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Abstract

The concept of abstract data types is one of the fundamental concepts for software system

speci�cation. Although Petri nets have been used with success for the speci�cation of various

kinds of software and communication based systems, there is no abstraction concept for Petri

nets similar to abstract data types up to now. In this paper we propose a new concept, called

abstract process types, for this purpose. We discuss the idea of abstract process types based

on the new concept of open processes. This is an abstraction of Petri net processes which

includes designated interface places with autonomous actions caused by the environment.

The new concepts are illustrated by some well{known examples of place/transition and

algebraic high{level nets. The formalization of these concepts is subject of a forthcoming

paper.
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1 Introduction

The aim of the project \Petrinetz{Technologie (PNT)", (see [WRE95]) is to analyse and improve

the use of Petri net techniques in practical software system development. On the background

of the experience with several other semi{formal and formal speci�cation techniques in software

development projects there is the important question how to transfer well{established abstrac-

tion and structuring concepts, like abstract data types and modules to Petri nets.

In each of the practical case studies of the PNT{project a large number of Petri nets has been

developed, in order to specify a more or less complex communication based system. Although

the di�erent application processes, short tasks, of the systems are clear on an informal level, it

is di�cult to distinguish how each task of the system is realized in terms of Petri nets or Petri

net processes.

In fact, the connection of all the Petri nets in each of the case studies is modeling the union

of all the tasks of each system. But if we consider a speci�c task there is no net, subnet or

process in the classical sense of Petri nets which models exactly this task. The classical notion

of a Petri net process is too narrow to model such tasks, because it cannot interact with the

environment.

The concept of abstract data types is suitable to model the di�erent tasks of a system, at

least if the tasks can be expressed by functions from input to output data. Such functional

tasks correspond exactly to the operations of an abstract data type. In communication{based

systems, however, the tasks are more likely application processes which are nondeterministic,

nonterminating and reactive with respect to the environment.

It is the purpose of this paper to propose a new concept, called abstract process types, which

combines the idea of abstract data types in the area of software system speci�cation with pro-

cesses in the sense of Petri nets and tasks in the sense of communication based and reactive

system. Moreover, we hope that this notion of abstract process types is also a basis in order

to develop a new semantics for Petri nets, which includes all the data type and process aspects

and tasks in a suitable way.

2 From Abstract Data to Abstract Process Types

The concept of abstract data types was developed in the 70'ties and has become a fundamental

concept of programming and speci�cation of software systems. A data type is a collection of data

domains and operations on these domains. Typical basic examples are stacks and queues, but

also editors, compilers and in principle software systems with distinguished functionality can be

considered as data types. An abstract data type is a class of data types which is closed under

renaming of data domains and operations and hence independent of any speci�c representation.

There are several well{known speci�cation techniques for abstract data types, especially alge-

braic speci�cations (see [EM90]), which o�er various structuring and re�nement techniques in

order to support the software development process. The initial algebra semantics of an alge-

braic speci�cation SPEC is represented by the corresponding quotient term algebra TSPEC . In

fact, the corresponding abstract data type is the class of all algebras A, which are isomorphic

to TSPEC . This motivates that such an abstract data type can be represented uniquely up

to isomorphism by the data domains (resp. base sets) and operations of a suitable algebra A

isomorphic to TSPEC (see �gure 1).

The basic idea of abstract process types is to replace operations of abstract data types by suitable

processes, called open processes, which can be considered as an abstraction of processes in the

sense of Petri nets (see [Roz87] [Rei85]). In the same way as all the operations of an abstract data

type are de�ned w.r.t. a given family of data domains, the base sets of the algebra A, the open
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processes of an abstract process type are de�ned w.r.t. a given base net. This means that the

data domains / base sets of an abstract data type, i.e. the carrier of the algebra A representing

the abstract data type, correspond to a given Petri net, called base net in this context of abstract

process types. (see �gure 1). An important property of algebras and abstract data types is the

possibility to construct terms of operations, which can be considered as derived operations while

a speci�c operation of an abstract data type corresponds to a speci�c task of the corresponding

system each derived operation corresponds to a combination of tasks. Similar to the construction

of terms of operations we want to have a mechanism for the concatenation or synchronization of

open processes. This allows to construct derived open or closed processes, which correspond to

combinations of tasks of the system. These derived processes can be constructed from a given

abstract process type, but they do not belong explicitly to the abstract process type.

Finally, the representation independence of abstract data types should be transfered to abstract

process types. A suitable notion of isomorphism for process types is required, such that an

abstract process type can be represented uniquely up to isomorphism by a (concrete) process

type. In fact there are already suitable notions for general morphisms and isomorphisms for

di�erent kinds of Petri nets (see [MM90], [PER95], [Pad96]), which can be extended to process

types.

Abstract Data Type Abstract Process Type

Data Domains / Base Sets Base Net

Operations Open Processes

Terms of Operations Concatenation/Synchronization

of Processes

Representation Independence by Abstraction up to Isomorphism

Figure 1: Analogy of Abstract Data and Abstract Process Types

Finally, let us point out that our concept of abstract process types is not restricted to a speci�c

kind of Petri nets, but can be de�ned for any kind of net including elementary, place/transition

and algebraic high{level nets. Moreover, the same idea should be applicable also to other kinds

of process speci�cation techniques, like CCS, CSP, �{calculus, process algebras, statecharts and

graph transformations. In some of these cases, however, it might be more suitable to consider

abstraction in the sense of bisimulation equivalence instead of isomorphisms.

3 Open Processes and Abstract Process Types

In this section we want to propose a notion of open processes which is suitable to de�ne abstract

process types. The classical notion of a process p for a Petri net N is a pair p = (P; f : P ! N)

consisting of a occurrence net P together with a net morphism f : P ! N (see [Pet77], [GR83],

[BD87], [DMM91] and [MM90] for various notions of process). Nevertheless, for the purpose

of considering process notions analogously to abstract data types we especially consider the

following aspects for processes given by the morphism f : P ! N :

1. We do not want to restrict P to be an occurrence net, but would like to allow that P

belongs to a given class of nets, called process nets. This class may be the class of all

occurrence nets, the class of all nets, or some other suitable subclass of nets.

2. We do not want to consider a �xed initial marking for P , but allow to consider P with

di�erent kinds of markings corresponding to di�erent input data for operations of abstract

data types.
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3. We want to distinguish between normal places of P and interface places, where the in-

terface places of P are those places which are able to interact with the environment (see

[NPS95]). In this context the environment of P are all items of the given net N which do

not belong to the image f(P ) of P in N .

This leads to the following conceptual de�nition based on a given class of nets without initial

markings, called class of process nets, and a given class of net morphisms:

De�nition 1 (Open Process)

Given a Petri net N (with initial marking M0) we have:

1. An open process p of N is a pair p = (P; f : P ! N) consisting of a process net P and

a net morphism f : P ! N .

2. The context C(p) is the net N except of the image f(P ), i.e. C(p) = N � f(P ).

3. An interface place x of an open process p = (P; f : P ! N) is a place x of P , such that

the image f(x) in N is adjacent to some transition in the context C(p) of P in N . In this

case x is also called interface place of the process net P .

4. An autonomous action of a marked process net (P;M) w.r.t. an interface place x of

P is a step from (P;M) to (P;M 0) where M 0 and M may be di�erent at most on the

interface place x.

5. An instantiation of an open process p = (P; f : P ! N) is a marking M of P , such

that f(M) � M0. In this case the marked process net (P;M) can be executed by �ring

of transitions and/or autonomous actions.

Given two open processes p1 and p2 of the same net N concatenation and synchronization of

p1 and p2 have to be de�ned in such a way that the result p3 becomes again an open process

of N . More details will be given by the examples in the next section. Note, that an open

process whose image is not initially marked may be executed by autonomous actions occuring

on interface places. An open process that is neither initially marked nor has interface places,

corresponds to an isolated and not initially marked subnet. This cannot be executed in the base

net either.

Now we are able to give the following conceptual de�nition of concrete and abstract process

types.

De�nition 2 (Abstract Process Type)

1. a concrete process type, short process type,

PT = (N; (pi)i2I)

consists of a Petri net N , called base net, and a family (pi)i2I of open processes pi of N .

2. An abstract process type, short APT, is an isomorphism class of concrete process types.

Finally, let us point out that for a given Petri net N there are several ways to de�ne a process

type with base net N . One extreme is to consider the family of all open processes of N , the

other extreme to consider the empty family. In general, however, a suitable �nite nonempty

family of open processes should be more adequate to model all the tasks of a system. Vice versa,

given the tasks of the system on an informal level it seems to be useful to model �rst each task

ti(i 2 I) by a process net Pi having in mind that speci�c places should become interface places.

In a second step these process nets Pi should be combined to a Petri net N , such that each Pi
can be extended to an open process pi of N leading to a process type PT = (N; (pi)i2I).
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4 Examples of Abstract Process Types

for Low and High-Level Nets

In this section we demonstrate our concepts with two simple examples. However, the motivation

for the new concepts in this paper is due to the study of large reactive and communication based

systems modeled by high{level nets. Our �rst well{known example is the place/transition net

of dining philosophers introduced in 1971 by Dijkstra. Our second example is an extension of

this net to a Restaurant of Dining Philosophers represented as an algebraic high{level net.

4.1 Abstract Process Types in Place/Transition Nets

Figure 2 shows the base net for �ve dining philosophers sitting around a table with �ve sticks

lying at the corresponding sides of the philosophers. Each philosopher shares his left and right

sticks with his left and right neighbour, respectively. A philosopher can either eat or think. A

thinking philosopher can start eating if his both sticks lying on the table. The initial marking

consists of tokens on the places think1; :::; think5 and on the places side1; :::; side5, meaning

that all philosophers are thinking. The abstract process type has the following representation

put4 side3

eat4

take4

think4

side4

put5

think5 eat5

take5 side5

take1 eat1

think1

put1

side1 take2

eat2 think2

put2

side2

take3

eat3

put3

think3

Figure 2: Base net of process type for dining philosophers (N)

PT = (N; (P1; f1); (P2; f2); (P3; f3); (P4; f4); (P5; f5))

consisting of the base net N in �gure 2 and �ve open processes, one for each philosopher. The

process nets P3 and P4 are illustrated in the left part of �gure 3. Note, that in these examples

the morphism { an inclusion { is denotated by the names of the places. The intended morphism

maps places of the open process net to the places with the same name in the base net. The places

with dashed lines represent interface places, denoting the communication with other processes

by autonomous actions.
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With M = think4, the marking of the process net P4 and f(M) � M0 we get an instantiation

(see 1(5))of the open process (P4; f4) as a marked net (P4;M). The event that philosopher3
stops eating and puts his sticks back to the table, leads to a new markingM 0 = think4+side3 of

the process net P4. It is also possible to take a token from an interface place (1(3)). We denote

this change of the marking of an interface place without �ring of a transition as an autonomous

action. A possible �ring sequence for the marked process net (P4;M) is given by

think4
[side3]
�! think4 + side3

[side4]
�! think4 + side3 + side4

[take4>
�! eat4

[put4>
�! :::

with
[pl]
�! as a symbol for autonomous actions on place pl and

[t>
�! for the usual �ring of a

transition t. More complex processes constructed from those de�ned in our process type PT can

side2 think3 side3

take3

eat3

put3

side2 think3 side3

think4

side3 think4 side4

side3 side4

eat4

put4

take4

think4side3 side4

side3 think4 side4

eat4

put4

take4

side3 think4 side4

eat4

put4

take4

side2 think3 side3

take3

eat3

put3

side2 think3 think4

side3 think4 side4

side3 side4

eat4

put4

take4

Figure 3: Two open processes (P3; f3); (P4; f4), concatenation of (P4; f4) with itself and syn-

chronization of (P3; f3) and (P4; f4)

be described by combination principles like concatenation and synchronization(see �gure 3). The

concatenation of two processes is de�ned in terms of gluing the output places of the �rst process

to the input places of the second process provided that the input and output places have the

same image in the base net. A special case of concatenation of processes is the synchronization.

In this case interface places become closed by gluing, such that the places after gluing are no

longer interface places. This is due to the fact that all transitions in the pre- or post domain of

thus places covered by the synchronized process. Synchronization means that the second open

process has to wait for the �rst open process. Concatenation and synchronization in general

allow the construction of an in�nite number of open processes for this example.

4.2 Abstract Process Types in Algebraic high{level Nets

In this second part we illustrate the applicability of our approach for high{level nets, especially

for algebraic high{level nets (AHL{nets).
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TABLE 2TABLE 1

NEWTAKE1

LEAVE1

{}

JOIN1

{}

SEAT1

THINK1

EAT1

SIDE1

{}

PHILOSOPHER

{}

NEWPUT1

{}

{}
JOIN2

NEWPUT2

SEAT2

LEAVE2

NEWTAKE2

THINK2

EAT2

SIDE2

x

right(x) left(x)
sp

s

x

x x

ps
right(x)left(x)

s

x x

xx

y+z y+z

make(s,p) make(s,p)

ls(left(x)) = y

rs(left(x)) = z
ls(left(x)) = y
rs(left(x)) = z

ls(left(x))+rs(left(x)) ls(left(x))+rs(left(x))

diphi =

sorts : philo; stick; seat

opns : p1; :::; p5 :! philo

st1; :::; st5 :! stick

s1; :::; s5 :! seat

make : seatphilo! seat � philo

ls : seat! stick

rs : seat! stick

left : seat � philo! seat

right : seat � philo! philo

eqns : ls(s1) = st1; ls(s2) = st2; ls(s3) = st3; ls(s4) = st4; ls(s5) = st5
rs(s1) = st5; rs(s2) = st1; rs(s3) = st2; rs(s4) = st3; rs(s5) = st4

Adiphi :

Aphilo = futa; anne; otto; elli; ingo; ulla; anke; ilka; udog

Astick = fa; e; i; o; ug

Aseat = fua; ae; ei; io; oug

makeA(x; y) = tuple of x; y, for x 2 Aseat; y 2 Aphilo

lsA(x) = �rst letter of x, for x 2 Aseat

rsA(x) = last letter of x, for x 2 Aseat

leftA(x) = left part of x, for x 2 Aseat �Aphilo

rightA(x) = right part of x, for x 2 Aseat �Aphilo

Figure 4: The restaurant of dining philosophers: base net (N), speci�cation diphi and algebra

Adiphi

The AHL{net in �gure 4 is an extension of dining philosophers (see [PER95]). The restaurant

consists of two tables, each with �ve seats and �ve sticks. The philosopher are able to join a

table, assuming there is a vacant seat at this table, or to leave a table. In contrast to the �rst

example in section 4.1 there are individual token for philosophers and sticks which are explicitly

presented in the algebra that belongs to the AHL-net. According to the general concept of AHL-
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nets the inscriptions of arcs consist of a linear sum of terms denoting which data elements are

consumed and created in case of �ring a transition. On the one hand the �ring of a transition

depends on the presence of tokens on places that belong to the preconditions of a transition. On

the other hand the �ring depends on the satisfaction of the �ring condition (denotated inside

the rectangles of transitions).

Let us consider the following abstract process type represented by

PT = (N; (P1; f1); (P2; f2); (P3; f3); (P4; f4); (P5; f5); (P6; f6))

where (P1; f1), (P2; f2) and (P3; f3) are shown in �gure 5 (numbered 1, 2 and 3) and (P4; f4),

(P5; f5) and (P6; f6) are similar open processes for the second table on the right hand side of

the base net in �gure 4. Due to the small site of our example the speci�cation and algebra

are the same as in the base net N . This is not a required characteristic of an open process for

AHL{nets.

NEWPUT1

{  }

NEWTAKE1

ls(left(x)=y
rs(left(x)=z

EAT1

x

ls(left(x))+rs(left(x))

x

x

x

y+z

THINK1

THINK1

SIDE1

SIDE1

1

JOIN1

{  }

make(s,p)

p

THINK1

s

SEAT1PHILOSOPHER

2

x

{  }

LEAVE1

left(x)right(x)

SEAT1PHILOSOPHER

THINK1

3

NEWPUT1

{  }

NEWPUT1

{  }

NEWTAKE1

ls(left(x)=y
rs(left(x)=z

EAT1

x

ls(left(x))+rs(left(x))

x

x

x

y+z

THINK1

THINK1

SIDE1

SIDE1

NEWTAKE1

ls(left(x)=y
rs(left(x)=z

EAT1

x

ls(left(x))+rs(left(x))

x

x

x

y+z

THINK1 SIDE1

4

NEWPUT1

{  }

SIDE1

{  }

LEAVE1

JOIN1

{  }

make(s,p)

THINK1

ls(left(x))+rs(left(x))

SEAT1

NEWTAKE1

ls(left(x)=y
rs(left(x)=z

EAT1

PHILOSOPHER

x

x

x

x

p

y+z

THINK1 SIDE1

x

right(x)

PHILOSOPHER SEAT1

s

left(x)

5

Figure 5: Open processes of the base net N

The open processes presented in �gure 5 can be interpreted in the following way:

1. If there are two sticks available on the appropriate sides of the thinking philosophers they

can take the sticks and start eating. Afterwards they put the sticks back onto the table

and think again.

2. Philosophers take a seat, join table1 and think.

3. Thinking philosophers leave table1.

4. This open process is the concatenation of the �rst open process with itself.
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5. This open process is constructed by synchronisation of the second, �rst and third open

process in �gure 5. Note, that the places think1 and seat1 are interface places of the given

three open processes, but become closed in the synchronized process net. This is due to

the fact that the image of think1 and seat1 in N is not adjacent to some transition in the

context of this synchronized open process.

Note, that the idea of AHL-nets implies the use of the set of all philosophers instead of a single

philosopher within one open process as considered in section 4.1. Thus the distinguished tasks

are concerned with all philosophers at one speci�c table instead of one speci�c philosopher.

This is also the reason for the place side1 to be closed, that is no interface place

Instantiation of open processes and execution of marked processes as well as concatenation

and synchronization in the high{level case are de�ned similar to the corresponding notion in

the low{level case presented in section 4.1 with the distinction that token are elements of the

domain of an algebra instead of black token.

5 Conclusion

In this paper we have motivated, that it is useful to transfer the concept of abstract data types,

well{known from software system speci�cation, to Petri nets. The new concept proposed in

this paper, called abstract process type is motivated by several case studies including a lecture

of E. Schnieder in Berlin on European Train Control Systems. It is based on the notion of an

open process, which is able to interact with the environment. The discussion in this paper

is only a �rst step towards a theory of abstract process types for communication based and

reactive systems. Having in mind the bene�ts of abstract data types for software system design

and development we hope that abstract process types based on Petri nets may play a similar

role for design and development of communication based and reactive systems. Future work

especially includes the application of the introduced concepts to the motivating case studies and

systems. We are convinced that this concept of abstract process types is also a suitable basis

for a module concept for Petri nets comparable with module speci�cations in [EM90] based on

algebraic speci�cations.
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