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Abstract

The new concept of universal parameterized net classes is introduced in order to allow a

uniform approach to di�erent kinds of Petri net classes. By di�erent actualizations of the net

structure parameter and the data type parameter we obtain several well-known net classes,

like elementary nets, place-transition nets, coloured nets, predicate transition nets, and

algebraic high-level nets, as well as several interesting new classes of low- and high-level nets.

While the concept of parameterized net classes is de�ned on a purely set theoretical level, we

introduce the extended concept of universal parameterized net classes taking into account

also morphisms and universal properties in the sense of category theory. The extended

concept leads to a uniform theory of constructions and compatibility results concerning

union and fusion of nets for di�erent types of net classes.

1 Introduction

Petri nets have been used sucessfully for more than three decades to model concurrent processes

and distributed systems. Various kinds of Petri net classes with numerous features and analysis

methods have been proposed in literature (among many others [Bra80, BRR87a, BRR87b]) for

di�erent purposes and application areas. The fact that Petri nets are widely used and are still

considered to be an important topic in research, shows the usefulness and the power of this

formalism. Nevertheless, the situation in the �eld of Petri nets is far from satisfactory, partly

due to the enormous interest in Petri nets, that has been leading to a vast accumulation of

dissimilar approaches. The di�erent notions, de�nitions and techniques, both in literature and

practice, make it hard to �nd a common understanding and to provide good reasons for the

practical use of the nets. Moreover, the unstructured variety of Petri net approaches causes the

new formulation and examination of similar concepts. The relation of these concepts requires

complicated, but boring conversions. Most of the di�erent concepts for Petri nets are de�ned

explicitly for a single net class, although many of these notions are essentially the same for

di�erent kinds of net classes. Unfortunately, however, there is no abstract notion of Petri nets

up to now, that permits the abstract formulation of such notions for a large variety of di�erent

net classes. The uniform approach to Petri nets, based on universal parametrized net classes,

captures the common components of di�erent kinds of Petri nets like places, transitions, net

structure, and, in case of high-level nets, a data type part. Moreover, this approach treats

low- and high-level nets in the same way, considering a trivial data type for low-level nets.

�A short version of this paper can be found in [EP97]
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General notions, like �ring behaviour, that are essential for all kinds of Petri nets, low- as well

as high-level, are formulated within the frame of abstract Petri nets independently of their

speci�c de�nition within a �xed net class. We do not consider this uniform approach as a

net formalism for application purposes. Nevertheless, such an approach allows the easy transfer

of results between di�erent Petri net formalisms and thus has an impact on Petri nets used in

practice. Hence, this concept comprises many known and several new net classes as special

cases and allows their mutual comparison. Results achieved within this frame can be generalized

to several di�erent net classes. This means notions and results are achieved without further

e�ort in each of these net classes, provided the general assumptions have been veri�ed for the

speci�c instance.

This paper is organized as follows. First, we sketch a purely set theoretic description of this uni-

form approach, called parametrized net classes. This includes the de�nition of the net structure

parameter and the data type parameter. Then we extend these parameters into a categorical

frame that allows the construction of the marking graph, some horizontal and vertical structur-

ing techniques and compatibility results. The conclusion summarizes the achieved results.

2 Parametrized Net Classes

The basic idea of this uniform approach to Petri nets is to identify two parameters, that describe

each of the net classes entirely. In case of the usual Petri nets this is the net structure and in case

of high-level nets it is the net structure and the data type formalism. We call these parameters

net structure parameter and data type parameter. The instanciation of these parameters leads

to di�erent types of Petri nets, or more precisely Petri net classes. In this section we introduce

parameters for net classes, parametrized net classes and their instances leading to several well-

known and some interesting new net classes.

2.1 Relevance of Parameters for Net Classes

The net structure parameter describes di�erent low-level net classes. Several di�erent net

classes have been proposed over the last 30 years, see for example [Bra84, Rei85, RT86]. More-

over, the developments in software industry have yielded quite a large amount of variants that

are equipped with additional features and/or restrictions. We propose an abstraction of net

structure that can be instanciated to several net classes, including place/transition nets, ele-

mentary nets, variants of these and S-graphs. We have shown in [Pad96] that the underlying

construction is general enough to comprise several di�erent kinds of low-level nets and their net

structure. The data type parameter is necessary, because several data type formalisms have

been integrated with Petri nets leading to di�erent notions of high-level nets. Typical examples

are: indexed sets with place/transition nets leading to coloured nets [Jen81], predicate logic

with elementary nets leading to predicate/transition nets [GL81], algebraic speci�cations with

place/transition nets leading to di�erent versions of algebraic high-level nets [Vau86, Rei91], ML

with place/transition nets leading to coloured nets [Jen92], OBJ2 with superposed automata

nets leading to OBJSA-nets [BCM88], and algebraic speci�cations with the Petri Box Calculus

[BDH92] leading to A-nets [KP95]. In practice, there are also other data type formalisms like

entity/relationship diagrams, SADT and many other semi-formal techniques that are combined

with Petri nets in an informal way.
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2.2 Algebraic Presentation of Place/Transition Nets

We use the algebraic presentation of Petri nets, that uses functions to relate a transition with

its pre- and postdomain. This approach relates a transition on the one hand with all those

places in its predomain using the function pre and on the other hand with its postdomain using

the function post. In this algebraic presentation a place/transition net N is simply given by a

4-tuple N = (P; T; pre; post) where P and T are the sets for places and transitions respectively

and pre and post are functions pre; post : T ! P
� from T to the free commutative monoid P

�

over P . This construction is similar to the construction of words over some given alphabet.

Due to the axiom of commutativity the elements of the free commutative monoid are considered

to be linear sums over P , that is for each t 2 T we have pre(t) =
Pk

i=1 nipi for pi 2 P and

ni 2 N for some k 2 N. Note, that this is just the same as multisets. The marking is given

by some element m 2 P
� and the operations for the computation of the �ring behaviour are

comparison, subtraction and addition based on linear sums, de�ned over the monoid operation.

This algebraic presentation [MM90] is equivalent to the classical presentation (see e.g. [Rei85,

ER96]), but has the advantage of a clear and axiomatic presentation, thus it is much simpler

to generalize.

2.3 Algebraic Presentation of Elementary Nets

In the case of elementary nets1 the algebraic presentation is given by the power set construction

P(P ), that is pre; post : T ! P(P ), because �
t = pre(t) and t

� = post(t) are given by subsets

of P . Moreover, each element m 2 P(P ) can be considered as a marking of the elementary net.

The �ring behaviour makes use of the order on sets and the operations union and complement

of sets.

2.4 Variants of Net Classes

Note, that there are several variants of place/transition nets, and similar for other types of nets,

where nets are considered with initial marking or with labels on places, transitions, and/or

arcs. However, in this paper we only consider a basic variant without initial markings and

without labels. The neglect of the initial marking is due to our focus on structural composition

techniques. The composition of nets without initial marking yields techniques as union and

fusion. These techniques are independent from the behaviour of the net. The composition of

nets with initial marking yields techniques as substitution and invocation, where the composition

is dependent from the behaviour of the net. In the case of high-level nets our basic variant

means in addition that a net includes one explicit model with total operations (resp. predicates)

and that there are no �ring conditions for the transitions (unguarded case). In our paper [ER96]

we discuss several kinds of variants of algebraic high-level nets, which can also be extended to

variants of other types of high-level nets considered in this paper.

2.5 Mathematical Notation of Parameters for Net Classes

In the following we distinguish between formal and actual parameters for the net structure

and data type formalisms. The actual net structure parameter for a net class is based on

the algebraic presentation of nets, more precisely the codomain of the pre- and postdomain

functions. The algebraic presentation of di�erent kinds of Petri nets as the actual parameter

1We talk about elementary nets as elementary (net) systems without an initial marking.
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allows the generalisation in an axiomatic way, that is the formal parameter. Hence, it is the

basic construction in order to express the di�erence of an actual and a formal parameter in an

uniform approach to Petri nets.

For place/transition nets (in subsection 2.2) the codomain uses the construction of the free

commutative monoid P
� over the set of places P . For elementary nets (in subsection 2.3) the

power set construction is used. The calculation with markings is based on the operations union

of P(P ) and addition of P � respectively. In order to generalize this computation a semigroup

structure is employed in both classes. Hence, the constructions P(P ) and P � for each set P can

be considered as functions from the class Sets of all sets via some class Struct of semigroups to

the class Sets. These constructions are used as the actual parameter Net for the parameterized

net classes. We consider P(P ) and P � as sets. The use of sets instead of semigroups allows the

mapping from the transitions to these sets. Moreover, this has the advantage to consider nets,

where the structure of the marking is di�erent from the structure of the pre- and postdomain

of the transitions, as for example in S-graphs, where markings contain multiple tokens, but the

arc weight always equals one (see example 2.5.2.3). This motivates that in general an actual

net structure parameter for a net class can be considered as the composition of two functions:

Net : Sets
F
�! Struct

G
�! Sets.

Based on the function Net we can describe Petri nets uniformly by pre; post : T ! Net(P ),

where the speci�c net class depends on the choice of the function Net. Then F (P ) denotes the

markings and the pre- and postdomain of the transitions, F (T ) yields transition vectors, and

G relates the used construction (i.e. free monoids, power sets) with sets.

For high-level net classes we use the notion of institutions (see [GB84, ST84]), which is well-

established in the area of abstract data types. Institutions are an abstract description of data

type formalisms and generalize di�erent formalisms, as algebraic speci�cations, predicate logic,

functional programming languages, and so on. The basic idea is to assume axiomaticly some

speci�cation SPEC and a class of models Mod(SPEC). Based on this theory an actual data

type parameter for a net class consists of a class SPEC of data type speci�cations and for each

SPEC 2 SPEC a class Mod(SPEC) of models satisfying the speci�cation SPEC. Hence, it

can be represented by a function Mod : SPEC!ModelClasses where ModelClasses is the

(super)class of all model classes.

De�nition 2.5.1 (Formal Parameters of Net Classes)

The formal net structure parameter, respectively formal data type parameter, of a parametrized

net class is given a pair of functions Net : Sets
F
�! Struct

G
�! Sets and a function Mod :

SPEC!ModelClasses respectively, as motivated above.

Example 2.5.2 (Actual Parameters of Net Classes)

1. The free commutative monoid P
� over a set P de�nes the two functions ( )� : Sets !

Struct ! Sets, where P
� togehter with the addition operation on linear sums is a

semigroup (without this operation P
� is a set, thus the funcion G simply \forgets" the

addition), which is the actual net structure parameter for the class of place/transition nets.

The free commutative monoid P
� can be represented by formal sums P � = f

Pk
i=1 ni �

pi j pi 2 P; ni 2 Ng with componentwise addition.

2. The powerset construction P(P ) over a set P de�nes two functions P : Sets! Struct!

Sets, where P(P ) with union operation is a semi-group (without the union operation

P(P ) is a set), which is the actual net structure parameter for the class of elementary

nets.
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3. The actual net structure parameter for the subclass of place/transition nets, called S-

Graphs (see [RT86]), where each transition has exactly one place in its pre- and post-

domain respectively makes use of the compositionallity of the function Net. The corre-

sponding net can be considered as graph, where the nodes are the places and the edges are

the transitions, that is transitions are mapped to places by pre; post : T ! P . Neverthe-

less, markings are elements m 2 P
� (as usual in place/transition nets) rather than m 2 P ,

which would allow only one token at all in the net, thus the intermediate construction

has to be the free commutative monoid P
�. This is expressed by the pair of functions

SG : Sets! Struct ! Sets, de�ned by SG : X 7! X
� 7! X for each set X .

4. Let SPEC be the class of all algebraic speci�cations SPEC = (S;OP;E) with signature

(S;OP ) and equations E and Alg(SPEC) the class of all SPEC-algebras A (see [EM85]).

Then we obtain a function Alg : SPEC!ModelClasses which is the actual data type

parameter for the class of algebraic high-level nets ([PER95]).

5. Let FOSPEC be the class of all �rst order predicate logic speci�cations FOSPEC =

(
;�; AXIOMS) with the signature (
;�) and AXIOMS being a set of closed formulas,

and FOMod(FOSPEC) the class of all non-empty models satisfying the formulas in

AXIOMS. Then we obtain a function FOMod : FOSPEC!ModelClasses, which is

the actual data type parameter for the class of predicate/transition nets ([GL81]).

6. As a uniform approach to Petri nets should comprise low- as well as high-level nets, we

consider low-level nets as a special case of high-level nets with a data type that yields only

one data element, the usual black token. This is merely a technical extension, because in

[Pad96] it has been shown, that these high-level nets with a trivial data type correspond

one-to-one to the usual low-level nets. The great advantage is that this conception allows

to consider low- and high-level nets within one uniform approach. In order to be able

to de�ne low-level nets as special case of high-level nets we de�ne the following trivial

actual data type parameter Triv : TRIV ! ModelClasses, where the class TRIV

consists only of one element called trivial speci�cation TRIV , and Triv(TRIV) is the

model class, consisting only of one model, the one-element set f�g, representing a single

token.

7. There are also actual data type parameters for the class of coloured nets in the sense of

[Jen81] and [Jen92], which are based on indexed sets and the functional language ML,

respectively (see [Pad96]).

Note, that the theory of institutions allows to treat di�erent data type descriptions in the same

way, but does not neglect the di�erences. This is due to the abstract formulation of this theory.

Our uniform approach to Petri nets is motivated by this abstraction.

Now we are able to de�ne parameterized net classes and their instantiations mentioned above.

Though parametrized net classes cannot yield concrete nets, as the formal parameters are not

yet actualized, they give rise to net patterns. Net patterns constitute a pattern for Petri nets

consisting of places, transitions, pre- and postdomain, speci�cation and a data type model.

Nevertheless, neither the structure of pre- and postdomain is �xed { due to the net parameter

{ nor the kind of the speci�cation and its model { due to the data type parameter.

De�nition 2.5.3 (Parameterized Net Classes)

A parameterized net class is de�ned by a formal net structure parameter (Net;Mod) with

Net = G � F and Mod : SPEC ! ModelClasses (see 2.5.1) consists of all net patterns

N = (P; T; SPEC;A; pre; post) satisfying the following conditions:
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� P and T are sets of places and transitions respectively,

� SPEC 2 SPEC is the data type speci�cation

� A 2Mod(SPEC), called data type model

� pre; post : T ! Net(TSPEC � P ) are the pre- and postdomain functions,

where TSPEC is a distinguished model with respect to the speci�cation SPEC (e.g. where

the elements are congruence classes of terms over the speci�cation SPEC).

In the case of low-level nets we have Mod = Triv (see 2.5.2.6) and hence SPEC = TRIV and

A = f�g which are omitted as components of a net. Since TSPEC consists of a single element,

we obtain N = (P; T; pre; post) with pre; post : T ! Net(P )

Remark 2.5.4

Other parameterized and actual net classes can be de�ned by other variants of net classes

discussed in example 2.5.2. In our notion above we only consider the basic variant without initial

markings, without labels, with only one explicit (total) model and without �ring conditions for

transitions.

The behaviour can be given already for the net patterns, although the net pattern is no \real

net" unless the formal parameters are actualized. The behaviour of net patterns yields a uniform

description of the behaviour in di�erent Petri net classes:

The �ring of a transition vector can be de�ned axiomaticly using the pair of functions

Net : Sets
F
�! Struct

G
�! Sets, the operation +, given by the semigroup structure, and

the extensions pre (resp. post) of pre (resp. post) to the semigroup structure. The marking is

given by m 2 F (P ). A transition vector v 2 F (T ) is enabled under m 2 F (P ) if there exists

bm 2 F (P ) so that m = bm+pre(v). The follower markingm0 2 F (P ) obtained by �ring v under

m is given by m
0 = bm+ post(v)

The �ring of high-level nets involves additionally the assignment of values to variables. This

can be done nicely using notions from the theory of institution, but exceeds the frame of this

paper (see [Pad96]).

Example 2.5.5 (Actual Net Classes)

A survey of actual net classes de�ned by the actual parameter given in example 2.5.2 is given

in the table below, where well-known net classes are shown as explicit entries in the table while

each blank entry corresponds to a new or less well-known net class.

Mod

Net
Triv Alg. Spec. Pred. Logic ML

Indexed

Sets

powerset
Elem. Nets

[RT86]

PrT-Nets

[GL81]

monoid
P/T-Nets

[Rei85]

AHL-Nets

[PER95]

CPN '91

[Jen92]

CPN '82

[Jen81]

monoid

identity

S-Graph

[RT86]

. . . . . .
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In more detail we have:

� Place/Transition nets de�ned byNet = ( )� (see 2.5.2.1) are given byN = (P; T; pre; post)

with pre; post : T ! P
� (see 2.2, 2.5).

� Elementary nets de�ned by Net = P (see 2.5.2.2) are given by N = (P; T; pre; post) with

pre; post : T ! P(P ) (see 2.5).

� S-graphs de�ned by Net = SG (see 2.5.2.3) are given by N = (P; T; pre; post) with

pre; post : T ! P .

� AHL-nets de�ned by Net = ( )� and Mod = Alg (see 2.5.2.4) are given by N =

(P; T; SPEC;A; pre; post) with pre; post : T ! (TOP (X) � P )�. Here the distinguished

model is the quotient term algebra TOP (X), that is TOP (X) are the terms with variables

X over SPEC.

� For a presentation of predicate/transition nets and di�erent versions of coloured nets in

our framework see [Pad96].

3 Universal Parametrized Net Classes

The main idea of universal parameterized net classes is to extend the notion of parameterized

net classes studied in the previous section by morphisms on di�erent levels. Hence, the classes

become categories and the corresponding functions become functors in the sense of category

theory [AHS90]. In other words the set theoretical approach of parameterized net classes be-

comes a categorical approach of universal parameterized net classes. Especially, we obtain also

morphisms of nets for all types of net classes. Since morphisms of nets are rarely used for Petri

nets up to now we motivate the bene�ts of morphisms for Petri nets. For this purpose we �rst

review net morphisms for place/transition nets in algebraic presentation (see subsection 2.2).

Then we discuss the bene�t of morphisms in this case which is also valid for other types of

net classes, and we give a short outline how to extend section 2 to universal parameterized net

classes. Finally, we discuss general constructions and results which have been obtained in this

framework.

3.1 Categorical Concepts

Category theory is a universal formalism which is successfully used in several �elds of math-

ematics and theoretical computer science. It has been developed for about 50 years and its

in
uence can be found in most branches of structural mathematics and, for about 25 years in

several areas of theoretical computer science. In the survey [EGW96] it has been shown that

the following areas in computer science have been in
uenced by category theory: Automata and

system theory, 
ow charts and recursion, �-calculus and functional languages, algebraic spec-

i�cations, logical systems and type theory, graph transformation, Petri nets and replacement

systems. The aim of category theory is to present structural dependencies and universal notions

that can be found in many (mathematical) areas and to give a uniform frame independently of

internal structures. This uniform frame and the universality of the concepts distinguish cate-

gory theory as a common language for the modeling and analysis of complex structures, as well

as for a uni�ed view of the development of theories, and for the integration of di�erent theories

within computer science. The main purpose of category theory is to have a uniform frame for

di�erent kinds of mathematical structures, mappings between structures, and constructions of

structures. The most fundamental notions in category theory are on the one hand categories
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consisting of objects and morphisms and on the other hand functors de�ning structure com-

patible mappings between categories. Another important concept of category theory is that

of limits and colimits, especially product, equalizers, and pullbacks and the dual concepts of

coproducts, coequalizers and pushouts. In [Pad96] we especially need pushouts and coequaliz-

ers corresponding to a union of objects with shared subobjects and the fusion of subobjects,

respectively. Universal properties express that these constructs are generated. These universal

properties imply that the corresponding construction is essentially unique. They are strongly

exploited for the results we obtain in [Pad96]. Special colimits as pushouts and coequalizers are

the basis for the just mentioned structuring techniques. Injective pullbacks correspond to the

intersection of nets. Furthermore, the notions and results for rule-based modi�cation depend

on these constructions. The marking graph construction and the realization construction are

derived from the net structure, and the preservation of colimits by free constructions yields the

compatibitlity of the marking graph construction with the structuring techniques (see [Pad96]).

3.2 Morphisms of Place/Transition Nets

Given two place/transition nets N1 and N2 with Ni =

(Pi; Ti; prei; posti) for (i = 1; 2) (see algebraic presenta-

tion in 2.2) a morphism f : N
1
! N

2
of place/transition

nets is a pair f = (fP : P
1
! P

2
; fT : T

1
! T

2
) of

functions, such that we have f
�

P � pre
1
= pre

2
� fT and

f
�

P � post
1
= post

2
� fT where f�P : P �

1
! P

�

2
is de�ned by

f
�

P (�
k
i=1ni � pi) = �ki=1nifP (pi). This means that the fol-

lowing diagram commutes for pre- and postdomain functions

respectively.

--

--

? ?
T2 P �

2

T1 P �

1

pre2

post2

pre1

post1

fT f�
P

Example 3.2.1 (Example of union in low-level nets)

This example illustrates the union of place/transition nets

of N
1
, and N

2
with the interface N

0
resulting in N

3
(that is

N
3
= N

1
+N0

N
2
). The morphisms f

1
: N

0
! N

1
, f

2
: N

0
!

N
1
, g

1
: N

1
! N

3
, and g

2
: N

2
! N

1
are denoted explicitly

by the dotted lines.

f1

g2

f2 g1

N2

N0 N1

N3

3.3 Bene�ts of Morphisms for Petri Nets

Similar to subsection 3.2 for place/transition nets morphisms can also be de�ned for all other

kinds of Petri nets, including low-level and high-level nets. The main bene�ts { illustrated using

place/transition nets { are the following:

1. A morphism f : N
1
! N

2
of nets allows to express the structural relationship between

nets N
1
and N

2
. If f is injective (in all components) then N

1
can be considered as a subset

of N
2
.

In general f may map di�erent places p
1
and p0

1
or transitions t

1
and t0

1
of N

1
to only one

place p
2
or one transition t

2
of N

2
. Then only a homomorphism image of N

1
is a subnet

of N
2
. In fact, there may be di�erent morphisms f; g : N

1
! N

2
which corresponds

to di�erent occurrences of the net N
1
in the net N

2
. In example 3.2.1 all morphisms

are injective such that N
0
can be considered as subnet of N

1
via f

1
and of N

2
via f

2
.

Moreover, N
1
and N

2
can be considered as subnet of N

3
via g

1
and g

2
respectively.
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2. A bijective morphism f : N
1

�

�! N
2
is called isomorphism. In this case the nets N

1

and N
2
are called isomorphic, written N

1

�= N
2
, which means that they are equal up to

renaming of places and transitions.

3. The composition of net morphisms f
1
: N

1
! N

2
and f

2
: N

2
! N

3
is again a net

morphism f
2
� f

1
: N

1
! N

3
(see also g

1
� f

1
= g

2
� f

2
: N

0
! N

3
in 3.2.1). Moreover, this

composition is associative and for each net N there is an identity morphism idN : N ! N

such that we have f
1
� idN1

= f
1
and idN2

� f
1
= f

1
for all f

1
: N

1
! N

2
. This means that

the class of all nets (of a given type TYP) together with all net morphisms constitutes a

category TypNet.

This allows to apply constructions and results from category theory to di�erent types of

nets and net classes. Note, that each pair (Net;Mod) of actual parameters de�nes a type

TY P = (Net;Mod) and hence an actual net class (see 2.5.5) which is the object class of

the category TypNet.

4. Morphisms can be used to de�ne the horizontal structuring of nets, for example the

net N
3
in 3.2.1 as union of N

1
and N

2
via the common subnet N

0
. Vice versa, the

nets N
1
and N

2
with subnet N

0
(distinguished by morphisms f

1
: N

0
! N

1
and f

2
:

N
0
! N

2
) can be composed leading to net N

3
= N

1
+N0

N
2
. In fact, this union of nets

is also a pushout construction in the category TypNet. This allows to apply general

results of category theory like composition and decomposition properties of pushouts to

the union construction of nets, for example associativity and commutativity of union up

to isomorphism.

5. Morphisms can also be used to de�ne re�nement of nets. In several cases more general

morphisms than those in 3.2 should be considered for this purpose. One simple gener-

alization of 3.2 is to replace f�P : P �

1
! P

�

2
generated by fP : P

1
! P

2
by an arbitrary

monoid homomorphism f̂P : P �

1
! P

�

2
. This allows to map one place p

1
in P

1
to a sum of

places, that is p
1
7! �ki=1ni � p2i for p2i 2 P

2
, which is important for re�nement.

6. A morphism f : N
1
! N

2
of place/transition nets preserves the �ring behaviour: If

transition vector v 2 F (T ) is enabled under marking m in net N
1
leading to marking

m
0, that is m[v > m

0 then also the transition fT (v) is enabled under marking f
�

P (m)

in net N
2
leading to marking f

�

P (m
0), that is f�P (m)[fT(v) > f

�

P (m
0). In a similar way

morphisms preserve the �ring behaviour also for other types of nets. Speci�c kinds of net

morphisms can be considered to preserve other kinds of Petri net properties, for example

deadlock-freeness. Especially, isomorphisms preserve all kinds of net properties which do

not depend on a speci�c notation.

3.4 Universal Parameters of Net Classes

The parameters of net classes considered in 2.5.1 become universal parameters of net classes,

if all classes and functions are replaced by categories and functors, respectively. In more de-

tail the classes of sets, structures, speci�cations, and model classes are extended by suitable

morphisms leading to categories Sets of sets, Struct of structures, SPEC of speci�cations,

and ModelClasses of model-classes, and for each SPEC 2 SPEC a category Mod(SPEC)

of SPEC-models. Moreover, the functions are extended to become functors: Net : Sets
F
�!

Struct
G
�! Sets, the universal net structure parameter and Mod : SPECop

!ModelClasses,

the universal data type parameter, where Net = G � F and the functor F is a free functor

with respect to the forgetful functor G, and Mod is a contravariant functor from SPEC to

ModelClasses in the sense of category theory ([AHS90]). Note, that we use an overloaded
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notation, where Sets, Struct, SPEC, ModelClasses, and Mod(SPEC) denote classes and

Net, F , G, and Mod denote functions in section 2, while they denote categories and func-

tors respectively in this section. In fact, all the examples of actual parameters of net classes

given in 2.5.2 can be extended to universal parameters of net classes with well-known cate-

gories and functors (see [Pad96]). We only consider the universal net structure parameter of

place/transition nets in more detail (see 2.5.2.1):

Let Struct = CMon be the category of commutative monoids, F : Sets ! CMon the

free commutative monoid construction, that is F (P ) = (P �
; 0;+), G : CMon! Sets the

forgetful functor, de�ned by G(M; �; �) = M , forgetting only about the neutral element �

and the monoid operator �. Then Net : Sets
F
�! CMon

G
�! Sets with Net(P ) = P

� is

the universal net structure functor for the class of place/transition nets.

In fact, F is a free functor with respect to G, because for each set P the free construction

F (P ) = (P �
; 0;+) together with the inclusion uP : P ! G � F (P ) = P

� satis�es the

following universal property: For each commutative monoid (M; �; �) and each function f :

P ! G(M; �; �) = M there is a unique monoid homomorphism f : F (P ) = (P �
; 0;+)!

(M; �; �) such that G(f) � uP = f :

-

?�
�
�
���

P G((M; �; �) = M

G(F (P ))

uP

f

G( f : F (P )! (M; �; �) )

In fact, f : (P �
; 0;+)! (M; �; �) is uniquely de�ned by f(0) = � and f(

Pk
i=1 ni � pi ) =

�k
i=1ni�f(pi). This universal property allows to extend the pre- and postdomain functions

of place/transition nets pre; post : T ! P
� { and similar for other types of nets { to monoid

homomorphisms pre; post : T � ! P
� and hence to parallel �ring of transitions.

3.5 Universal Parameterized Net Classes

Parameterized classes as considered in 2.5.1 become universal parameterized classes, if we

replace the actual parameters (Net;Mod), which are functions, by universal parameters

(Net;Mod), which are functors (see subsection 3.4). In this case we have in addition to

the net patterns N = (P; T; SPEC;A; pre; post) of the corresponding parametrized net class

also net pattern morphisms f : N1 ! N2 leading to a category TypNet for the type

TY P = (Net;Mod). In the case of low-level net patterns Ni = (Pi; Ti; prei; posti) for

(i = 1; 2) of type (Net;Mod) a net pattern morphism f : N
1
! N

2
is a pair of func-

tions f = (fP : P
1
! P

2
; fT : T

1
! T

2
) such that pre

2
� fT = Net(fP ) � pre1 and

post
2
� fT = Net(fP ) � post1. In the special case Net = ( )� we obtain the notion of mor-

phisms for place/transition nets (see subsection 3.2). All the examples of actual net classes

given in 2.8 can be extended to examples of universal actual net classes de�ned by the corre-

sponding universal parameters (see subsection 3.4). Moreover, these morphisms preserve the

�ring behaviour of Petri nets.

3.6 Uniform Constructions and Results

In section 2 we have shown how to obtain several well-known and new net classes in a uniform

way by the notion of parameterized and actual net classes. Now we raise the question, how far
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it is possible to obtain well-known results for each of these net classes in a uniform way. At �rst

sight this seems hopeless, because each type of Petri net has its own notation and own kind of

problems, although the general idea of most constructions and results is quite similar. However,

the presentation of net classes as instances of parameterized net classes opens the way to study

the theory on the level of parameterized net classes rather than for speci�c actual ones. In fact,

this has been done to a certain extend in the Ph.D. thesis [Pad96] using the notion of Abstract

Petri Nets, which corresponds to the notion of Universal Parameterized Net Classes in this

paper. In the following we summarize some main constructions and results for abstract Petri

nets in the terminology of this paper. In this way we obtain uniform constructions and results

for all the actual net classes (see 2.5.5) which are instanciations of universal parameterized net

classes:

� There is a uniform notion of net patterns, marking of net patterns, enabling and �ring of

transitions.

� Morphisms preserve the �ring of transitions.

� Firing of transitions can be extended to parallel and concurrent �ring in a uniform way

(see subsection 3.3).

� In the case of low level nets there is a uniform construction of the marking graph of a net

in terms of F-graphs and a characterization of all those F-graphs, which are realizable by

nets in the net class de�ned by Net = G � F .

� There is a uniform construction of the operations union and fusion for nets in the sense

of [Jen92], which are most important for horizontal structuring of nets.

� Re�nement is an essential technique for vertical structuring of the software development

process. Several re�nement notions are known in the Petri net literature (see for example

[BGV90]). Rule-based modi�cation comprises these in a uniform way using ideas from

the theory of graph grammars and high-level replacement systems [Pad96]. Moreover,

important results concerning independence, parallelism and concurrency of rule-based

modi�cation { developed �rst in the theory of graph grammars { have been extended to

universal parameterized net classes.

� Horizontal structuring of nets based on union and fusion is compatible with rule-based

modi�cation of nets, provided that certain independence conditions are satis�ed.

� There is a uniform construction of 
attening from high-level nets of type TY P =

(Net;Mod) to low-level nets of type TY P = (Net; Triv).

� There is a uniform notion of morphisms for nets of type TY P = (Net;Mod) leading

to a category TypNet of nets of type TY P . The category TypNet is cocomplete,

which includes as special cases existence and construction of pushouts and coequalizers

corresponding to union and fusion of nets.

Finally, let us point out that for most of the uniform constructions and results above it seems

to be necessary to consider morphisms of nets (see 3.3) This means that it is worthwhile to

consider universal parameterized net classes including a few notions of category theory and not

only parameterized net classes based on set theoretical notions.
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4 Conclusion

In this paper we have given a uniform approach to di�erent types of Petri nets, including low-

level nets, like elementary and place/transition nets, as well as high-level nets, like algebraic

high-level or predicate/transition nets. The main idea of this approach is a �rst step to introduce

parameterized net classes, which are based on a net structure parameter for low-level nets and

in addition a data type parameter for high-level nets. By instanciation of these parameters we

obtain many well-known net classes studied in the literature but also several new interesting

net classes in a uniform way. In a second step we extend the parameters of net classes to

universal parameters leading to the notion of universal parameterized and actual net classes.

The main idea of this extension is to study not only classes of speci�cations and nets, but

to consider also suitable morphisms leading to di�erent kinds of categories. The concept of

universal parameterized net classes allows to obtain several constructions and results known for

speci�c low-level or high-level nets in a uniform way for all net classes which can be obtained by

suitable instantiations of the parameters. A formal version of these constructions and results is

presented in the theory of abstract Petri nets studied in [Pad96]. This, however, is only a �rst

step towards a general uniform theory for di�erent types of Petri nets.
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