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Jtbstract

The advantages of semantic data models over hierarchical, network and

relational models have been well established. However, a comprehensive
database management system (DBMS) that directly supports a semantic data

model faces new implementation challenges that stem directly from the

model. Some of the more significant issues are:

Data integrity: The DBMS must assume additional data integrity
responsibilities due to the semantics of entity types, generalization
hierarchies, relationships, and other conceptual-level constraints.

Conceptual object mapping: The conceptual schema must be mapped into

lower—level physical components such as records, items, and access

methods. However, high-level query parsing and optimization should

not require detailed knowledge of mapping techniques so that multiple
mapping methods and data sources (i.e. heterogeneous data access) can

be adopted more easily.

Performance: Special considerations are needed to address performance
due to the greater “distance” between conceptual and physical database

objects and the corresponding increase in translation that is

required.

The Semantic Information Manager (SIM) is a fully featured, commercially
available DBMS implemented for the Unisys A Series line of mainframes.

SIM directly supports a semantic data model similar to ~Iarer and

McLeod’s SDM HaMc8l]. SIM forms the center of the InfoExec m
system,

which provides a comprehensive data management environment based on the

semantic data model. This paper provides a summary of the principal
InfoExec modules, and it describes some of the key implementation
strategies used by SIM to address the above issues.

1 Semantic Data Models

Hierarchical, network, and relational data models possess inherent

limitations that have been identified in many papers (e.g., Kent79,
KiMc8l, ShipBl). To overcome these limitations, a number of high-level
data models have been proposed such as the binary relational model

(Abri74], entity—relationship model (Chen76], extended relational model

Coddl9], functional data model Ship8l], and the semantic data model

(HaMc8l]. Each of these models can be termed “semantic” data models

because their common objective is to capture more of the meaning of data

than previous data models.

‘ InfoExec is a trademark of Unisys Corporation.
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Precise terminology and concepts vary from one model to the next.

However, a core set of semantic data model features can be described as

follows:

(1) The primary objects of interest in a semantic data model are

“entities” which are classified by “entity types”.

(2) Entity types may be “subtypes” or “supertypes” of other entity
types, thereby forming “generalization hierarchies”. The “root”

entity type of a hierarchy is termed a “class”, while all other

entity types are termed “subclasses”.

(3) Entities possess “attributes” which can be “single—valued” or

“multi-valued”. Attributes establish characteristics of entities

including relationships between entities.

(4) Data integrity constraints are expressed in several forms

including semantics that are defined for hierarchies, attributes,
and relationships.

Many advantages can be realized by a DBMS that is based on a semantic

data model. For example, data can be modeled more closely to its real-

world perception, thereby simplifying database design and maintenance.

The database can assume increased responsibilities for data integrity,
thereby reducing application development expense while increasing
database reliability and security. A query language can be developed
that is conceptually natural, expressive, and easy to use. Also, query

optimization can be performed with greater scope.

2 Overview of SIX and the InfoExec System

The SIM project was initiated five years ago at Unisys with the goal of

producing an advanced DBMS for our A Series systems. We chose a semantic

data model similar to Hammer and McLeod’s SDM HaMc8l] as the basis of

SIM for several reasons. Besides offering the advantages described

above, SDM is sufficiently powerful to allow a wide variety of existing
database systems to be viewed with a single model. At the same time, SDM

is sufficiently flexible to allow evolution into even more advanced data

modeling concepts (e.g., inference mechanisms could be added to more

directly support knowledge-based systems).

SIM offers a formal data definition (DDL) language for schema definition

and a data manipulation language (DML) for data access. The DDL supports
a rich set of constructs including powerful data types, generalization
hierarchies, relationships, and integrity and security constraints. The

DML is a high-level, non-procedural language that supports powerful
features while addressing ease of use via an English-like syntax. These

topics are fully discussed in (JFGT88).

SIM is the central component of the InfoExec system, which provides a

complete data management environment based on the semantic data model2.
The InfoExec environment addresses global data management issues, such as

~ The term “DBMS” implies the software which is used to define, access,

and maintain a database. A “data management environment” provides
additional software, such as a data dictionary and ad-hoc query

products, to assist the overall application development effort.
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productivity, ease of use, and performance, by providing additional

modules which address the development and use of both the database and

its applications. In contrast to modeling or translation facilities,
experimental prototypes, and hybrid implementations e.g., AnHa87,

GGKZ85, MBW8O, PSM87, Ship8l, TsZa84], the InfoExec system represents a

“ground—up” implementation that propagates the semantic data model

throughout its interfaces. We believe that ours is the first fully
featured, commercially available system based on a semantic data model.

A brief description of the InfoExec modules which are integrated with SIM

is provided below.

2.1. Data Dictionary

A key module of the InfoExec system is the Advanced Data Dictionary
System (ADDS) which is used to define, maintain, track, and perform other

functions for all SIM databases (hence, ADDS is an “active” dictionary).
ADDS also provides many other definition capabilities which support the

application environment. For example, ADDS can be used to define record

structures, screen descriptions, program data structures, and

documentation. All of the ADDS functions are offered via a menu—oriented

interface which minimizes the need to know specific sublanguages (i.e., a

SIM database can be defined without having to know the SIM DDL). Each

menu offers extensive on—line “help” text to reduce the need to access

reference manuals. ADDS is implemented as a fairly large SIM database

application, thereby making use of (and giving credence to) the power of

the semantic data model.

2.2 Ad—hoc Query Facilities

Two ad—hoc query facilities are provided to support on—line access to the

database. The Interactive Query Facility (IQF) offers a screen-based

interface via terminals while the Workstation Query Facility (WQF) offers

a graphically—oriented interface via intelligent workstations. Both

products preserve the data model and its expressive abilities, yet they
reduce the need for the end-user to directly use the underlying DML by
using prompts or graphic icons to construct query statements. Both

products have dictionary interfaces for saving and reusing queries, and

both products provide extensive report handling features.

2.3 Host Language Interfaces

Host language interfaces to SIM databases and ADDS are provided in COBOL,

Pascal, and ALGOL. The interfaces are unique in that they provide the

SIM DML as language extensions “tuned” to the flavor of each host

language. This approach preserves the full expressive power of the SIM

DML while allowing query statements to be intermixed with host language
constructs. For example, queries may contain expressions that reference

program variables and functions, and queries may be passed as parameters
within and between programs. ADDS can be accessed for importing
conceptual schema elements, file descriptions, data structures, screen

interfaces, and other definitions.

2.4 Data Management System II (DM811)

DMSII is a multi-user, high-performance, network-based DBMS that has been

widely—used on A Series systems for nearly 15 years. DMSII provides a
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complete set of database features in the areas of file structures and

access methods, resource management, and auditing and recovery
mechanisms. SIM exploits these features by using DMSII as its primary
physical access engine (although access to other data sources is also

supported). This arrangement results in an integrated co—existence

between DM511 and SIM. For example, an InfoExec utility is provided to

view an existing DM511 database as a SIM database.

2.5 Other Database Utilities

The InfoExec system also offers a complete range of database support
utilities for performance monitoring and tuning, backup and recovery, and

other functions. Due to the integrated relationship of DMSII and SIM,
most of these utilities will operate on either DMSII or SIM databases. A

screen-oriented interface to these facilities is provided via the

Operations Control Manager (0CM) to eliminate the need for learning
sublanguages peculiar to each utility. The screen interface uses the

same on—line help mechanisms used by other screen—based InfoExec

products.

3. Implementation Strategy of SIM

3.1 Process Architecture Overview

The key implementation objectives of SIM are to (1) realize and directly
support the data model, (2) provide flexible conceptual object mapping
with useful alternatives, (3) provide query (DML) parsing and

optimization that is independent of specific mapping techniques, (4)
enforce the data integrity constraints expressed by the database schema,
and (5) provide query execution performance that is suitable for

databases requiring high transaction rates. Two longer—term goals are to

provide access to both heterogeneous and distributed data.

As a consequence of these criteria, the SIM architecture is designed to

be highly modular yet efficient. This architecture is depicted in

Figure 1. As shown, SIM is composed of multiple layers that are joined
at distinct interfaces. Each software module operating within each layer
has a specific perspective of the database and performs its operations
based on that perspective. This approach allows each module to function

at the highest possible level, thereby minimizing its need to know

details of lower-level modules. A key performance strategy of this

architecture is the use of dynamic code generation for query execution.

Also, the implementation of SIM exploits architectural advantages of A

Series systems (the discussion of which is beyond the scope of this

paper).

An important implementation strategy, the Logical Underlying Component
(LUC) model, is described in the next section. The purpose and operation
of each software module within SIM’s architecture are described in

subsequent sections.
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Figure 1 - SIX Architecture

3.2 The LUC Model

Because we wish to separate conceptual—level software modules from

physical mapping details as much as possible, we have introduced an

intermediate data model within SIM’s process architecture. It is termed

the “LUC” model because it consists of “logical underlying components”
which are functionally simpler than the conceptual-level objects in SIM.

There are three types of LUC objects:

(1) A “record” LUC consists of a fixed set of single-valued fields.

Each field has a fixed size, location, and a known data type.

(2) A “relationship” LUC defines a unidirectional relationship between

an “owner” record LUC and a “target” record LUC. The target
record LUC may be “dependent” which means that it cannot exist

without the owner LUC object. Two relationship LUC5 may be

identified as “inverses” of each other.

(3) An “index” LUC defines an access method on a record LUC. The

index may have multiple ascending and/or descending keys, and it

may be a random or index-sequential structure.

Each LUC object has a well-defined set of operations that can be

performed on it and a corresponding set of integrity rules. Every
conceptual schema has a precise mapping into a LUC schema that is

independent of how the LUC schema is mapped into the underlying physical
schema. Furthermore, the LUC model is sufficiently flexible that it can
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be mapped into virtually any record-based model, including conventional

database systems. Thus, the software “above” the LUC level need only
know how to translate conceptual-level operations into LUC level

operations, and software “below” the LUC level need only know how to

translate these operations into corresponding operations on the

particular data source(s) involved.

3.3 Application

A SIM application is either an ad-hoc query facility such as IQF or WQF,
a host language compiler such as COBOL or Pascal, or a user—written host

language program. In each case, the application’s view of the database

is based entirely on the database’s conceptual schema. Each application
submits separate requests to parse and execute DML queries, thus allowing
the two processes to occur independently. For example, a host language
program’s queries are parsed at compile-time but executed at run—time.

Once a query is parsed, it can be executed multiple times, and multiple,
simultaneous invocations (e.g., with different input parameters) are

allowed.

3.4 Query Driver

The Query Driver is the application interface to SIM. Its responsibility
is to manage the query parsing and execution requests submitted by the

application program. An application requests that a query be parsed by
submitting a DML query as a text string. The Query Driver submits this

text to the DML Parser, which returns a query execution strategy, one

part of which is an “S—code” (semi—compiled code) symbolic program. The

Query Driver submits the S—code source to the S—code compiler and in

return receives a block of machine code called a remap—and—test (RAT)
procedure.

An application executes a query by submitting “retrieve data” or “process
update” requests. The Query Driver responds to these requests by
interpretively executing portions of the query’s execution strategy.
This causes LUC requests (including the appropriate RAT procedure) to be

submitted to the appropriate LUC Mappers. The LUC Mappers respond to

retrieve requests with data obtained from the database or with update
results sent to the database.

3.5 DML Parser

The DML Parser parses, validates, and develops an optimized execution

strategy for each DML query. While parsing a query, the DML Parser

retrieves schema information by submitting schema inquiry requests to the

appropriate LUC Mappers. The parser receives information on conceptual
and LUC objects and the mapping between them. Information such as

relationship cardinalities, available indexes, and integrity constraints

is used to develop an optimal execution strategy for the query.

The information received by the DML Parser is free from physical mapping
details except for the layout of LUC records. For each LUC record, the

parser obtains such details as field offsets, lengths, and data types.
This information is used to generate the S-code program, which is

returned as part of the execution strategy.
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Many integrity constraints are the responsibility of the DML Parser. For

example, data type, range, and existence requirements are either verified

during parsing, or the query’s execution strategy is augmented such that

enforcement is performed during query execution. Other integrity
constraints are the responsibility of the LUC Mapper.

3.6 8-code Compiler

The S—code Compiler is a dynamic code generator. The S-code language
consists of a limited set of statements, operators, and operands. A

typical S—code “source” program consists of a few hundred bytes, and the

S—code compiler converts this program into the RAT procedure previously
mentioned. When called, a RAT procedure accepts a set of buffers

(arrays) and performs testing and update operations on them as instructed

by its source program. The RAT performs two basic kinds of operations
which contribute greatly to the performance of query execution:

(1) The RAT can examine a record and apply a selection criterion to

determine if the record should be selected. This “test” function

is used to find database records during search phases of query
execution.

(2) The RAT can move data from one record to another, performing
expression analysis (including field—level integrity checks), data

type conversion, and other functions. This “remap” function is

used to map data between database records and application data

structures.

Typically, the S-code compiler can compile an S-code source program into

a RAT in less than one second. Since the RAT procedures perform all

expression analysis and data transfer for a query, the performance impact
of the interpretive nature of the remaining SIN modules is minimized.

3.7 LUC Mappers

A different LUC Mapper exists for each type of physical data server that

can be accessed as part of a SIM database. Each LUC Mapper accepts LUC

commands and translates them into appropriate calls on the underlying
data server module. The Mapper calls the RAT procedure to filter and/or
update records retrieved from the data server. The Mapper exploits any

functionality that is available from the data server (e.g., transaction

control, locking mechanisms, searching mechanisms, etc.). When

necessary, the Mapper supplements the data server’s functionality with

anything that is lacking.

The LTJC Mapper plays an important part in enforcing data integrity during
query execution. Many of the constraints implied by the data model or

the conceptual schema are automatically enforced by the Mapper. For

example, existence and cardinality constraints on relationships are

enforced by the Mapper during update operations. Dependent LUC objects
which cannot exist without a corresponding owner are either automatically
deleted when the owner is deleted, or the Mapper disallows the deletion

of the owner (or the relationship to the owner) depending upon the type
of conceptual object represented. For example, when an entity is deleted

from a subclass role, all relationships and multi—valued attributes are

deleted from both the subclass and all subordinate roles in which the

entity participates. These operations are the responsibility of the LUC
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Mapper so that it may exploit any physical mapping properties for greater
performance.

Each LUC Mapper also services schema inquiry requests from the DML

Parser. A portion of the LUC Mapper called the Directory is dedicated to

this function. Directory information is stored either in the data

dictionary (ADDS) or within the database itself.

Note that the use of multiple LUC Mappers allows a flexible composition
and distribution of a single database. What is viewed as a single SIM

database at the conceptual level can consist of data that is derived from

multiple data sources. A single data server may distribute data within

its own control, or data can be distributed by one or more LUC Mappers.
Since the LUC Mapper’s interfaces are message-oriented, it can reside on

a foreign host, thereby allowing distributed data. This architecture

also allows a single query to access data within multiple databases.

3.8 Physical Data Servers

Ultimately, SIN aims to allow any data source to be a data server,

thereby allowing virtually anything to be accessed as a SIM database.

Initially, however, the primary physical data server for SIM databases is

provided by DMSII, which, as mentioned earlier, is a robust and widely-
used network-based DBMS. Also, a File Mapper is available which provides
access to simple data files, although only inquiry access is currently
allowed.

To further enhance the performance of DMSII-mapped databases, the DMSII

data server has been extended to accept and use RAT procedures during
record selection. When this is done, a RAT is accessing low—level I/O
buffers directly, thereby eliminating a great deal of potential data

movement. Also, the RAT can search multiple records sequentially until a

record which meets the selection criteria is found. This prevents
returning from DM511 with unneeded records. Finally, the only records

that are locked during updates are those selected by the RAT, hence, the

locking of non—essential records is eliminated.

4. Conceptual Object Mapping

SIN offers multiple techniques for mapping conceptual objects into

physical DMSII components. Default mapping algorithms are chosen to

provide a careful balance between performance and memory/disk usage.
Alternatives are available so that users may “tune” the mapping to

conditions present for a specific database or host system. The default

mapping techniques and some of the alternatives are described below.

Classes: Each class is mapped to a separate disjoint structure

containing fixed—format records. Each record holds data items

corresponding to the class’s attributes plus a system—generated surrogate
item. The surrogate item contains a value that gives each entity a

unique identity that never changes over the entity’s life. The class is

spanned by a surrogate index, which is an access method whose key is the

surrogate item. This provides efficient entity retrieval by surrogate
value. User alternatives include structure types which employ different

storage and access techniques and different surrogate implementations
including the use of a suitable required, unique attribute.
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Subclasses: Subclasses have two possible mappings depending upon their

superclass configurations. When a subclass has a single immediate

superclass and all of its sibling subclasses are mutually exclusive, the

subclass is mapped to a variable—format extension of its superclass’s
records. A subclass with multiple superciasses and/or non-mutually
exclusive siblings is mapped to a new disjoint structure, and a “copy”
surrogate item and index are added to that structure. The copy surrogate
item contains the same surrogate value as the entity’s base class. The

user may choose the disjoint structure mapping when the variable format

mapping would have been the default, and he or she has the same structure

type options that are available for classes.

Attributes: Attributes whose range is a system-defined class

representing a printable data type (such as arithmetics, strings, and

booleans) are termed “data—valued attributes” (DVAs). All other

attributes range over some user—defined class and are termed “entity-
valued attributes” (EVA5). SIM employs different mapping techniques for

single-valued (SV) and multi-valued (MV) DVAs and EVAs.

Each SV DVA is mapped into two items within its owner’s record: a data

item holds the value of the DVA, and a “null bit” item indicates if the

value exists. An MV DVA is normally mapped to a disjoint structure

containing a data item, copy surrogate item, and surrogate index similar

to that used for subclasses. When the DVA meets certain requirements, it

can be mapped to an embedded structure or an array contained in the

structure of the DVA owner.

Each EVA has an “inverse” EVA which is either explicitly or implicitly
declared. An EVA pair forms a bidirectional relationship that is mapped
with the cardinality of each EVA taken into consideration. Each EVA of a

1:1 relationship is mapped into an item within its owner’s record. The

item contains the surrogate value of the owner of the inverse EVA. As an

alternative, the user can choose absolute address pointers for each EVA

of a 1:1 relationship.

By default, both EVAs of l:many and many:many relationships are mapped to

a structure called the “common EVA structure.” Each record represents a

single relationship instance between two entities. Each record possesses

two items containing the surrogate values of the entities plus a

relationship type item. Many relationships are mapped to a single common

EVA structure, thereby minimizing the number of structures consumed by
the database. As alternatives, the user may choose from several absolute

address and foreign key mappings to achieve better performance at a cost

of an increase in the number of structures used.

5. Conclusions

Key implementation strategies have been described that are used by SIM, a

DBMS based on a semantic data model. The SIM architecture is highly
modular and employs an intermediate data model called the LUC model to

increase the independence of the conceptual and physical layers. As a

result, query parsing and optimization do not require detailed physical
mapping knowledge, yet the system allows multiple physical mapping
alternatives and distributed, heterogeneous data access. Data integrity
is enforced by a combination of query augmentation and dynamic constraint

enforcement performed by the LUC Mapper modules. Query performance
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techniques include high-level query optimization, dynamic code

generation, and LUC Mapper exploitation of data server features.

Our experience thus far with SIM has been very satisfying. Our tests

have demonstrated performance comparable with conventional database

systems, and our initial customers have testified to the power and

productivity provided by the model. Investigations for future wo-rk

include DDL and DML enhancements, including additional integrity
mechanisms, further performance improvements, on-line reorganization,
increased access to distributed and heterogeneous data access, and

temporal data.
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