and asynchronous RAMs are identical.
In Fig. 5, a conventional RAM array with its sense amplifiers, row, and column
decoders can be seen (a memory bank). The decoders are necessary to access
the contents of a single RAM cell which in general holds four to 16 bits of
information. The decoders are realized using mutual exclusive guard functions
within the transitions because only a single transition may be enabled per token.
Token values within the decoders are interpreted as row or column addresses.
The data within a memory cell is represented by a token of the type integer in
the centre place as it can be seen in Fig. 2. When a row of the memory array
is selected by an activate instruction (a token containing a row address value,
a memory bank, and an operation identifier) issued by the memory controller,
the information of that array row, that is, all data tokens in a row of memory
cells, is transferred into the so-called sense amplifiers. In the row decoder, the
corresponding transition fires and all memory cells of that row are activated
through their row input interfaces. As it can be seen in Fig. 2, the transition
act is enabled and finally the information of the memory cell (the integer token
in the centre place) is transferred via the output interface dout to the sense
amplifiers.

Sense amplifiers: The sense amplifiers are necessary since the electrical charge
of dynamic memory cells is too weak to be used directly. After activating a
memory row, the data tokens in the sense amplifiers can be read or updated
column by column depending on the current mode of operation (read or write).
The read or write state is reached when the memory controller issues read or
write instruction tokens each containing an operation identifier and a column
address.

Read and write operations are destructive, that is, once the information is
transferred into the sense amplifiers, the charge in the memory cells is lost.
Therefore, the information in the sense amplifiers must be written back into
the memory cells when the data of that special row is no longer needed. This
type of operation is forced by a precharge command of the memory controller.
In this case, the integer tokens carrying the memory information are written
back to the memory cells through the din input interface of the memory cell.
The transition pre is enabled in case the corresponding row is decoded and the
possibly modified data token is returned to the centre place of the memory cell.

All phases of a complete memory cycle may be seen in an animated simulation
in CodeSign. It consists of an activation of a specific memory row, several read
or write operations, and finally a precharge of the memory cells in that row.
Depending on the modeled memory chip, the different operations require variable
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Fig.5. A conventional asynchronous RAM array with 4 x 2 = 8 memory cells.

delays, e.g. in this case [6], an activation takes three clock cycles distributed
through decoders and sense amplifiers.

Synchronous interface: The memory chip is completed by adding an input/
output buffer pair, registers, control logic (the synchronous interface), and by
using multiple memory banks that have to share buffers. Buffers and registers are
modeled as additional places for data or instruction tokens with limited capacity.
The control logic implements several instruction pipelines, one for each memory
bank. The pipelines are represented by successive transitions with an enabling
delay of one clock cycle and places with limited capacity. That way, tokens
carrying operation identifiers and addresses are delayed until the corresponding
asynchronous memory array has finished the previous operation. Furthermore,
the address may be incremented for burst transfers of consecutive addresses.



Thus, memory banks are able to work concurrently due to separated instruc-
tion pipelines, but only a single one is actually able to transfer data through the
shared input/output buffers at a time.

In the CodeSign model, four timing parameters of the modeled synchronous
RAM [6] are considered, e.g. activation and precharge delays. All modeled de-
lays within a SDRAM component are derived from these constants. Thus, the
memory chip model (a component class in CodeSign) can quickly be adapted to
SDRAMs from other manufacturers or even to other memory technologies.

4.2 Memory controller

Functionality: A memory controller receives requests from the CPU at arbi-
trary times. They consist of the type of operation (read or write) and address
information (typically 32 bit addresses for a bytewise linearly addressable mem-
ory space). Sometimes, this address information has been preprocessed by a
memory management unit (MMU, see Fig. 1) that usually maps addresses to
other memory regions due to memory page limits or protected memory regions
(e.g reserved for memory mapped I0). The memory controller now has to take
care of delays of the memory array according to the corresponding data sheet.
Since there are typically several memory banks within a memory chip, the con-
troller must prevent data tokens from collision with other tokens e.g. on the data
bus. That is, the controller has to transfer instruction tokens to the memory chip
at points of time which are sufficiently apart from each other because the mem-
ory chip will translate the instructions into actions on the memory cells without
any timing checks.

Petri Net model: At first, the controller has to split the address information
of the request tokens from the CPU into several tokens since memory chips are
organized as two dimensional arrays and row and column addresses must be
transmitted separately. The split address information is now transferred to the
selected memory chip at different times within the memory access cycle. That is,
the respective memory row must be opened with an activate command (token)
which consists of the corresponding instruction identifier and the bank and row
addresses. Then, the request token itself is transmitted to the memory chip which
consists of an instruction identifier of a read or a write operation and the bank
and column addresses. Read and write operations on the same memory row can
be repeated several times until finally the memory row must be closed. For this,
the controller transfers a precharge instruction token holding an identifier for this
type of operation as well as bank and row addresses. This control flow dominant
part of the system resembles the behavior of finite state machines. When the
current state changes, corresponding actions are performed, that is, an instruc-
tion token according to the current request token of the CPU is issued. Since
the explanation of the whole memory controller requires a profound knowledge
of SDRAMs, it is left out in this paper. However, in Fig. 6, the entire memory
controller is shown. The dotted arrows are so-called read only connections. In



principle, they could always be replaced by a read and a write connection be-
cause the token data is read from a place, never modified, and returned to the
place. In Fig 7, an example is given in which three arbitrary request tokens from
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Fig. 6. Model of the memory controller.

the CPU produce six instruction tokens on the output interface of the memory
controller. All tokens for a whole memory cycle containing an activation, two
reads, and a precharge followed by another activation instruction can be seen.
The time stamps in this example are integer values as requests and instructions
are transferred at multiple times of clock cycles.

Model characteristics: Basically, the controller behaves like commonly used
controllers in PCs, i.e. it schedules read and write requests of the CPU sequen-
tially without affecting their order. However, it is capable of abbreviating the
latency penalty which is usually introduced by a change of the memory row or
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bank in case the next request by the CPU is already known. Thus, additional
distinctions of cases which consider the previous instruction more precisely and
the fine adjustment of enabling delays of transitions are the core enhancements
in comparison with common memory controllers.

In the CodeSign model, six timing parameters of the modeled controller are
considered that depend on the memory used, that is, they are a property of the
according class. Thus, the memory controller model can be quickly adapted to
other memory standards or memories from other manufacturers.

The flow of instructions from the controller to the RAM is modeled using to-
kens of type list which consist of a string value and two integer values. This way,
the tokens emulate commands with an operation field (read, write, precharge,
activate) and two address fields (bank address, row and column address respec-
tively). Besides, a token with an integer type is used to model the current state of
the controller. The value is used as relative time reference in clock cycles during
the whole memory cycle of the corresponding read or write request.

4.3 Memory subsystem

The memory subsystem is completely modeled by adding a data bus and a CPU.
The data bus is shared for read and write data and therefore realized by a mutual
exclusive access scheme. Using a random number generator in CodeSign, the
CPU transfers read and write request tokens at arbitrary times if desired. These
tokens may be extracted from previously generated address traces. The flow of
read and write requests from the CPU to the memory controller is modeled
using tokens of type list which consist of a string value and three integer values.
Thus, the tokens may be seen as instructions with an operation identifier (read
or write request) and one big address field which is already grouped into three
main areas (bank, row, and column address) e.g. by a memory management
unit. In addition, the controller may stall the CPU in order to synchronize data
transfers between CPU and RAM.



4.4 Results

The complete model consists of 114 places, 140 transitions, 535 connections, and
12 probes and was created by the author with only little prior experience of Petri
Nets in a period of approximately three weeks. A kind of high level Petri Nets
was chosen as modeling formalism instead of Place/Transition nets. Since the
main focus of the investigations were performance issues as the determination
of the data bus usage and throughput as well as the duration of schedules,
the possibility to associate periods with transitions in timed Petri Nets was
preferred to the option to formally check properties like liveness or reachability
on a Place/Transition net in all details. Furthermore, it was a great advantage to
use colored tokens and guard functions because the size of the whole net became
sufficiently small by shifting some complexity into transitions and tokens to
facilitate a quick overview of the entire system. Finally, the similarity between the
hardware system and its model was additionally supported by (hierarchically)
using subnets as components.

Model analysis with CodeSign: In particular, the development and improve-
ment of the model has been accelerated by the instrumentation and graphical
simulation features of CodeSign. Several race conditions have been found quickly
as well as architectural faults of the model. See Fig. 8 for an example. Race con-
ditions within the SDRAM model may occur in case the memory controller
schedules memory instructions to close in time for the memory chip. For in-
stance, a precharge instruction may be received too early so that data may be
written back to the memory cells during an update by a write instruction. Ac-
cordingly, data within memory cells may be destroyed, that is, data tokens are
not of the expected value. Data collisions on the bus may happen in case the
CPU and the memory controller (and consequently the memory chip) are not
synchronized. Collisions usually hold the entire system model due to shared re-
sources. Frequently, wrong schedules of the memory controller such as missed
out instructions or too dense instruction issues are the main cause for erroneous
conditions.

Model development and verification: The model of the memory chip was
developed first. It was checked with the help of fixed, previously composed mem-
ory instruction sequences for which the default behavior of the memory chip was
already known. After having adjusted all transition enabling delays according to
the corresponding data sheet [6] and corrected some minor faults in the archi-
tecture model such as too short an instruction pipeline leading to a deadlock of
the whole memory chip, the memory controller and its surrounding components
(bus, CPU) were added to the model. Again, previously composed sequences of
instructions were used, in this case sequences of read and write request tokens,
in order to check the model. False schedules of memory instructions generated
by the controller were quickly found and valid ones were verified with the help
of the SDRAM model. Enabling delays were minimized in order to be able to
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schedule the next memory instruction as early as possible but without causing
any deadlocks within the memory chip.

Performance comparison: The shortened schedules of memory instructions
issued by the memory controller in comparison with conventional controllers have
been realized by about ten additional transitions and several places as well as the
fine tuning of enabling delays of transitions within the controller. In Tab. 1 some
results for a four times burst transfer are shown. These results depend on the
memory access type used. That is, four column entries in a memory array row
are transferred consecutively. This is the typical mode of operation in common
PCs. The access types shown are the most frequently found access schemes in
address traces. For instance, a read operation after a read operation on another
memory row of the same memory bank is called a read row miss because the
same row cannot be used for both operations. Otherwise, the second operation
would be called a read row hit. The delays in clock cycles are given in the table
for each column entry. An expression like 7-1-1-1 means that the first entry
needs seven clock cycles until it is delivered to the CPU in case of a read request
or saved into the sense amplifiers in case of a write request. The next three
entries only need one cycle each due to pipelined transfers. In the last column of
Tab. 1, the potential performance improvements are shown for the corresponding
access type. It can be seen that the enhanced controller modeled in CodeSign
is almost always faster than the quoted common controllers. The performance
gain has been mainly achieved by optimized, compressed command schedules of
the controller in case the next read or write requirement of the CPU is already



known. In particular, the property of preparing a data transfer of one memory
bank and transferring data with another bank concurrently has been exploited.

Memory Controller (delays in clock cycles)
SDRAM" Intel[7] | SiS[14] | AMDJ[1] | CodeSign Model || speed increase
access type max.”) min.® || max. min.

read row hit 7-1-1-1| 7-1-1-1| 6-1-1-1| 7-1-1-1 1-1-1-1| 60% 0%

row start 9-1-1-1|10-1-1-1| 9-1-1-1| 7-1-1-1 1-1-1-1| 69% 17%
row miss 12-1-1-1 | 11-1-1-1 | 11-1-1-1 | 10-1-1-1 7-1-1-1 || 33% 7%

b-b? burst | 2-1-1-1| 3-1-1-1| 3-1-1-1| 1-1-1-1 33%  20%
write row hit 3-1-1-1| 2-1-1-1 not | 1-1-1-1 33%  20%
row start 6-1-1-1| 6-1-1-1 | specified | 4-1-1-1 1-1-1-1 | 56% 22%
row miss 9-1-1-1| 9-1-1-1 7-1-1-1 4-1-1-1 || 42% 17%

2. level cache®
read /write 3-1-1-1| 3-1-1-1 3-1-1-1
b-b? burst | 1-1-1-1| 1-1-1-1| 1-1-1-1

66 MHz clock, tcas =38 cycles, see [6] for details.

)
2) back to back burst read, row hit

3) Maximum delay: The next request by the CPU is not known in advance.
4)

5)

Minimum delay: The next request is known while processing of the current one.
All quoted controllers also control the second level cache of the computer system.

Table 1. Speed comparison between popular controllers and the CodeSign model.

That is, with the help of the quickly developed model, promising performance
increases were deduced. Further investigations will focus on examinations of ad-
dress traces of real applications in order to quantify how often the different
address types are actually used. Accordingly, virtual performance improvements
will be determined which will depend on the application analyzed and the prop-
erties of the memory used in the computer system.

5 Conclusion

In this paper, a complex model of a memory subsystem of a computer system
was shown. With its help remarkable speed increases with small architecture en-
hancements were realized in comparison with common solutions. The improve-
ment was derived by using parallel memory banks in memory chips concurrently.
The complete model with optimizations was created within a short period with
the help of the CodeSign Petri Net modeling environment which is based on
colored time Petri nets and which fulfills all necessary requirements in order to
represent control and data flow as well as structure properties of real systems in
an intuitive way.



The case study showed that the functionality of memory controllers should
be improved primarily as RAM array delays remain the same and only memory
interface speed increases. Furthermore, an optimized controller may be consid-
ered as an alternative to second level caches in power dissipation or cost critical
systems.

The model is easily adaptable to new standards and technologies using its
configurability and the inheritance feature of the CodeSign environment.
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