
Future Generation Computer Systems 16 (2000) 753–769

Abstract machine construction through operational
semantics refinements

Frédéric Cabestre, Christian Percebois, Jean-Paul Bodeveix∗
IRIT, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex4, France

Accepted 24 May 1999

Abstract

This article describes the derivation of an abstract machine from an interpreter describing the operational semantics of a
source language. This derivation process relies on the application of a set of gradual transformations to the interpreter written
in a functional language. Through pass separation, the derivation process leads to the extraction of a compiler and an abstract
machine from the transformed interpreter. © 2000 Elsevier Science B.V. All rights reserved.

Keywords:Abstract machine; Semantics; Pass separation; Compiler

1. Introduction

The increasing interest in abstract machines subse-
quent to their portability, advocated by the popularity
of the Java language [1], raises the problem of their
design. Generally, it needs an empiric survey of the
semantics of the high-level language to study. In other
words, one analyses the working of an interpreter em-
bodying the operational semantics of the language to
find the data structures and an emulator for an inter-
mediate language constituting the abstract machine.
Some propositions have been made aiming at organiz-
ing this conceptual study. Among the methods sug-
gested, we put forward those proposing an interpreter
or an operational semantics as starting point and a set
of gradual transformations as principle. Section 2 dis-
cusses existing design methods. Section 3 presents the

∗ Corresponding author.
E-mail addresses:cabestre@irit.fr (F. Cabestre), perceboi@irit.fr
(C. Percebois), bodeveix@irit.fr (J.-P. Bodeveix)

concepts supporting the derivation process. Section 4
illustrates the method through a concrete example.

2. Design methods of abstract machines

An abstract machine is composed of an interpreter
for the intermediate language that it defines and of
a run-time environment[2] on which relies the inter-
preter. In what follows, the instructions of the language
interpreted by the abstract machine will be calledab-
stract instructionsand their interpreter will be called
emulator. To design an abstract machine, we must
conceive an abstract data typeenvironment, a suitable
instruction set and an emulator for this instruction set
using the environment. In this section, we present stud-
ies connected to the design of an abstract machine and
present the guiding lines of the derivation process.

2.1. Principles of existing methods

Existing methods rely on the principle ofpass sep-
aration introduced by Jørring and Scherlis [3]. This

0167-739X/00/$ – see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(99)00089-8

754 F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769

section illustrates the application of this principle to
the derivation of abstract machines. Methods depend
on the formalism used to write the interpreter and on
the considered source language. The starting point of
these studies is a simple expression of the semantics of
a language, its mechanisms being implicitly taken into
account by the power of the implementation language.
Then, these mechanisms are gradually described us-
ing lower level constructs. Consequently, data struc-
tures constituting the abstract machine appear. Finally,
pass separation extracts a compiler, an emulator and
abstract instructions.

2.1.1. Pass separation
Pass separation [3] applies to an interpreterI (p, d)

of a source language, wherep is a user program and
d is the input data. The computation is split into two
stages: the compile-time stageC(p) performing as
much work as possible with the static parameterp,
and the run-time stageE(c, d) using the resultc of the
first stage and the datad. Thus, we haveI (p, d) =
E(C(p), d), whereC is the compiler of the source pro-
gram to some intermediate code andE is the emulator
of the intermediate code. Consequently, pass separa-
tion introduces a new data structurec corresponding
to abstract instructions, a compiler and an emulator.

2.1.2. Use of inference rules
Concerning functional languages, Hannan and

Miller [4] propose an ad hoc progressive transfor-
mation of an operational semantics described by
inference rules over lambda-terms. The obtained re-
sult is an abstract machine defined by rewriting rules
over the source language. Hannan [5] performs pass
separation over these rewriting rules.

Sestoft [6] transforms, in only one stage, the natural
operational semantics of a lazy functional language
into an abstract machine, but the derivation steps are
still ad hoc.

Diehl [7] introduces a specification formalism, the
two level big-step semantics (2BIG), over first-order
judgements. He defines and validates a set of progres-
sive and automatic transformations leading to a com-
piler and an emulator. His pass separation step relies
on Hannan’s proposition. Furthermore, in [8], Diehl
applies pass separation on evolving algebras [9]. How-
ever, they behave as abstract transition systems with-
out any high-level control.

2.1.3. Denotational semantics
All these approaches use natural semantics as spec-

ification language and rewrite rules as target language.
Wand [10] uses a continuation-based denotational
semantics applied on the derivation of an abstract ma-
chine for a procedural language. He introduces com-
binators to eliminate free variables from the semantics
equations. Then, each combinator is replaced by a first
order term, and so the interpreter becomes a compiler
with these terms as target language. An emulator as-
sociates to each term its semantics defined by a com-
binator. However, all these steps are highly empiric.

2.2. Overview of the derivation process

The derivation presented in this paper shares the
same fundamental principles as most of the works
cited above, i.e. writing a first simple interpreter,
giving a gradual clarification of its mechanisms and
extracting an emulator and a compiler through pass
separation. These works can be classified according
to the specification formalism used to express the se-
mantics of the source language [7]. Here, we consider
an executable formalism for operational semantics
description which is a functional language. Thus, we
join Wand’s approach [10] concerning the choice of
the description formalism, altogether stating more
precisely each transformation step. We use for our
survey Caml [11], a dialect of ML.

Within a functional framework, the writing of the
first interpreter uses lexical bindings, recursion and
higher order functions. Then we ignore these capabil-
ities to write new versions of the interpreter. The con-
tinuation passing style is used to specify control flow
in a uniform way. However, the power of lexical bind-
ing still allows a high-level description of the data flow
similar to recursion for the control flow. This mech-
anism must be eliminated to obtain a low-level ma-
chine code, thus producing the data structures of the
run-time environment. Abstract instructions and their
emulator are then extracted through pass separation.

3. Concepts supporting the derivation process

The derivation process uses techniques issued from
compilation, partial evaluation (binding-time analysis)
and program transformation (pass separation). Its ob-

F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769 755

jective is to extract an abstract machine from an in-
terpreter supposed to be written in a functional lan-
guage. An abstract machine is defined by an abstract
data type, called the run-time environment, an inter-
mediate language, and an emulator for this language
using the abstract data type. In this section, we briefly
introduce partial evaluation and binding-time analysis.

The objective of partial evaluation is to specialize
a program using a known part of its input. Consider
a programP taking as inputss andd, wheres is the
statically known part of its inputs andd its dynamic
part. SpecializingP means building a programPs such
thatPs(d)≡P(s, d). This equation must be related to
the one of pass separation as in both cases, the goal
is to separate static and dynamic parts of the input.
However, pass separation defines an intermediate code
used to expressPs . The common part between partial
evaluation and pass separation, namedbinding-time
analysis, is in fact the preprocessing phase of offline
partial evaluators.

Binding-time analysis is an important phase of
offline partial evaluators preceding specialization. It
consists in annotating (i.e. underlining) the source
program to distinguish static from dynamic construc-
tions among applications, abstractions, conditionals
and fixed points. For example, given thatx is stat-
ically known, we getfun z → x ± ((fun y →
y ± succ x)z). The evaluation of dynamic operators
by the partial evaluator produces code that will be
executed at run-time while static operators are inter-
preted by the partial evaluator itself. For this purpose,
the analysis classifies the parameters of each func-
tion into static or dynamic. In the following, we only
consider this classification.

More elaborated versions also distinguish partially
static closures and expressions. Then two families of
analysers must be mentioned: monovariant analysers
associate a unique classification to each function; poly-
variant analysers associate to them a finite set of clas-
sifications depending on their call point [12].

4. Design of abstract machines

We now present in detail the derivation steps lead-
ing to the definition of an abstract machine. As a
demonstration example, we consider in this section
an interpreter of arithmetic expressions. It includes a

constructiontry expr1 with expr2 allowing to
catch exceptions raised during the computation, here
division by zero. This expression returns the value
of expr1 , or the value ofexpr2 if the evaluation
of expr1 raises an exception. We also consider a
recursive operatorSUM(i,b,e) which computes
6i=b−1

i=0 ei .
The successive versions of the interpreter use

structural induction over an abstract data type
expression with constructors for identifiers (ID),
integers (INT), try-with constructs (TRY), binary
operators (ADD, SUB, MUL, DIV), and the sum
operationSUM.

4.1. Writing a first interpreter

The first stage consists in writing an interpreter for
the language to implement. This interpreter is either
written in continuation passing style if special control
flow must be specified, or results from the transfor-
mation of a direct style interpreter into continuation
passing style [13]. In our example, the first interpreter,
described in Fig. 1, uses continuation passing style.
This style is used to interpret theTRYoperator without
the help of thetry-with exception mechanism of
Caml as this high-level control structure must be elim-
inated. Furthermore, this style allows a more precise
control of the data flow, which avoids data copying.

The functioneval1 has the following arguments:
• A term of the abstract syntax of typeexpression .
• A forward continuationcont associated to the

normal progress of the computation. It returns an
integer and has three arguments: an exception con-
tinuation, the value of the previous sub-expression
and the list of variable bindings.

• an exception continuationexs , which takes as ar-
gument the list of variable bindings and returns an
integer. It pursues the computation from the enclos-
ing try ... with ... if an exception is raised.

• a list bnds of pairs (name, value) wherename
is the name of a variable identifier andvalue is
the value associated to this variable i.e. an integer.
Let us see more in detail the various forms of terms

to be interpreted:
• On an integerINT , we pursue the evaluation with

the same exception continuation; the returned value,
transmitted to the forward continuation, is the inte-
ger itself (line 1).

756 F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769

Fig. 1. The first interpretereval1 .

• On a variableID , we pursue the evaluation with the
value found in the bindings list (line 2).

• On ADD(e1,e2) , the sub-expressione1 is
evaluated; its continuation evaluates the second
sub-expressione2 whose continuation calls the
initial continuation with the sum of the two inter-
mediate results (line 3).

• On DIV(e1,e2) , the sub-expressione2 is eval-
uated. If the result is equal to zero, the exception
continuation is called (line 4); otherwisee1 is eval-
uated and the continuation pursues the evaluation
with the quotient of the two results (line 5).

• On TRY(e1,e2) , the first sub-expressione1 is
evaluated, but its exception continuation is updated;
it signals that if a division by zero occurs,e2 must
be evaluated with the same continuationexs as the
whole expression (line 7). However, if the evalu-

ation of e1 does not raise an exception, the eval-
uation must be pursued with the normal forward
continuationcont which is saved through lexical
binding (line 6).

• On SUM(i,b,e) , the functionsigma1 calls the
forward continuation if the boundb has reached0
(line 8). Otherwise, the body of the sum is evaluated
in a new binding environment where the identifier
i is linked tob-1 . The forward continuation calls
sigma1 with b-1 and sums the results (line 9).
Note that variable bindings remaining unchanged

outsidesigma1 are transmitted from continuation to
continuation, avoiding unnecessary duplications. The
same holds for exception continuations. A more nat-
ural writing of this first interpreter, corresponding to
an automatic translation of a recursive writing would
lead to multiple copies of these data.

F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769 757

Fig. 2. The top level evaluation functioninterp1

The top level functioninterp1 of Fig. 2, trans-
mits to eval1 two functions: a forward continu-
ation (line 1) which takes three arguments, among
which the result of the evaluation, and an excep-
tion continuation (line 2) which displays an error
message.

4.2. Binding-time analysis

This stage performs binding-time analysis in or-
der to identify variables whose values are known
at compile-time and at run-time. We use a mono-
variant analysis to get a unique version of the code,
thus making easier the reading of the paper. The
analysis differentiates partially static functions from
static functions, the first ones having free dynamic
variables in their definition. In fact, such a function
will be transformed into a pair made of the static
part of the code and a dynamic environment. Among
the techniques proposed by [12], we have used ab-
stract interpretation on a lattice with the following
elements:
• ⊥ is the minimal element associated to unreachable

expressions,
• S >⊥ corresponds to first order static data,
• D > S corresponds to first order dynamic data,
• SF[e] >⊥ corresponds to static functional vari-

ables,
• PsF[e] > SF[e] corresponds to partially static

functional variables,
• DF[e] > PsF[e] corresponds to dynamic func-

tional variables,
• the maximal element> is unused as it corresponds

to badly typed expressions.
Abstract interpretation starts with the top level

evaluator where arguments are annotated as static or
dynamic. On each call, the annotation of a formal
parameter must be greater than or equal to that of
the corresponding argument. A lambda-expression

becomes partially static if it contains a free dynamic
variable. A partially static parameter becomes dy-
namic if the termination of the function depends on
the value of its dynamic arguments. The algorithm
stops when a fixed-point is reached.

Within annotationsSF[e] , PsF[e] andDF[e] , e
is the set of labels of lambda-expressions that the vari-
able can take as value. Hence, the annotationsSF[e] ,
PsF[e] andDF[e] form a lattice ordered by set in-
clusion. The result of this analysis leads to the three
following annotations:
• vD designates a dynamic variable only known at

run-time,
• vPsF designates a partially static closure whose

code part is statically known and whose free vari-
ables are only known at run-time,

• vDF designates a dynamic function.
Thus, the values of unmarked variables are sup-

posed to be known at compile-time. Supposing that
eval1 is called with compile-time known valuese,
cont andexs , the binding-time analysis annotates as
partially static the continuationscont , exs , exs1 ,
exs2 , and as dynamic the bindingsbnds and inter-
mediate resultsv1 andv2 .

With respect to the functionsigma1 which calls
itself with the same static parametersi ande, its func-
tional parameterscont and exs become dynamic
and are annotatedDF.

4.3. Lexical bindings elimination

This stage eliminates the use of lexical bindings
to access annotated variables as they depend on the
run-time environment of the interpreted program.
Thus, we have underlined lexically accessed anno-
tated variables in the following code fragment. Note
that the underlining used in Section 3 denotes dy-
namic basic constructions and not dynamic variable
references.

758 F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769

| ADD(e1,e2) → fun cont PsF exs PsF bnds D

→
eval1 e1

(fun exs1 PsF v1 D bnds1 D → eval1 e2
(fun exs2 PsF v2 D bnds2 D →

cont exs2 (v1+v2) bnds2) exs1 bnds1)
exs bnds

Lexical links give access to the value of underlined
variables as defined before the evaluation ofe2 . This
mechanism allows accesses to previous states of the
computation and thus must be eliminated.

Concerning the functionsigma1 , lexical access to
the dynamic continuationscont and exs will also
be eliminated.

The elimination of lexical bindings introduces new
components of the run-time environment. In order to
eliminate lexical bindings of annotated (i.e. under-
lined) data in a typed context, we use a variant of
Reynolds’s proposal [14] where only the environment
part of partially static functions is transmitted to nested
abstractions. Thus, the code part, as well as static data,
remain lexically accessed. We proceed as follows:
• A recursive and generic typegstack is introduced

with one parameter for each type of functional vari-
able occurring in the code. In our example, we have
two kinds of continuations (forward and exception),
which leads to two parameters. The typestack
is obtained as an instanciation of the generic type
gstack .

• The generic typegstack is a sum type with a
variant for each abstraction having free annotated

Fig. 3. The stack types.

variables. The variant associated to an abstraction
contains the type of statically accessed annotated
data where closures are represented by the type
gstack . For simplicity, a variant with one entry of
typegstack is not considered. Furthermore, vari-
ants of equal types are not duplicated.

• Each annotated functional variable becomes a pair
built from the original variable and astack vari-
able. Then, for each application, the code part of
the pair must be applied to its stack part in order to
transmit lexical information.

• Each nested function is associated to itsstack
environment encapsulating free dynamic variables.
Consequently, a new formal parameter of type
stack is added to these functions and is bound
when applied to their lexical environment.
In our example, we introduce the types of Fig. 3.

The typegstack defines six variants. For example,
we haveEmpty for abstractions without free dynamic
variables, PushInt for (fun exs 2PsF v2D →
. . .) that has lexical access to the two annotated
variables v1 and cont , and PushStack for
(fun →cont exs) which has lexical access to
cont and exs and remaining ones for abstractions
of the functionsigma1 .

The code of the functioneval1 is then trans-
formed as shown in Fig. 4. Note that the functional
variablecont becomes the pair (cont,Stack cs)
when applied (line 1). Similarly,exs becomes
(exs,Stack xs) (line 4). Free dynamic variables
are transmitted by building closures (lines 2–3).

F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769 759

Fig. 4. Lexical bindings elimination ineval2 .

An abstraction extracts its dynamic variables us-
ing pattern-matching on its new formal parameter
Stack(PushInt(v1,cs)) (line 2). In the same
way, sigma1 and interp1 are modified according
to Figs. 5 and 6.

Fig. 7 states the equivalence between versions
1 and 2 of the interpreter and its auxiliary func-

Fig. 5. Lexical bindings elimination insigma2 .

tions. The continuations of the first version are built
from the continuations of the second version as in
(fun ex b → cont . . .), wherecont is a second
version continuation. Conversely, first version contin-
uations must be built from second version continua-
tions as in((fun b1 → ex b1),StackEmpty) ,
whereex is a first version continuation.

760 F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769

Fig. 6. The new top level evaluation functioninterp2 .

4.4. Normalization of the interpreter

The normalization step aims at gathering all dy-
namic data inside a unique data structure, the run-time
environment. For this purpose, a sum type is intro-
duced where the type of each variant is the cartesian
product of the dynamic parameter types of the func-
tions used by the interpreter. Then, access to individ-
ual data is now performed through the environment.
Thus, the interpreter will have the type:

static data→ continuation → environment

→ answer ,

wherecontinuation =
static data→ environment → answer .

In our example, for the sake of simplicity, we only
consider one variant. The environment defined in Fig.
8 is introduced as a record type including dynamic
data detected by the binding-time analysis: the two
continuations (cont andexs), the environment part
of closures (cs andxs), the variable bindings (bnds),
the loop upper bound (b) and the integer accumulator
(v) which stores the result of previous computations
(v1 andv2).

Fig. 7. Relation between old and new interpreters.

The operators of the data typeenvironment , hav-
ing the current environment as parameter, are intro-
duced as follows:
• For each call, an operator computes the environment

representing its dynamic arguments.
• For each call where the function is dynamic, an

operator performs the function call.
• For eachif statement, an operator returns a boolean

value corresponding to the condition of the test.
For example, for the nodeINT(n) , we introduce

the operatorload of Fig. 9 building an environment
containing the value of the formal arguments of the call
to cont , i.e. cs , xs andn (line 1). These arguments
are either static (n) or extracted from the input environ-
ment by pattern-matching. Concerning the nodeADD,
the operatoradd extracts static data from the envi-
ronment using pattern-matching (line 2). Insigma2 ,
whenb <=0, the continuation extracted from the en-
vironment is called. For this purpose, the operator
call is introduced to make explicit function calls
over functional fields (line 3). The definition of the
operatorjumpc illustrates the use ofcall (line 4).

The normalized interpreter including the so-defined
environment access functions is given in Fig. 10. The
associated top level is defined in Fig. 11. All dynamic

F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769 761

Fig. 8. The typeenvironment .

data is now encapsulated inside a unique variableenv
of type environment which is locally accessed.
Note that the top level functioninterp3 must build
the initial environment.

Fig. 12 states the equivalence between versions 2
and 3 of the interpreter and its auxiliary functions.
Arguments of second version functions are extracted
from the environment passed to their third versions.
The contents of the environment of typestack are
recursively translated through a family of functions
whose code is not given here. The same holds for the
transformation of continuations.

4.5. η-Reduction of the interpreter

By η-reduction, this step eliminates all explicit ref-
erences to the environment. For this purpose, we must
consider sequence and selection control structures:

Fig. 9. Some environment access functions.

• For the sequence, we introduce a composi-
tion combinator, noted++ and defined by:
let (++) f g env =call g (call f env) .

• For eachtest function of a selection, a combinator
is defined as follows:
let if testtrue cnt false cnt env =

if (testenv) then call true cnt env
else call false cnt env ;;

After the introduction of these combinators,η-reduc-
tion eliminates all occurrences of parameters of type
environment . For example, the nodeINT(n) con-
taining the composition(cont exs(load n env))
is transformed by folding the operator++
into

INT(n) → fun cont exs env

→ ((load n) + +(cont exs))env

762 F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769

Fig. 10. The normalized interpretereva13 .

Fig. 11. The top level interpreterinterp3 .

which rewrites byη-reduction into

INT(n) → fun cont exs

→ (load n) + +(cont exs)

The systematic application of these transformations
leads to the code described in Fig. 13.

The relation between the two versions can easily be
expressed by the equalities of Fig. 14 and is checked
by unfolding the introduced combinators.

However, the new interpreter may not terminate as a
consequence of the introduction of theif testfamily

of combinators. Indeed, theif construct is not strict
and only reduces one of the two components of the
alternative, while the combinator reduces both. In our
example, forif zerop (line 1), theelsecase per-
forms a recursive call toeval4 , but with a smaller
argument:e1 replacesDIV(e1,e2) and the call can
terminate (line 2). Conversly, insigma4 , the com-
binator if endb recursively callssigma4 with the
same static argumentsi and e: the η-reduced inter-
preter loops (line 3). This problem is solved in the
context of partial evaluation by inserting memoization
points on dynamic tests [12]. Thus, labels and jumps

F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769 763

Fig. 12. Relation between old and new interpreters.

Fig. 13. Theη-reduced interpretereva14 .

Fig. 14. Relation between old and new interpreters.

764 F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769

Fig. 15. The memoization functionmemo.

are introduced to break infinite loops. For this pur-
pose, we replace in the interpreter of Fig. 13sigma4
by sigma4’ defined as follows:

let sigma4 ′ i e =memo(i,e)

(fun(i,e) → sigma4 i e)

The function(memo x f) defined in Fig. 15 breaks
the loop: recursive calls tof on the argumentx are de-
layed until the next parameter off , i.e. env is given.
At compile-time,memoreturns a jump to a label num-
ber associated to the static parameterx . This number
corresponds to the index of the code segment executed
by jump when the environment parameter is given, i.e.
at run-time (line 1).

4.6. Pass separation

This stage splits the interpreter into a compiler and
an emulator. Until now, the interpreter is a function
which, given a program and a continuation, returns a
function taking an environment as parameter. It must
now return a sequence of abstract instructions which

is the compiled code for the program. It can be trans-
mitted to an emulator to get the final result of the
computation. In other words, the initial type of the in-
terpreter was

static data→ continuation

→ environment → answer

We split the interpreter intocomp and emul with
respective types:
comp : static data→ continuation →

label table× abstract code
emul : abstract code→ label table→

environment → answer
The functioncomp compiles a program into abstract
code, which is contained partly in the table defining
the labels. The functionemul interprets this abstract
code using the table for jumps, and updates the en-
vironment to compute the result. We have performed
pass separation and extracted a compiler and an emu-
lator from the initial interpreter.

The method used here for pass separation consists
in generalizing the interpreterinterp4 with respect

F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769 765

Fig. 16. The generic compilergcomp.

to all the introduced combinators: we get the generic
compiler of Fig. 16, calledgcomp having all the com-
binators as formal parameters, and the same body as
interp4 . The label table is declared local to the
generic compiler and so is generalized at the same
time: it will thus store abstract code.

Note that the generic composition combinator++,
used with two different instanciations, leads to two dif-
ferent formal parameters:++ and+++. The occur-
rences of++ within the interpreter are then renamed
depending on their type (line 1).

In such a way, the typeenvironment no more
occurs within the synthesized type of the generic func-
tion. The typeenvironment →environment is
abstracted into a polymorphic Caml type’a . In the
same way, the typeenvironment →answer is ab-
stracted into’b . In our example, we get the generic
compilergcomp whose type is described in Fig. 17.

It remains to notice that the type of the generic
compiler defines the signature of an abstract data type.
Each type parameter defines a sort, and the type of each
argument defines the signature of an operator. Names
must be chosen for each sort and each operator. In our
example, we introduce two types:instruction and
control and their associated constructors, as defined
in Fig. 18. This transformation amounts to replace

each combinator by an associated abstract instruction
as proposed by Wand [10], but here typing separates
instruction from control.

We are now able to start pass separation. The com-
piler of Fig. 19 is obtained by instantiating the generic
compilergcomp with the operators of the introduced
abstract data type.

4.7. Abstraction of the environment

Pass separation ends with the definition of the em-
ulator which associates to each abstract instruction
its corresponding combinator. As currently defined,
some combinators store lambda-expressions within
the environment. For example,rest pushi stores
a continuation in the fieldcont . Other combinators,
for examplejumpc , apply these functions through
the functioncall . However, these higher order ca-
pabilities must be eliminated. For this purpose, we
consider the types of the two different uses of the
generic functioncall :

call : (environment → environment)

→ environment → environment

call : (environment → int)

→ environment → int

766 F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769

Fig. 17. Synthesized type of the generic compilergcomp.

Fig. 18. The abstract instruction set.

Fig. 19. The compilercomp.

The types environment →environment and
environment →int have been, respectively, ab-
stracted intoinstruction and control by the
previous stage. Applying the same idea tocall leads
to the two following types:

instruction → environment

→ environment

control → environment → int

which are in fact the types of the functions associating
to an abstract instruction its corresponding combina-
tor. Thus, abstracting the environment can be obtained

by redefiningcall as a call to the emulator. We are
now ready to define a generic version of the emulator
parameterized by the environment access and update
functionsget x andset x wherex is an environ-
ment field. This emulator is described by Fig. 20. It
encapsulates the definition of all the combinators and
defines the two functionsins emul andctr emul .
Note the introduction of the two variantscall (line 1)
andcall1 (line 2) corresponding to the two instan-
ciations of the generic functioncall . Furthermore,
the combinators no more access directly to environ-
ment fields: they use the abstract environment access
functionsget x andset x .

F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769 767

Fig. 20. The generic emulatorgemul .

Fig. 21. The synthesized type ofgemul .

The synthesized type of the generic emulator pa-
rameterized by environment access functions, given in
Fig. 21, produces the type of the abstract environment.
Functional fields are now typed bycontrol .

Thus, the concrete run-timeenvironment type
is defined in Fig. 22. The type of its fields is obtained
from the signature of the generic emulator.

Finally, Fig. 23 defines the emulator as an instanci-
ation of the generic emulator with run-time environ-
ment access functions.

The characteristic equation of pass seperation can
now be stated. Fig. 24 builds the initial environment
and defines the interpreter as a composition of com-
pilation and emulation phases. Fig. 22. The run-time environment.

768 F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769

Fig. 23. The emulatoremul .

Fig. 24. Composing compiler and emulator.

4.8. Summary

Within a functional framework, the writing of the
first interpreter uses lexical bindings, recursivity and
higher order functions. Then, we do without these
high-level capabilities to write the new versions of the
same interpreter. For that, we provide an implementa-
tion of the previous functionalities using lower level
constructs.

The continuation passing style is used to express the
control flow uniformly. However, the power of lexi-
cal binding still allows a high-level description of the
data flow similar to recursivity for the control flow.
This mechanism is eliminated to obtain a lower level
machine code, thus revealing the abstract machine in-
ternal structure. This stage is completed by the in-
troduction of an execution environment encapsulating
dynamic data. The abstract instructions and their em-
ulator are extracted through pass separation.

To sum up, the derivation process follows the next
steps:
• writing of a first interpreter,
• binding-time analysis and dynamic variables anno-

tation,
• lexical binding elimination for dynamic variables,
• normalization of the interpreter and construction of

the abstract data typeenvironment ,
• elimination of the environment throughη-reduction,

• pass separation and extraction of the compiler,
• abstraction of the environment and extraction of the

emulator.

5. Conclusion

We have presented a process for deriving an ab-
stract machine from a source language whose oper-
ational semantics is defined by an interpreter written
in a high-level functional language. It is based on a
progressive transformation of this interpreter into a
compiler and an emulator of abstract code. The initial
interpreter is written using high-level constructions.
Then it is transformed gradually so that it does not
rely on the features of the implementation language.
It leads to the emergence of data structures which
will be the heart of the abstract machine.

Pass separation is then applied to the interpreter,
aiming at splitting it into two complementary activ-
ities: on the one hand the compilation of the source
language that produces the intermediate code, and on
the other hand the interpretation of this intermediate
code. Thus, we get a compiler and an emulator of ab-
stract code.

The formalism used in this paper is functional and
higher order continuation-based as Wand’s [10]. The
guideline of the transformations is similar but the

F. Cabestre et al. / Future Generation Computer Systems 16 (2000) 753–769 769

details differ in our framework as Wand’s work is
untyped.

We now plan to study the automatization of the
presented study and its correctness. The first point
concerns the choice of the functional language. The
Caml type system is not powerful enough to manage
typed variable bindings or to guarantee the coherence
of the variants of the sum data types: a system with
dependent types is necessary. The second point con-
sists in defining an environment to make easier the
mechanization of program transformations. At least,
these transformations must be validated. These three
requirements can be fulfilled using a proof assistant
such as Coq [15].

References

[1] K. Arnold, J. Gosling, The Java Programming Language,
Addison-Wesley, Reading, MA, 1996.

[2] A. Aho, R. Sethi, J. Ullman, Compilers: Principles,
Techniques and Tools, Addison-Wesley, Reading, MA, 1987.

[3] U. Jørring, W. Scherlis, Compilers and staging transfor-
mations, in: Thirteenth ACM Symposium on Principles of
Programming Languages, St. Petersburg, Florida, 1986, pp.
86–96.

[4] J. Hannan, D. Miller, From operational semantics to abstract
machines: preliminary results, in: M. Wand (Ed.), Proceedings
of the 1990 ACM Conference on Lisp and Functional
Programming, ACM, New York, 1990, pp. 323–332.

[5] J. Hannan, Staging transformations for abstract machines,
Partial Evaluation and Semantic Based Program Manipulation
26 (1991) 130–141.

[6] P. Sestoft, Deriving a lazy abstract machine, J. Funct.
Programming 7 (1997) 3.

[7] S. Diehl, Semantics-directed generation of compilers and
abstract machines, Ph.D. Thesis, University Saarbrücken,
Germany, 1996.

[8] S. Diehl, Transformations of evolving algebras, in: LIRA’97
(VIII International Conference on Logic and Computer
Science), Novi Sad, Yugoslavia, September 1997, pp. 51–57.

[9] Y. Gurevich, Evolving algebras: an introductory tutorial, Bull.
Eur. Assoc. Theoret. Comput. Sci. 43 (1991) 264–284.

[10] M. Wand, Deriving target code as a representation of
continuation semantics, ACM Trans. Programming Languages
Syst. 4 (3) (1982) 496–517.

[11] X. Leroy, The Objective Caml System Release 1.03, INRIA,
October 1996.

[12] N.D. Jones, C.K. Gomard, P. Sestoft, Partial Evaluation and
Automatic Program Generation, Series in Computer Science,
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[13] G.D. Plotkin, Call-by-name, call-by-value and theλ-calculus,
Theoret. Comput. Sci. 1 (1975) 125–159.

[14] J.-C. Reynolds, Definitional interpreters for higher order
programming languages, in: ACM Conference Proceedings,
1972, pp. 717–740.

[15] G. Huet, G. Kahn, C. Paulin-Mohring, The Coq proof assistant
—a tutorial, version 6.1, Tech. Rep. 204, INRIA, August
1997.

Frédéric Cabestre is a Ph.D. student
working on the synthesis of abstract ma-
chines from operational semantics. His
work is part of a project aiming at combin-
ing in the same framework objects, logic
and concurrency. His main interests in-
clude functional programming, compila-
tion techniques and partial evaluation.

Christian Percebois is professor of com-
puter science at the University of Toulouse
III, France, since 1992. His research inter-
ests include parallelism, functional, logic
and object-oriented programming and ab-
stract machines. Since 1996, he is mainly
interested by multiset rewriting techniques
in order to coordinate concurrent objects.

Jean-Paul Bodeveixis an old student of
the Ecole Normale Superieure of Cachan
and received a Ph.D. of Computer Science
from the University of Paris-Sud in 1989.
He is now an assistant professor of com-
puter science at the University of Toulouse
III, France. Current research interests in-
clude concurrency, object-oriented pro-
gramming, logic programming, formal
specifications and validation.

