
reusing design experience for petri nets

through patterns

Matthias Gries, Jörn W. Janneck, Martin Naedele
Computer Engineering and Networks Laboratory (TIK)

Swiss Federal Institute of Technology Zürich
CH-8092 Zürich, Switzerland

email: {gries,janneck,naedele}@tik.ee.ethz.ch

KEYWORDS: Petri nets, design patterns, modeling

ABSTRACT

Industrial applications of Petri nets for modeling
and design often result in very complex models (Zu-
rawski and Zhou 1994; Esser, Janneck, and Naedele
1997). Designers can handle this complexity much
better if they can (re)use structures expressing expert
modeling experience at a higher level of design and
abstraction than the basic elements. In the software
engineering domain this observation led to the recent
trend of using software design patterns (Buschmann
and Meunier 1995; Gamma et al. 1995). Our
experience with Petri nets, an established and well
researched visual language for systems modeling,
simulation, and analysis (Murata 1989; Reisig 1992;
Zurawski and Zhou 1994), in projects concerned with
modeling of manufacturing machines (Esser, Janneck,
and Naedele 1997; Naedele and Janneck 1998) and
integrated circuits (Gries 1998), shows that patterns
are very useful in this area as well. In this paper
we continue work presented in (Naedele and Janneck
1998) describing a template to capture, document,
and present design knowledge in the form of design
patterns. Finally, the example of the modeling of an
integrated circuit shows an application of that template.

1 INTRODUCTION

Petri nets (Murata 1989; Reisig 1992), (Zurawski
and Zhou 1994) are an established visual formalism
that can be applied in various domains such as eco-
nomics, mechanics, work flow organisation, theoretical
computer science, and hardware as well as software de-
sign of complex concurrent computer systems. Petri
nets are chosen for these tasks since they are able to
model a variety of processes as data, control, event, and

material flow in heterogeneous systems.
Industrial applications of Petri nets (Zurawski and

Zhou 1994) often result in very complex models (e.g.
see the screen shot of the CodeSign (Esser 1996) Petri
net modeling and simulation tool in Fig. 1 from (Gries
1998)). Such complex models are difficult to create and
to understand. Both tasks are facilitated if creation
and understanding of the model are not attempted in
terms of basic elements (places, transitions, and arcs),
but in terms of more coarse-grained structures.

Figure 1: Model of a PC memory system.

In the software engineering domain this obser-
vation led to the recent trend of using software de-



sign patterns (Buschmann et al. 1996; Gamma et al.
1995). Our experience with Petri nets in projects con-
cerned with the modeling of manufacturing machines
(Esser, Janneck, and Naedele 1997) and integrated cir-
cuits (Gries 1998) (Fig. 1) suggests that patterns are
very useful in this area as well. Since complex, het-
erogeneous systems combine many different kinds of
processes simultaneously, patterns should be used for
the modeling of such systems to capture, document,
and transfer domain knowledge between people from
different fields of expertise. In (Naedele and Janneck
1998) we presented an approach to capture such de-
sign knowledge following the traditions of the design
pattern community.

The purpose of this paper is to demonstrate
how a complex model of a computing system can be
structured and thus made more easily understandable
through the use of patterns as proposed in (Naedele
and Janneck 1998). By using patterns, which combine
the knowledge of experts from different domains about
modeling styles and methods, systems can be modeled
easily by other people. As an example, section 3 will de-
scribe some of the patterns used in the Petri net model
of a memory system from (Gries 1998) shown in Fig. 1.

In order to be able to reference and apply patterns,
we will use a template for Petri net patterns which
was introduced with some more complex patterns in
(Janneck and Naedele 1998) and which is based on the
template suggested in (Gamma et al. 1995). An expla-
nation of this template is given in section 2.

2 PATTERNS

2.1 History of patterns and previous work

Attempts to capture the building blocks and ar-
chitectural considerations of a design as so-called ”pat-
terns” have their origin in the work of the architect
Christopher Alexander (Alexander et al. 1977) and
have recently become more and more popular in the
software engineering domain, especially in the context
of object-oriented techniques (e.g. (Buschmann et al.
1996; Gamma et al. 1995)).

A pattern in this sense is the description of a re-
curring problem or problem type and a generalized so-
lution for this problem. Gamma et al. (Gamma et al.
1995) state that a pattern consists of four essential el-
ements:

• a suitable and concise pattern name,

• a problem statement, describing the situation and
boundary conditions for using a particular pattern,

• the solution section, presenting a structure of ele-

ments and relationships to solve the problem,

• a section discussing the consequences of the appli-
cation of this pattern, the trade-offs and possible
alternatives, to allow an informed decision between
patterns that solve similar problems.

The idea of using patterns, though not under this
name, is in principle not new to the Petri net commu-
nity. There exists a body of recurring examples to il-
lustrate certain behaviors of a net that can very well be
called patterns. However, the problem with those par-
ticular examples like deadlock (e.g. (Peterson 1981)),
dining philosophers (e.g. (Peterson 1981; Baumgarten
1996)), producer/consumer, and reader/writer (e.g.
(Peterson 1981; Reisig 1992)) etc. is that, while they
do illustrate their particular theoretical point, the style
of presentation used is not intended to show how to use
those examples in the models of complex systems. The
idea of general purpose building blocks is hinted at in
(Caloini, Magnani, and Pezze 1996), but the authors of
this case study do not put strong emphasis on the reuse
aspect. The presentation of building blocks for com-
munication protocols in (Baumgarten, Ochsenschläger,
and Prinoth 1986) and (Baumgarten et al. 1985) is also
heading in the same direction as our suggestion in this
paper, but the focus there is more on the demonstra-
tion of a hierarchy and component concept than on the
concise description of fundamental design principles.

2.2 A template for the description of Petri net
patterns

The most suitable form for a template to describe
patterns will depend on the particular pattern itself, its
problem context or level of granularity, and of course
the needs of the respective pattern users. As a starting
point for discussion we suggest the following description
template, which follows the four principal elements of a
pattern that were mentioned in the previous section. It
is, with some modifications, taken from (Gamma et al.
1995). Certain descriptional sections may not apply to
a specific pattern.

Name block:
Name: A name to identify the pattern and dis-

tinguish it from others. The name should be
such that it clearly conveys the main idea of
the pattern.

Problem block:
Problem: The problem and problem context

which the pattern addresses.
Example: A concrete example of the problem

within some application domain.



Required formalism: The minimal/most sim-
ple modeling Petri net variant that is required
to realize the pattern. This information is
particularly important if a formalism allows
special features.

Solution block:

Solution: The basic idea of the pattern.

Sample structure: A graphical representation
of a graphical structure that implements/uses
the pattern. The sample structure may be
a neutral skeleton or refer to the example
given before. In the latter case the descrip-
tion needs to make clear which parts are fixed
elements of the solution and which belong to
the example only.

Description: A detailed description of the func-
tion of the pattern elements, also discussing
design considerations, variations and options.
As far as possible, the explanation should
make use of other patterns contained within
the pattern under consideration.

Consequences block:

Uses: References to other patterns that are con-
tained within the described pattern.

Similar to: References to and comparisons with
other patterns that are similar in some aspect
like net structure or targeted problem.

Further sections may be used to highlight special
aspects, variations, or trade-offs of using a certain pat-
tern.

3 PATTERN DESCRIPTIONS

In this section we will illustrate the pattern con-
cept by describing a few simple but useful recurring
structures when modeling systems with Petri nets. We
will first introduce low-level patterns (which would be
termed idioms in (Buschmann et al. 1996)) and then
present a pattern on a somewhat larger scale. For some
even more complex patterns, see for example (Janneck
and Naedele 1998).

The first pattern is a useful idiom for expressing
choices that would be expressed by conditional con-
structions in programming languages.

Name: Deterministic choice

Problem: A token is to be processed by exactly one of
a given number of processing subnets. The value
of the token determines the branch that is chosen.

Figure 2: A model of a memory bank.

Example: In a random access memory (RAM), the
memory cell activated depends on the address
given to the memory unit. Once the address is
available, one of several subnets representing the
respective portion of the RAM has to be activated
for further processing.

Required formalism: High-level Petri nets.

Solution: The token will be processed by transitions
which are in structural conflict. Appropriate
guards will resolve this conflict in a deterministic
way.

Sample structure: See the decoding of the column
and row addresses at the places col s and row s by
the associated transitions in Fig. 2.

Description: In Fig. 3, the token to be processed
would reside in the place. The processing subnets
are connected to that place by transitions ti that
are guarded by predicates Gi in such a way that
for any possible value of the token exactly one Gi

will be true, i.e. exactly one transition ti will be
enabled. Often, the requirement that exactly one
guard must be true will imply the addition of a
default transition.



tn

Gn

ti

Gi

t1

G1

Figure 3: Deterministic choice pattern.

Variation: Relaxing the above requirement by allow-
ing more than one guard to be true obviously leads
to a non-deterministic choice between transitions
enabled by the same token.

Trade-offs: The structural conflict between the
guarding transitions assumes some kind of (im-
plicit or explicit) synchronization of their access
to the input place. If this mechanism is not to be
abstracted from, it might be more appropriate to
use the distributed choice pattern.

G G

Figure 4: A terminated loop.

The next pattern applies deterministic choice to
the problem of terminating an iteration.

Name: Terminated loop

Problem: Iterate a certain sequence of actions until a
condition becomes true.

Example: When a RAM is ready to accept data, the
CPU must transfer a certain amount of data ac-
cording to a fixed timing scheme within a certain
amount of clock cycles.

Required formalism: High-level Petri nets.

Solution: A circular net structure with a determinis-
tic choice terminating the circle.

Sample structure: See the transitions continue, ter-
minate, and delay of the CPU model in Fig. 5
which control the writing of data to the RAM.

Description: The loop is implemented by a circular
net, like in the simple case in Fig. 4. There is a
deterministic choice between the termination tran-
sition (guarded by G in the figure) and the continu-
ation transition (guarded by G). Once G becomes
true, the token is removed from the loop and pro-
cessing terminates.

Uses: Deterministic choice

Figure 5: A terminated loop in context.

Finally, the last pattern shows how to implement
a behavior similar to the deterministic choice in a situa-
tion where branches that may be chosen are distributed
and where direct structural conflict is not an appropri-
ate modeling technique.

Name: Distributed Choice

Problem: In a distributed situation, the basic deter-
ministic choice pattern is not applicable, since dis-
tributed components cannot be in direct conflict
on a given place.

Example: In the shaded area in Fig. 2, RAM cells are
physically distributed over a bank, and their selec-
tion basically constitutes a deterministic choice. It
seems inappropriate, however, to model the selec-
tion transitions as being in direct conflict to each
other.



Required formalism: High-level Petri nets.

Solution: After broadcasting the token to all possibly
affected units, each unit deterministically deter-
mines whether it has to process the token.

Sample structure: The broadcast and selection
structure in the shaded area in Fig. 2.

Description: In Fig. 6, incoming tokens are buffered
in each subnet and are only forwarded to the rest
of the subnet if Gi is true. They are removed from
the buffer if Gi is true. As in the deterministic
choice pattern, we assume only (or exactly) one of
the guards Gi to be true for any given token.

Trade-offs: While this pattern is functionally similar
to the deterministic choice pattern, it is applicable
to distributed situations, i.e. the guarding transi-
tions may not be assumed for some reason to have
direct access to the input place. This is the case,
e.g., when there is no direct, atomic, and synchro-
nized access of the processing paths to a single
memory location, as in a networked environment.
Note also that relaxing the requirement that only
one Gi be true for any given token does not result
in non-deterministic choice but rather in concur-
rent execution of more than one of the branches.
Furthermore, no special default branch has to be
introduced in order to prevent the accumulation of
unconsumed tokens in the input place.

Uses: Deterministic choice.

G1

G1

Gn

Gn

Figure 6: Distributed choice pattern.

4 RESULTS

Finally, we will give some results concerning the
usage of patterns in the memory system model pre-
sented in (Gries 1998). The model can be subdivided
into three main areas: memory components (RAM
and buffer), which use data and control flow, con-
trollers (external memory controller and controller on
the memory chip), which can be best described by con-
trol flow, and stimuli parts (CPU and bus components)
which are also control flow dominated parts.

overall used covered by patterns
system blocks places trans. places transitions

RAM + buffer 73 83 28 60

Controllers 25 42 11 29

CPU + bus 13 12 3 5
∑

111 137 42 (37.8%) 94 (68.6%)

Table 1: Places and transitions of the memory system
model covered by the three introduced patterns.

Table 1 summarizes how many places and transi-
tions of the model are already represented by the appli-
cation of the three mentioned patterns only, i.e., 37.8%
of all places and 68.6% of all transitions are covered by
them.

Table 2 shows the usage of the patterns in the com-
ponents of the model. In particular, the control flow
components require the deterministic choice pattern for
the representation of basic address and instruction de-
coding processes. Besides, terminated loop patterns
can be found in the controllers since they are responsi-
ble for the exact timing of read, write, and refresh ac-
tions of the RAM. Finally, distributed choice patterns
are used to model the activation of distributed com-
ponents within a larger one, e.g. RAM cells within a
RAM or separate address decoders within a controller.

system blocks term. loop distr. choice det. choice

RAM + buffer 0 2 8

Controllers 4 2 5

CPU + bus 1 0 1

Table 2: Patterns used by the memory system.

5 CONCLUSION

In this paper we show how patterns can be used to
structure complex models, which are thus easier to cre-
ate and understand. Just like in the area of software
engineering and architecture, we believe that design-



ing and documenting systems using patterns fosters
reuse, efficiency, robustness, and understandability of
even very complex Petri net models. This would clearly
enhance the applicability of the Petri net approach to
complex modeling tasks.

This paper is intended to be a starting point for
further discussion among users of Petri nets and other
flow-oriented visual languages about how to select, cat-
egorize, and present existing knowledge for modeling
tasks.

References

Alexander, C., S. Ishikawa, M. Silverstein, M. Jacob-
son, I. Fiksdahl-King, and S. Angel (1977). A Pattern
Language. Oxford University Press.

Baumgarten, B. (1996). Petri-Netze, Grundlagen und
Anwendungen. Spektrum Akademischer Verlag.

Baumgarten, B., H. J. Burkhardt, P. Ochsenschläger,
and R. Prinoth (1985). The signing of a contract -
a tree-structured application modelled with petri net
building blocks. In G. Goos and J. Hartmanis (Eds.),
Advances in Petri Nets 1985, Number 222 in Lecture
Notes in Computer Science. Springer.

Baumgarten, B., P. Ochsenschläger, and R. Prinoth
(1986). Building Blocks for Distributed System De-
sign, Volume Protocol Specification, Testing, and
Verification, pp. 19–38. Elsevier Science Publishers
B.V. (North-Holland).

Buschmann, F. and R. Meunier (1995). A system of pat-
terns. In Pattern Languages of Program Design.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal (1996). Pattern-Oriented Software Ar-
chitecture - A System of Patterns. Wiley and Sons.

Caloini, A., G. A. Magnani, and M. Pezze (1996). Soft-
ware design of robot controllers with petri nets: a
case-study. In Proceedings of the 1996 IEEE Interna-
tional Conference on Systems, Man and Cybernetics.

Esser, R. (1996). An Object Oriented Petri Net Approach
to Embedded System Design. Ph. D. thesis, ETH
Zurich.

Esser, R., J. W. Janneck, and M. Naedele (1997). Ap-
plying an object-oriented petri net language to het-
erogeneous systems design. In Petri Nets in Systems
Engineering.

Gamma, E., R. Helm, R. Johnson, and J. Vlis-
sides (1995). Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Gries, M. (1998, June). Modeling a memory subsystem
with petri nets: a case study. In Workshop Hardware
Design and Petri Nets HWPN98, Lisbon, Portugal,
pp. 186–201.

Janneck, J. W. and M. Naedele (1998). Introducing de-
sign patterns for petri nets. Technical report, Com-
puter Engineering and Networks Lab (TIK), Swiss
Federal Institute of Technology Zurich (ETH Z).

Murata, T. (1989, April). Petri nets: Properties, analy-
sis, and applications. Proceedings of the IEEE 77 (4),
541–580.

Naedele, M. and J. W. Janneck (1998). Design pat-
terns in Petri net system modeling. In Proceedings
ICECCS’98, pp. 47–54.

Peterson, J. L. (1981). Petri Net Theory and the Modeling
of Systems. Prentice Hall.

Reisig, W. (1992). A Primer in Petri Net Design.
Springer-Verlag.

Zurawski, R. and M.-C. Zhou (1994, December). Petri
nets and industrial applications: A tutorial. IEEE
Transactions on Industrial Electronics 41 (6), 567–
583.

BIOGRAPHIES

Matthias Gries studied electrical engineering and spe-
cialised in digital signal processing. He received his
MS degree from the Technical University of Hamburg-
Harburg, Germany, in 1996. Currently, he is working
at the Swiss Federal Institute of Technology (ETH),
Zürich, Switzerland, as a research assistant in the
Computer Engineering and Networks Lab (TIK).

His research project covers the design of an ATM
switch where he is responsible for the design of a scal-
able, high speed shared memory architecture using re-
cent memory technologies.

Jörn W. Janneck graduated in computer science from
the University of Bremen, Germany, in 1995, working
on computer graphics and artificial intelligence.

From 1995 to 1996 he worked as a researcher for the
Fraunhofer Institute for Material Flow and Logistics
(IML) in Dortmund, Germany, in the field in business
modeling and simulation. Since 1996 he is holding a
position as a research assistant at the Swiss Federal In-
stitute of Technology (ETH), Zurich, Switzerland, do-
ing research on visual language semantics and various
aspects of discrete event systems including simulation,
formal analysis, and modeling languages such as Petri
nets.

Martin Naedele studied electrical engineering at Ruhr-
University, Bochum, Germany, and Purdue University,
West Lafayette, IN. He received his MS degree in elec-
trical engineering from Ruhr-University in 1997. Cur-
rently, he is working at the Swiss Federal Institute of
Technology (ETH), Zürich, Switzerland, as PhD stu-
dent and research assistant in the Computer Engineer-
ing and Networks Lab (TIK).

His research interests include embedded systems, fault-
tolerant real-time computing, software engineering,
and computer security.


