
Reverse Engineering and System Renovation
- An Annotated Bibliography -

M.G.J. van den Brand - P. Klint - C. Verhoef

 Programming Research Group, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
 Department of Software Technology

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
email: markvdb@fwi.uva.nl, paulk@cwi.nl, x@wins.uva.nl

Abstract:

To facilitate research in the field of reverse engineering and system renovation we have compiled an annotated
bibliography. We put the contributions not only in alphabetical order but also grouped by topic so that readers focusing on
a certain topic can read their annotations in the alphabetical listing. We also compiled an annotated list of pointers to
information about reverse engineering and system renovation that can be reached via Internet. For the sake of ease we also
incorporated a brief introduction to the field of reverse engineering.

Key Words & Phrases: Reverse engineering, Annotated bibliography, System renovation
1991 CR Categories: A.2, D.2.2, D.2.7, D.2.m, K.6.3
note: The authors were all in part sponsored by bank ABN AMRO, software house DPFinance, and the Dutch Ministery of
Economical Affairs via the Senter Project #ITU95017 "SOS Resolver". The last author was also supported by the
Netherlands Computer Science Research Foundation (SION) with financial support from the Netherlands Organization for
Scientific Research (NWO), project Interactive tools for program understanding, 612-33-002.

1 Introduction
There is a constant need for updating and renovating business-critical software systems for many and divers reasons:
business requirements change, technological infrastructure is modernized, the government changes laws, or the third
millennium approaches, to mention a few. Therefore, that in the area of software engineering the subjects of reverse
engineering and system renovation become more and more important. The interest in such subjects originates from the
difficulties that one encounters when attempting to maintain extremely large software systems. Such software systems are
often called legacy systems, since it is a legacy of many different people that have developed and maintained them. It is
not hard to understand that it is very difficult--if not impossible--to maintain them.

To make the problems a bit more concrete we will compare such software renovation projects to the renovation of a house.
The problem that software engineers encounter could very well be stated in house renovation terms as the query: ``How to
renovate your house with the additional constraint that you want to use all the facilities of it during this renovation?'' For
many business-critical systems the same situation holds: how to renovate your software system while at the same time
business continues as usual. An often heard (naïve) solution is to throw away the software as soon as a totally new system
is finished (this is sometimes called shadowing). In house renovation terminology this would mean that you would have to
build a completely new house and when this is finished you have to move the furniture from the old house to the new
house before you can start using the new one. Then you can tear down the old one. It will be clear that this will be too
expensive and that the shipping of the furniture will take too much time to meet the additional constraint. In software
renovation terms the option of building a totally new system and throwing away the old one is for the same reasons as with
a house renovation project usually too expensive and often even impossible since the shipping of the ``furniture'' (say,
databases) from the old system to the new system will take weeks. So a more sophisticated renovation strategy seems
necessary.

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (1 von 18) [23.07.1999 11:28:23]

http://adam.wins.uva.nl/~markvdb/
http://www.cwi.nl/~paulk/
http://adam.wins.uva.nl/~x/

Before the actual renovation can start it will be necessary to make an inventory of the specification and the documentation
of the system to be renovated. Also at this point there is a challenge for software engineers since the old systems lack
mostly these sources of information. It is our experience that either there is no documentation at all, or the original
programmers that could possibly explain the functionality of parts of the system have left, or both. The only
documentation that is left is the source code itself. Thus, since the vital information of the software is solely accessible via
the source code it will be necessary to develop tools to facilitate the renovation--a task for software engineers.

We hope to have elucidated that there is a need for sophisticated analysis of software to be used in renovation
methodologies for large software systems, and that research on this issue is useful and important. A step towards a sound
analysis of software renovation research is to study and analyze the literature on this subject, hence, this annotated
bibliography.

We want to stress that the bibliography is intended to be useful for people who want to know more about reverse
engineering and system renovation. More precicely, many of the entries in our bibliography are of a techical nature so
researchers, practicioners and students interested in reverse engineering will hopefully benefit from them. We also
included pointers to management issues and legal sides of reverse engineering and system renovation meant for people
interested in those aspects.

It is not complete but instead gives pointers for further reading.

1.1 Related work
In [Arnold1993] another annotated bibliography can be found. There are also some on-line bibliographies. We discuss
them in section 4.

1.2 Organization of the paper
In section 2 we give a brief impression of terminology in reverse engineering where we follow [Chikofsky and
Cross1990]. In the next section (section 3) we sort the selected references by topic. In section 4 we give pointers to other
sources of information: we provide a list of so-called universal resource locators. We give a short description of what can
be expected when connecting to them. Finally, in section 5 we provide the annotated bibliography.

Acknowledgements

We thank Arie van Deursen for discussions and comments on an earlier version of this paper.

2 Reverse engineering and system renovation in
a nutshell

The term reverse engineering finds its origins in hardware technology and denotes the process of obtaining the
specification of complex hardware systems. Now the meaning of this notion has shifted to software. As far as we know
there is not (yet) a standard definition of what reverse engineering is but in [Chikofsky and Cross1990] we can read:

``Reverse engineering is the process of analyzing a subject system to identify the system's components and
their inter-relationships, and to create representations of the system in another form at higher levels of
abstraction.''

According to [Chikofsky and Cross1990] the following six terms characterize system renovation:

forward engineering,●

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (2 von 18) [23.07.1999 11:28:23]

reverse engineering,●

redocumentation,●

design recovery,●

restructuring,●

reengineering (or renovation).●

Forward engineering moves from a high-level abstraction and design to a low-level implementation. Reverse engineering
can be seen as the inverse process. It can be characterized as analysing a software system in order to, firstly, identify the
system components and their interactions, and to, secondly, make representations of the system on a different, possible
higher, level of abstraction.

Reverse engineering restricts itself to investigating a system. Adaptation of a system is beyond reverse engineering but
within the scope of system renovation. Redocumentation focuses on making a semantically equivalent description at the
same level of abstraction. It is in fact a simple form of reverse engineering. Tools for redocumentation include, among
others, pretty printers, diagram generators, and cross-reference listing generators. In design recovery domain knowledge
and external information is used to make an equivalent description of a system at a higher level of abstraction. So, more
information than the source code of the system is used. The notion restructuring amounts to transforming a system from
one representation to another one at the same level of abstraction. An essential aspect of restructuring is that the semantic
behaviour of the original system and the new one should remain the same; no modifications of the functionality is
involved. The purpose of reengineering or renovation is to study the system, by making a specification at a higher
abstraction level, adding new functionality to this specification and develop a completely new system on the basis of the
original one by using forward engineering techniques.

3 Classification

Papers addressing reverse engineering and system recovery can be classified in various categories. The classification that
we propose is based on the material that we found. First, we list some introductory contributions and mention conferences
dedicated to reverse engineering. Then we will proceed with program understanding and design recovery, reusability,
maintainability, and program slicing. Then we list contributions that deal with the reverse engineering of more specific
topics: data and data bases, user interfaces, and reverse engineering for a number of languages. Then we list formal
techniques, tools and their implementation issues, restructuring and regeneration, testing, management, and miscellaneous
contributions.

Introduction and general topics

Articles that give an introduction to the field of reverse engineering and that define the relevant notions are
[Biggerstaff1989, Byrne1992, Chikofsky and Cross1990, Osborne and Chikofsky1990]. Books that put the subject in
context and contain a lot of introductory material are: [Arnold1993, Brodie and Stonebraker1995, Lano and
Haughton1994, Zuylen1993]. A book that is possibly interesting is [Takeshita1992], but since it is in Japanese we are not
able to give more information. A recent overview of research questions is given in [Selfridge et al. 1993]. A tutorial on
reverse engineering is [Rekoff1985].

Several conferences and workshops exist in this field, such as Conference on Software Maintenance
(e.g., [Kellner1992],16ex) and Working Conference on Reverse Engineering (e.g., [Waters and Chikofsky1993],16ex).

Program understanding and design recovery

There are many recent papers on this subject. We provide an extensive list: [Bertels et al. 1993, Rugaber and Clayton1993,
Beck and Eichmann1993, Blazy and Facon1994, Biggerstaff et al. 1993, Biggerstaff1989, Cross1993, Cohen1995,
Canfora et al. 1993b, Cordy et al. 1990, Cutillo et al. 1993, Choi and Scacchi1990, Chen et al.1990, Devanbu et al. 1991,

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (3 von 18) [23.07.1999 11:28:23]

http://adam.wins.uva.nl/~x/oniku.html

Edwards and Munro1993, Hall1995, Harandi and Ning1990, Howden and Pak1992, Hausler et al. 1990, Johnson et al.
1992, Ning et al.1993, Oman and Cook1990, Olshefski and Cole1993, Ornburn and Rugaber1992, Paul and Prakash1994b,
Quilici1993, Rugaber et al. 1990, Ritsch and Sneed1993, Rich and Wills1990, Johnson and Soloway1985, Vliet1993,
Wills1993, Waters and Chikofsky1993, Wilde et al. 1992, Zuylen1993].

Reuse

In these papers the focus is on how to prevent the situation of legacy systems, that is, make the software easier to maintain
by programming in replaceable and reusable components. [Gomaa1993, Hall1992, Khajenoori et al. 1994, Mii and
Takeshita1993, Whittle and Ratcliffe1993],

Maintainability

To give an impression of the status of maintainability as a research field we give 2 quotations. Schneidewind
[Schneidewind1987a] wrote in 1987 in his introduction to a special section on software maintenance that this ``subject has
received relatively little attention from the research community.'' Gallagher and Lyle write in [Gallagher and Lyle1991]
``While some may view software maintenance as a less intellectually demanding activity than development, the central
premise of this work is that software maintenance is more demanding.'' Here are some pointers to the maintainability
subject: [Basili1990, Bennet et al. 1992, Freeman and Layzell1994, Gallagher and Lyle1991, Jørgensen1995,
Schneidewind1987b, Kellner1992, Pickard and Carter1995, Paul and Prakash1994a, Hartmann and Robson1990],

Program slicing

A survey of program slicing techniques is given in [Tip1995]. Other references are: [Beck and Eichmann1993, Ning et
al.1993, Cutillo et al. 1993, Gallagher and Lyle1991, Olshefski and Cole1993, Binkley1992, Hall1995, Weiser1984, Gupta
et al. 1992].

Reverse engineering of data and databases

One the first books on data reverse engineering is [Aiken1995]. Other references are: [Aiken et al. 1993, Premerlani and
Blaha1993, Hainaut et al. 1993, Ritsch and Sneed1993, Brodie and Stonebraker1995, Tangorra and Chiarolla1995, Tan
and Ling1995].

Reverse engineering of user interfaces

[Merlo et al. 1993].

Reverse engineering of specific languages

Many business-critical systems are written in COBOL. So a number of papers geared towards this language are available.
For other languages there are also contributions.

COBOL
[Lano and Haughton1993, Edwards and Munro1993, Edwards and Munro1993, Gray et al.1995, Ning et al.1993,
Cutillo et al. 1993, Hainaut et al. 1993, Ritsch and Sneed1993, Newcomb and Markosian1993, Zuylen1993,
Sneed1992]

Pascal
[Canfora et al. 1993b]

C
[Chu and Patel1992, Olshefski and Cole1993, Wilde et al. 1992],

Lisp

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (4 von 18) [23.07.1999 11:28:23]

[Wills1993].

Ada
[Canfora et al. 1993a, Cross1993, Gray et al.1995].

Fortran
[Byrne1991]

CHILL
[Vogt and Hendriks1994].

Formal techniques

In the following list formal techniques are used in which CCS, Denotational semantics, Petri nets, Z, and Z++ are applied
to approach certain problems in reverse engineering. [Bowen et al. 1993, Baumann et al. 1994, Baumann et al. 1993,
Horwitz et al. 1989, Keller et al. 1995, Lano and Haughton1993, Merlo et al. 1993, Ward and Bennett1993, Zuylen1993,
Bennet et al. 1992]

Tools and implementation techniques

Many tools have been implemented to aid in various reverse engineering tasks. For an elaborate hypertext page on CASE
tool vendors we refer to section 4, where a pointer to an electronically available index is given. [Baumann et al. 1994,
Baumann et al. 1993, Reubenstein et al. 1993, Ning et al.1993, Canfora et al. 1992, Canfora et al. 1993b, Cutillo et al.
1993, Keller et al. 1995, Miller and Straus III1987, Mendelzon and Sametinger1995, Olshefski and Cole1993, Cross1993,
Rich and Waters1990, Reubenstein et al. 1993, Wills1993, Ward and Bennett1993, Wilde and Huitt1991, Newcomb and
Markosian1993, Zuylen1993, Bennet et al. 1992, Johnson et al. 1992, Cordy et al. 1990, Paul and Prakash1994a,
McGinnes1994, Tilley et al. 1994, Rich and Wills1990]

Restructuring, transformation, and regeneration

In this category, methods and tools are described to perform actual reverse engineering tasks. [Bennet et al. 1992, Chu and
Patel1992, Kozaczynski et al. 1992, Hutchens and Basili1985, Miller and Straus III1987, Newcomb and Markosian1993,
Oulsnam1982, Pleszkoch et al. 1992, Johnson and Soloway1985, Urschler1975, Waters1988, Williams and Ossher1978,
Ward and Bennett1993, Ramshaw1988, Zuylen1993, Choi and Scacchi1990]

Testing

After modification of software systems it is necessary to test the new system. Some pointers are [Kung et al. 1993,
Binkley1992, Laski and Szemer1992, Gupta et al. 1992, Hartmann and Robson1990]

Management

Many reverse engineering projects are huge. The management of such projects is not at all trivial and gets attention in:
[Aiken et al. 1993, Arnold1993, Ward and Bennett1993, Zuylen1993]

Miscellaneous

Certain issues that are important, but do not fit our classification in a natural way are [Ammarguellat1992, Hecht1977,
Marlowe and Ryder1990, Belady and Evangelisti1981, Ashcroft and Manna1972, Samuelson1990, Withrow1990]. We
mention that the subjects go from go to elimination to legal aspects of reverse engineering.

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (5 von 18) [23.07.1999 11:28:23]

4 Other sources of information

In [Arnold1993] another annotated bibliography can be found. Noteworthy, perhaps, is that this annotated bilbiography
mainly contains other references than ours.

Nowadays, much information is not only available via books and journals but also via Internet. In this section we listed
some universal resource locators (URLs) that are related to reverse engineering and system renovation, including some that
contain an on-line bibliography. Of course, we have made ourselves a page that contains the URLs below. Contact
http://adam.fwi.uva.nl/~x/reverse.html for both a dvi file of this bibliography and an hypertext version
of the list below.

http://www.cc.gatech.edu/reverse/ is a site where the Georgia tech reverse engineering group
presents their papers, tools and members. Moreover, pointers to other groups are given.

●

http://www.erg.abdn.ac.uk/users/brant/sre/ is a site that gives information like who is who in
reverse engineering. Hyperlinks to research institutes, universities, and other sites are grouped together in a number
of interest areas. Furthermore, some introductory information is available. Researchers in the field are encouraged to
contribute to this WWW site under construction.

●

http://www.year2000.com/cgi-bin/clock.cgi/ This is a
sitehttp://www.year2000.com/cgi-bin/clock.cgi/ of a firm specialized in the year 2000 problem. It contains
information on how to join a mailing list on this subject.

●

http://www.software.ibm.com/year2000/index.html This is a URL also dedicated to the year 2000
problem. A comprehensive set of services, tools and support is available to help customers prepare for the Year
2000 transition.

●

ftp://lscftp.kgn.ibm.com/pub/year2000/y2kpaper.ps is a URL from which a manual can be
obtained dedicated to the year 2000 problem.

●

http://www.qucis.queensu.ca/Software-Engineering/vendor.html is a URL to a CASE tool
vendor index. This is useful for tools that can be used in reverse engineering.

●

http://www.csc.tntech.edu/~linos/ is a page describing research activities related to program
comprehension and reengineering performed at the CARE (Computer-Aided Reengineering) Laboratory in the
Computer Science Department of Tennessee Technological University.

●

http://stout.levtech.com/levtech-marketing/papers.html this is a bibliography of
reengineering papers based on software refinery.

●

http://www-cs.open.ac.uk/~jonrob/bibliog.html this is an online bibliography on software and
reuse. At the time of writing this paper contained 114 items.

●

http://www.scism.sbu.ac.uk/cios/islam/ReuseBib.txt This URL is a bibliography of software
reuse papers written after 1990.

●

http://www.informatik.uni-stuttgart.de/ifi/ps/reengineering/reengineering.html
is an on-line bibliography on reverse engineering. It contains also the abstracts of the papers.

●

http://128.172.188.1/isydept/faculty/paiken/drebib.htm is a pointer to a reengineering
bibliography that can be obtained on a floppy disk. For more details please contact the owner of the page.

●

References
Aiken et al. 1993

P. Aiken, A. Muntz, and R. Richards. A framework for reverse engineering DoD legacy information systems. In
[Waters and Chikofsky1993], pages 180-191, 1993. Gives an overview of the reverse engineering methodology used

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (6 von 18) [23.07.1999 11:28:23]

http://adam.fwi.uva.nl/~x/reverse.html
http://www.cc.gatech.edu/reverse/
http://www.erg.abdn.ac.uk/users/brant/sre/
http://www.year2000.com/cgi-bin/clock.cgi/
http://www.software.ibm.com/year2000/index.html
ftp://lscftp.kgn.ibm.com/pub/year2000/y2kpaper.ps
http://www.qucis.queensu.ca/Software-Engineering/vendor.html
http://www.csc.tntech.edu/~linos/
http://stout.levtech.com/levtech-marketing/papers.html
http://www-cs.open.ac.uk/~jonrob/bibliog.html
http://www.scism.sbu.ac.uk/cios/islam/ReuseBib.txt
http://www.informatik.uni-stuttgart.de/ifi/ps/reengineering/reengineering.html
http://128.172.188.1/isydept/faculty/paiken/drebib.htm

inside the DoD for the reengineering of information systems.

Aiken1995
P. Aiken. Data Reverse Engineering: Slaying the Legacy Dragon. McGraw-Hill, 1995. This is the first book
describing the process of recovering data architectures from existing information systems and using it to develop a
foundation for enterprise integration and other reengineering efforts.

Ammarguellat1992
Z. Ammarguellat. A control-flow normalization algorithm and its complexity. IEEE Transactions on Software
Engineering, 18(3):237-251, 1992. A simple method is presented for normalizing the control-flow of programs to
facilitate program transformations, program analysis, and automatic parallelization. This method does not make use
of code replication. The normalization results in a restructuring of the code that obviates the need for control
dependency relations.

Arnold1993
R.S. Arnold. Software Reengineering. IEEE Computer Society Press, 1993. In this book an introduction to software
reengineering is provided. Context and definitions of key notions are included. Then various subjects are treated in
the form of a collection of papers that are reprinted from other sources. Subjects that we can find are: business
process reengineering, the connection with economics, experiences with real-life reengineering projects, evaluation
of tools used in such projects, the technological aspects of reengineering, data reengineering and its migration
problems, source code analysis, restructuring and translation, the annotation and documentation of existing
programs, reusability aspects, design recovery, the object oriented approach to recovery, program understanding,
and knowledge based program analysis. This book contains an annotated bibliography.

Ashcroft and Manna1972
E. Ashcroft and Z. Manna. The translation of goto programs into while programs. In C.V. Freiman, J.E. Griffith, and
J.L. Rosenfeld, editors, Proceedings of IFIP Congress 71, volume 1, pages 250-255. North-Holland, 1972. It is
shown that every flowchart program can be written without go to statements by using while statements. The
transformation does not give rise to less efficient programs and, moreover, the structure of the original flowchart
program is preserved.

Basili1990
V. Basili. Viewing maintenance as reuse oriented software development. IEEE Software, 7(1):19-25, 1990. In this
paper the maintenance process is incorporated in the life-cycle perspective geared towards the reusability of the
various components.

Baumann et al. 1993
P. Baumann, J. Fässler, M. Kiser, and Z. Öztürk. Beauty and the Beast or A Formal Description of the Control
Constructs of Cobol and its Implementation. Technical Report 93.39, Department of Computer Science, University
of Zurich, Switzerland, 1993. A formal semantics for a subset of COBOL is presented with the aid of denotational
semantics. The subset consists of the control constructs of COBOL. In [Baumann et al. 1994] it is argued that
precisely this subset is relevant for reverse engineering.

Baumann et al. 1994
P. Baumann, J. Fässler, M. Kiser, Z. Öztürk, and L. Richter. Semantics-based reverse engineering. Technical Report
94.08, Department of Computer Science, University of Zurich, Switzerland, 1994. Denotational semantics is
advocated as a formal foundation for program understanding. The ideas are implemented in a tool for reverse
engineering called AEMES. This tool is geared towards COBOL-74.

Beck and Eichmann1993
J. Beck and D. Eichmann. Program and interface slicing for reverse engineering. In [Waters and Chikofsky1993],
pages 54-63, 1993. Describes the use of program slicing for the reverse engineering of Ada packages.

Belady and Evangelisti1981
L. Belady and C. Evangelisti. System partitioning and its measure. Journal of Systems and Software, 2:23-29, 1981.
A method to perform automatic clustering of data structures and calls is described. A metric to quantify the
complexity of the resulting partitioning is given.

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (7 von 18) [23.07.1999 11:28:23]

Bennet et al. 1992
K. Bennet, T. Bull, and H. Yang. A transformation system for maintenance: turning theory into practice. In
[Kellner1992], pages 146-155, 1992. Describes the architecture of the Maintainer's Assistant, a reverse engineering
tool based on program transformations. Discusses the role of metrics in selecting appropriate transformations. Also
see [Ward and Bennett1993].

Bertels et al. 1993
K. Bertels, Ph. Vanneste, and C. de Backer. A cognitive approach to program understanding. In [Waters and
Chikofsky1993], pages 1-7, 1993. Presents a method of program understanding based on a cognitive model of
programming knowledge. The approach involves the generation of a high level, abstract, description that is robust
with respect to conceptual errors and syntactic variations.

Biggerstaff et al. 1993
T. Biggerstaff, B. Mitbander, and D. Webster. The concept assignment problem in program understanding. In
[Waters and Chikofsky1993], pages 27-43, 1993. The problem of discovering abstract human oriented concepts and
relating them to their implementation oriented counterparts is called the concept assignment problem. Describes
various heuristic clues, as supported by the DESIRE system, that can be used for concept extraction.

Biggerstaff1989
T.J. Biggerstaff. Design recovery for maintenance and reuse. IEEE Computer, 22(7):36-49, 1989. Design recovery
uses the source code of a system as well as external information, such as documentation, personal experience, and
knowledge of problem and application domain, to make a higher level abstraction. The key property is the
formalization of informal information and domain knowledge.

Binkley1992
D. Binkley. Using semantic differencing to reduce the cost of regression testing. In [Kellner1992], pages 41-50,
1992. Gives an algorithm using dependence graphs and program slicing to partition a modified program in parts
with affected program behaviour and parts with unaffected behaviour. Only the parts with affected behaviour have
to be re-tested.

Blazy and Facon1994
S. Blazy and P. Facon. Partial evaluation for the understanding of FORTRAN programs. International Journal of
Software Engineering and Knowledge Engineering, 4(4):535-559, 1994. A technique and a tool are described
supporting the partial evaluation of FORTRAN programs in order to understand old programs that have become
very complex due to numerous alterations.

Bowen et al. 1993
J. Bowen, P. Breuer, and K. Lano. A compendium of formal techniques for software maintenance. Software
Engineering Journal, 8(5):253-262, 1993. An overview of formal techniques developed recently to aid the software
maintenance process and particularly reverse engineering is given.

Brodie and Stonebraker1995
M.L. Brodie and M. Stonebraker. Migrating Legacy Systems -- Gateways, Interfaces & The Incremental Approach.
Morgan Kaufmann Publishers, Inc., 1995. This book gives a detailed description of strategies for migrating legacy
systems. It advocates an incremental approach for the migration instead of doing it in one step. The legacy system is
analyzed and the components to be updated are identified. The legacy system and the new system work in parallel
and are connected via gateways. Migrated components are removed from the legacy system and added to the new
system. The crucial steps in this process are establishing the right ordering of the components to be migrated and the
use of powerful gateways. It is preferable not to develop these gateways yourself but to obtain them from third party
software producers. A number of case-studies is presented and these case-studies demonstrate that these gateways
are crucial even if all the code of the legacy system becomes obsolete. The book concludes with an extensive list of
third party software producers which produce gateways.

Byrne1991
E.J. Byrne. Software reverse engineering: A case study. Software--Practice and Experience, 21(12):1349-1364,
1991. Experience report describing the problem of reimplementing a Fortran program in Ada. Instead of a

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (8 von 18) [23.07.1999 11:28:23]

one-to-one translation, the original Fortran program is analyzed and design information is extracted which is then
used to reimplement the program in Ada.

Byrne1992
E. Byrne. A conceptual foundation for software re-engineering. In [Kellner1992], pages 226-235, 1992. A
conceptual foundation for software reengineering is presented yielding a general model of software reengineering.
This model is described and is shown to be useful for examining reengineering issues such as the reengineering
process and strategies for reengineering.

Canfora et al. 1992
G. Canfora, A. Cimitile, and U. de Carlini. A logic-based approach to reverse engineering tools production. IEEE
Transactions on Software Engineering, 18(12):1053-1064, 1992. Difficulties arising during the use of documents
produced by reverse engineering tools are discussed and analyzed.

Canfora et al. 1993a
G. Canfora, A. Cimitile, and U. De Carlini. A reverse engineering process for design level document production
from ada code. Information and Software Technology, 35(1):23-34, 1993. A reverse engineering process for
producing design level documents by static analysis of ADA code is described. This is achieved via concurrent data
flow diagrams describing the task structure and the data flow between tasks.

Canfora et al. 1993b
G. Canfora, A. Cimitile, and M. Munro. A reverse engineering method for identifying reusable abstract data types.
In [Waters and Chikofsky1993], pages 73-82, 1993. Describes a methodology and experimental Prolog-based tool
for the extraction of reusable data type declarations from source code. Illustrated for a medium-size Pascal program.

Chen et al.1990
Y-F. Chen, M.Y. Nishimoto, and C.V. Ramamoorthy. The C information abstraction system. IEEE Transactions on
Software Engineering, 16(3):325-334, 1990. A system for analyzing program structures is described. The
applications of this system include: generation of graphical views, subsystem extraction, program layering, dead
code elimination, and binding analysis.

Chikofsky and Cross1990
E.J. Chikofsky and J.H. Cross. Reverse engineering and design recovery: A taxonomy. IEEE Software, 7(1):13-17,
1990. Definitions of a number of key notions in the field of reverse engineering are proposed. Forward and reverse
engineering, redocumentation, design recovery, restructuring, and reengineering are described.

Choi and Scacchi1990
S.C. Choi and W. Scacchi. Extracting and restructuring the design of large systems. IEEE Software, 7(1):66-71,
1990. An algorithm is described that for a given initial design description the system-reconstruction algorithm
constructs a hierarchy of the system's modules and subsystems.

Chu and Patel1992
W Chu and S. Patel. Software restructuring by enforcing localization and information hiding. In [Kellner1992],
pages 165-172, 1992. Starting with information describing function calls and global variable usage, this paper
presents a clustering technique that generates Ada-like packages describing the structure of a given software system.
Has been applied to several existing systems implemented in C.

Cohen1995
W.W. Cohen. Inductive specification recovery: Understanding software by learning from example behaviors.
Automated Software Engineering, 2:107-129, 1995. A method for program understanding that does not rely on
parse-and-recognize techniques (as advocated in, for example, [Rich and Waters1990]) is presented. After the code
has been annotated the system is run on a number of representative test cases, generating from the annotations
examples of the behaviour. Finally, inductive learning techniques are used to generalize the examples, thus forming
an abstract, general description of the behaviour of the annotated code.

Cordy et al. 1990
J.R. Cordy, N.L. Eliot, and M.G. Robertson. Turingtool: A user interface to aid in the software maintenance task.
IEEE Transactions on Software Engineering, 16(3):294-301, 1990. In this paper the approach of viewing a program

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (9 von 18) [23.07.1999 11:28:23]

in a structured way is advocated. With the aid of queries the user can influence the view of the program and can,
therefore, get a better idea of what the program is doing. Things that are not important for a certain view are elided,
but can be accessed by clicking on them--the elided text becomes visual. The program can also be edited with this
tool.

Cross1993
J. Cross. Reverse engineering of control structure diagrams. In [Waters and Chikofsky1993], pages 107-116, 1993.
Describes a tool for the automatic generation of a new graphical representation for Ada software (Control Structure
Diagrams). These diagrams aim at improving the comprehension of Ada programs and can potentially replace the
original source code.

Cutillo et al. 1993
F. Cutillo, P. Fiore, and G. Visaggio. Identification and extraction of ``domain independent'' components in large
programs. In [Waters and Chikofsky1993], pages 83-92, 1993. Uses program slicing to extract components from
COBOL programs by means of Viasoft's tools INSIGHT, SMARTDOC and RENAISSANCE.

Devanbu et al. 1991
P. Devanbu, R.J. Bachman, P.G. Selfridge, and B.W. Ballard. LaSSIE: A knowledge-based software information
system. Communications of the ACM, 34(5):35-49, 1991. A system called LaSSIE (Large Software System
Information Environment) is presented. It incorporates a large knowledge base, a semantic retrieval algorithm based
on formal inference, and a powerful user interface incorporating a graphical browser and a natural language parser.
The system is intended to help programmers find useful information about large software systems.

Edwards and Munro1993
H. Edwards and M. Munro. RECAST: reverse engineering from COBOL to SSADM specifications. In [Waters and
Chikofsky1993], pages 44-53, 1993. Describes methodology and tooling for the extraction of SSADM diagrams
from COBOL programs.

Freeman and Layzell1994
M.J. Freeman and P.J. Layzell. A meta-model of information systems to support reverse engineering. Information
and Software Technology, 36(5):283-294, 1994. A method is discussed to help software maintainers to gain a richer
understanding of a software system and its components. This is achieved by enhancing traditional
reverse-engineering tools and prevents the loss of knowledge during forward engineering.

Gallagher and Lyle1991
K. Gallagher and J. Lyle. Using program slicing in software maintenance. IEEE Transactions on Software
Engineering, 17(8):751-761, 1991. In this paper the technique of program slicing is used to facilitate maintenance of
software systems by extending the notion of program slice to a so-called decomposition slice (a slice that captures
all computation on a given variable).

Gomaa1993
H. Gomaa. A reuse-oriented approach for structuring and configuring distributed applications. Software Engineering
Journal, 8(2):61-71, 1993. For the design of configurable distributed applications it is advocated to develop reusable
specifications and architectures. Then targets can be generated by tailoring the reusable specifications and
architectures. The method is elucidated by way of an example.

Gray et al.1995
R. Gray, T. Bickmore, and S. Williams. Reengineering cobol systems to ada. Technical report, InVision Software
Reengineering, Software Technology Center, Lockheed Palo Alto Laboratories, 1995. This paper describes the
reengineering of 50,000 lines of Cobol code and the translation to Ada. The goal was to do it as automatically as
possible. An inferential method was used to obtain all needed information from the Cobol code itself, no external
information from users or programmers was needed. The authors claim that inferential methods will be the basis of
the reengineering technology of the 21th century.

Gupta et al. 1992
R. Gupta, M. Harrold, and M. Soffa. An approach to regression testing using slicing. In [Kellner1992], pages
299-308, 1992. A new approach to data flow based regression testing is described that uses program slicing

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (10 von 18) [23.07.1999 11:28:23]

algorithms to detect definition-use pairs that are affected by a program change. The advantage of this approach is
that neither the data flow history nor a recomputation of data flow is necessary.

Hainaut et al. 1993
J.-L. Hainaut, M. Chandelon, C. Tonneau, and M. Joris. Contribution to a theory of database reverse engineering. In
[Waters and Chikofsky1993], pages 161-170, 1993. Gives a methodology for recovering the conceptual schema of
databases. Illustrated with various COBOL examples.

Hall1992
P.A.V. Hall. Overview of reverse engineering and reuse research. Information and Software Technology,
34(4):239-249, April 1992. It is argued in this paper that reuse of steps taken in forward engineering--such as ideas,
prototypes, temporary solutions, etc--should be stored somehow so that new systems do not need to be developed
from scratch. This is indeed useful when a system that is developed while saving such information needs reverse
engineering but for legacy systems this is too late.

Hall1995
R.J. Hall. Automatic extraction of executable program subsets by simultaneous dynamic program slicing. Automated
Software Engineering, 2:33-53, 1995. An algorithm to automatically extract a correctly functioning subset of the
code of a system is presented. The technique is based on computing a simultaneous dynamic program slice of the
code for a set of representative inputs. Experiments show that the algorithm produces significantly smaller subsets
than with existing methods.

Harandi and Ning1990
M.T. Harandi and J.Q. Ning. Knowledge-based program analysis. IEEE Software, 7(1):74-81, 1990. Automatic
program analysis with a tool called PAT is used to understand programs on a high level. The applications are
maintenance for large complex programs.

Hartmann and Robson1990
J. Hartmann and D.J. Robson. Techniques for selective revalidation. IEEE Software, 7(1):31-36, 1990. A systematic
and automated approach is discussed to effectively revalidate modified software while minimizing the time and cost
involved in maintenance testing.

Hausler et al. 1990
P.A. Hausler, M.G. Pleszkoch, R.C. Linger, and A.R. Hevner. Using function abstraction to understand program
behavior. IEEE Software, 7(1):55-63, 1990. In this paper it is avocated to improve the understanding of programs by
structuring them. The authors think that the potential exists for an automated tool to take unstructured code and
derive its functionality.

Jørgensen1995
M. Jørgensen. Experience with the accuracy of software maintenance task effort prediction models. IEEE
Transactions on Software Engineering, 21(8):674-681, 1995. Eleven software maintenance effort prediction models
are discussed.

Hecht1977
M. Hecht. Flow analysis of computer programs. Elsevier North-Holland, 1977. A classical book on the theory and
implementation of algorithms for data flow analysis.

Horwitz et al. 1989
S. Horwitz, T. Reps, and J. Prins. Integrating non-interfering versions of programs. ACM Transactions on
Programming Languages and Systems, 11(3):345-387, 1989. In this paper the program-integration problem is
formalized. An algorithm is given that produces an intergrated program from two variations of a base program. The
algorithm is semantics-based rather than text-based. The algorithm assumes a programming language containing
only simple programming constructs, like assignment statements, conditional statements, and iterative statements.

Howden and Pak1992
W. Howden and S. Pak. Problem domain, structural and logical abstractions in reverse engineering. In
[Kellner1992], pages 214-224, 1992. Introduces a formal notation for documenting various aspects of existing
software. Has been applied, manually, to sample COBOL programs.

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (11 von 18) [23.07.1999 11:28:23]

Hutchens and Basili1985
D. Hutchens and V. Basili. System structure analysis: clustering with data bindings. IEEE Transactions on Software
Engineering, SE-11(8):749-757, 1985. The use of cluster analysis as a tool for system modularization is examined.
It appears that the clustering of data bindings provides a meaningful view of system modularization.

Johnson and Soloway1985
W. Johnson and E. Soloway. PROUST: knowledge-based program understanding. IEEE Transactions on Software
Engineering, SE-11(3):267-275, 1985. This paper describes a tool to help novice programmers to learn how to
program. It is based on a knowledge base and has also a tutoring aspect. The tool is not intended for large scale
program understanding but the ideas underlying this paper may very well be applicable to it.

Johnson et al. 1992
B. Johnson, S. Ornburn, and S. Rugaber. A quick tools approach to program analysis and software maintenance. In
[Kellner1992], 1992. Describes the use of standard Unix tools like (Awk, Lex, Yacc) for extracting information
from PL/M code. The information is then visualized using a commercial CASE tool (Software Through Pictures).

Keller et al. 1995
R.K. Keller, X. Shen, R. Lajoie, M. Ozkan, and T. Tao. Environment support for business reengineering: the
Macrotec approach. Software--Concepts and Tools, 16(1):31-40, 1995. A business reengineering approach is
developed based on the formalism of coloured Petri-nets. The Macrotec environment has been engineered for the
support and validation of this approach. Macrotec is based on Macronets, the latter being a variation of the Petri net
formalism.

Kellner1992
M. Kellner, editor. Proceedings Conference on Software Maintenance. IEEE Computer Society Press, 1992. Several
papers in these proceedings that are directly related to reverse engineering are discussed separately in this
bibliography.

Khajenoori et al. 1994
S. Khajenoori, D.G. Linton, and C.A. Morris. Enhancing software reusability through effective use of the essential
modelling approach. Information and Software Technology, 36(8):495-501, 1994. It is advocated to develop new
software systems by reusing design components from existing ones. With the aid of the so-called essential
modelling approach it is possible to determine reusable components.

Kozaczynski et al. 1992
W. Kozaczynski, J. Ning, and A. Engberts. Program concept recognition and transformation. IEEE Transactions on
Software Engineering, 18(12):1065-1075, 1992. An approach to automated concept recognition and its application
to maintenance-related program transformations is described. An interesting point here is that transformation of code
can be expressed as transformation of abstract concepts.

Kung et al. 1993
C. Kung, JH. Gao, P. Hsia, J. Lin, and Y. Toyoshima. Design recovery for software testing of object-oriented
programs. In [Waters and Chikofsky1993], pages 202-211, 1993. Describes a methodology for testing OO software.

Lano and Haughton1993
K. Lano and H. Haughton. Integrating formal and structured methods in reverse engineering. In [Waters and
Chikofsky1993], pages 17-26, 1993. Describes the integration of formal (Z++) and structured (SSADM) methods in
reverse engineering as prototyped in the REDO project.

Lano and Haughton1994
K. Lano and H. Haughton. Reverse Engineering and Software Maintenance -- A Practical Approach. McGraw-Hill,
1994. This book describes a fundamental approach to reverse engineering and software maintenance. After an
introduction in software maintenance and reverse engineering a number of tools and approaches are discussed to
tackle various problems in these areas. An elaborate introduction in logic and program semantics is given. One
method (the process model) to address maintenance and reverse engineering is discussed in more detail. The book
concludes with a number of case-studies which use a formal approach based on logic and program semantics.

Laski and Szemer1992

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (12 von 18) [23.07.1999 11:28:23]

J. Laski and W. Szemer. Identification of program modifications and its applications in software maintenance. In
[Kellner1992], pages 282-290, 1992. One of the problems in software maintenance is the revalidation of modified
code. Such a process should preferably be restricted only to those parts of the program that are affected by the
modifications. In this paper a formal method is described to identify modifications made in a program.

Marlowe and Ryder1990
Marlowe and Ryder. Properties of data flow frameworks. A unified model. Acta Informatica, 28:121-163, 1990. An
overview of data flow frameworks and their characterizing properties is given. Contains many references to the field
of data flow analysis.

McGinnes1994
S. McGinnes. CASE support for collaborative modelling: re-engineering conceptual modelling techniques to exploit
the potential of CASE tools. Software Engineering Journal, 9(4):183-189, 1994. It is advocated that more benefit
would be obtained if both analysis and design techniques were reengineered so as to make the best possible use of
CASE tools. Ways on how to achieve this are given in the paper using examples from a prototype CASE tool.

Mendelzon and Sametinger1995
A. Mendelzon and J. Sametinger. Reverse engineering by visualizing and querying. Software--Concepts and Tools,
16(4):170-182, 1995. A tool called Hy+ is described that can be used for reverse engineering. Hy+ is a
general-purpose data visualization system for querying and visualizing information about object-oriented software
systems. Hy+ supports this for arbitrary graph-like databases. The use is demonstrated with the evaluation of
software metrics, verifying constraints and identifying design patterns.

Merlo et al. 1993
E. Merlo, J. Girard, K. Kontogiannis, P. Panangaden, and R. De Mori. Reverse engineering of user interfaces. In
[Waters and Chikofsky1993], pages 171-179, 1993. Extracts user interface descriptions from COBOL/CICS source
code and translates them to abstract behaviour descriptions based on process algebra (CCS). Part of the analysis is
done using Refine/COBOL. The translation itself is done manually.

Mii and Takeshita1993
N. Mii and T. Takeshita. Software re-engineering and reuse from a Japanese point of view. Information and
Software Technology, 35(1):45-53, 1993. The use of the concept of reusable pieces of software as parts in the
Japanese situation is reviewed. It is more geared towards preventive forward engineering than to reverse
engineering.

Miller and Straus III1987
J. Miller and B. Straus III. Implications of automatic restructuring cobol. ACM Sigplan Notices, 22(6):76-82, 1987.
The question whether or not mechanical transformations of unstructured program code to a structured equivalent can
provide an improvement in the understanding of that program is addressed. As an example the language COBOL is
examined. The paper also discusses a tool (called Structured Retrofit) that performs such transformations for
COBOL mechanically.

Newcomb and Markosian1993
Ph. Newcomb and L. Markosian. Automating the modularization of large COBOL programs: application of an
enabling technology for reengineering. In [Waters and Chikofsky1993], pages 222-230, 1993. Experience report
using the Software Refinery to build a modularization tool for COBOL.

Ning et al.1993
J. Ning, A. Engberts, and W. Kozaczynski. Recovering reusable components from legacy systems. In [Waters and
Chikofsky1993], pages 64-72, 1993. Gives an overview of the program segmentation facilities of the COBOL/SRE
system, which are based on various forms of program slicing.

Olshefski and Cole1993
D. Olshefski and A. Cole. A prototype system for static and dynamic program understanding. In [Waters and
Chikofsky1993], pages 93-106, 1993. Describes the experimental PUNDIT system that combines static and dynamic
information for program understanding. It comprises a static analyzer for C source code and a, mostly

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (13 von 18) [23.07.1999 11:28:24]

http://adam.wins.uva.nl/~x/oniku.html
http://adam.wins.uva.nl/~x/oniku.html

language-independent, graphical user interface. Gives various examples of program views.

Oman and Cook1990
P.W. Oman and C.R. Cook. The book paradigm for improved maintenance. IEEE Software, 7(1):39-45, 1990. It is
shown that traditional typographical formats used in books work very well to aid program understanding.

Ornburn and Rugaber1992
S. Ornburn and S. Rugaber. Reverse engineering: resolving conflicts between expected and actual software designs.
In [Kellner1992], pages 32-40, 1992. Experience report describing the application of the Synchronized Refinement
method [Rugaber et al. 1990] to a real-time embedded system.

Osborne and Chikofsky1990
W. Osborne and E. Chikofsky, editors. Special issue on Maintenance, reverse engineering and design recovery.
IEEE Software, 7(1):11-105. 1990. In this special issue a number of papers dealing with various aspects of reverse
engineering are collected. Most of the individual papers are discussed in this annotated bibliography.

Oulsnam1982
G. Oulsnam. Unraveling unstructured programs. The Computer Journal, 25(3):379-387, 1982. A method for
transforming unstructured program flowcharts into structured ones is presented. The form of the derived structured
programs is such that the original unstructured programs can be easily recovered, thus revealing what overheads in
space and time are inherent in the structured forms.

Paul and Prakash1994a
S. Paul and A. Prakash. A framework for source code search using program patterns. IEEE Transactions on
Software Engineering, 20(6):463-475, 1994. It is argued that existing solutions to locating source code fragments
that match certain patterns are insufficient. A framework in which pattern languages are used to specify interesting
code features is presented. These are obtained by extending the source programming language with pattern-matching
symbols. This is implemented in a tool called SCRUPLE.

Paul and Prakash1994b
S. Paul and A. Prakash. Supporting queries on source code: A formal framework. International Journal of Software
Engineering and Knowledge Engineering, 4(3):325-348, 1994. A source code query system is a powerful
mechanism to obtain crucial information necessary to successfully performing a reverse engineering task. A source
code algebra (SCA) is developed which is strongly based on relational algebras as well as on many sorted algebras.
Two types of data types are distinguished in the source code algebra model:

atomic data types, such as integer, float, etc.❍

composite data types (so-called objects):

singular objects, such as while-statement, identifier, etc.■

collective objects, such as statement-list, etc.■

❍

The objects are extended with four kinds of attributes, namely, components, references, annotations, and methods.
An extensive set of source code algebra operators are defined, such operators defined for atomic data types,
individual objects, and collections, i.e., sets and sequences. The operators for the collections are strongly influenced
by the operators from the relational algebra domain.

Pickard and Carter1995
M.M. Pickard and B.D. Carter. A field study of the relationship of information flow and maintainability of cobol
programs. Information and Software Technology, 37(4):195-202, 1995. The results of a field study of the
relationship of information flow to the maintainability of COBOL modules in a data processing environment are
presented. There is a significant correlation between maintainability and information flow and with (information
flow) metrics it is possible to identify poorly maintained modules.

Pleszkoch et al. 1992
M. Pleszkoch, R. Linger, and A. Hevner. Eliminating non-traversable paths from structured programs. In
[Kellner1992], pages 156-164, 1992. Considers the problem of control variables (i.e., ranging over the Booleans or
some small enumeration type) that obscure the structure of otherwise structured programs. Control flow is
represented by regular expressions which are further processed (subset construction) to find a version of the program

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (14 von 18) [23.07.1999 11:28:24]

without redundant control paths.

Premerlani and Blaha1993
W. Premerlani and M. Blaha. An approach for reverse engineering of relational databases. In [Waters and
Chikofsky1993], pages 151-160, 1993. Experience report describing the reverse engineering of several relational
databases to OMT (Object Modeling Technique) diagrams. The process is partly automated using a variety of tools.

Quilici1993
A. Quilici. A hybrid approach to recognizing programming plans. In [Waters and Chikofsky1993], pages 126-133,
1993. Based on an experiment regarding human understanding of a given C program, a new organization for a plan
library is presented. It consists of a plan definition, a plan recognition rule, and specialized constraints. Extends the
plan library developed by Andersen Consulting.

Ramshaw1988
L. Ramshaw. Eliminating goto's while preserving program structure. Journal of the ACM, 35(4):893-920, 1988. A
method is described to eliminate GO-TO statements from a program while the program's original structure is being
preserved.

Rekoff1985
M. Rekoff. On reverse engineering. IEEE Transactions on Systems, Man and Cybernetics, 3/4:244-252, 1985. This
paper is a tutorial on reverse engineering that defines some key notions.

Reubenstein et al. 1993
H. Reubenstein, R. Piazza, and S. Roberts. Separating parsing and analysis in reverse engineering tools. In [Waters
and Chikofsky1993], pages 117-125, 1993. Experience report describing the extension of an existing analysis tool
with a new syntactic front-end. Concludes that language-independence as well separation of parsing and analysis are
essential for extensibility.

Rich and Waters1990
C. Rich and R.C. Waters. The Programmer's Apprentice. Addison-Wesley, 1990. This book, named after the project
it reports on, is intended both to serve as an example of a general method to the builders of many and diverse
computer-aided design tools and to study how software is analyzed, modified, verified, and documented with the
goal to automate such typically software engineering tasks. A demonstration system has been completed within the
Programmer's Apprentice project that illustrates most of the key capabilities of it, albeit that this system is restricted
to the task of program implementation.

Rich and Wills1990
C. Rich and L.M. Wills. Recognizing a program's design: A graph-parsing approach. IEEE Software, 7(1):82-89,
1990. In this paper it is assumed that most programmers use similar structures to program. Such so-called cliches
can be recognized automatically and can then be used to generate the documentation of the program.

Ritsch and Sneed1993
H. Ritsch and H. Sneed. Reverse engineering programs via dynamic analysis. In [Waters and Chikofsky1993], pages
192-201, 1993. Describes a dynamic analysis of COBOL programs. By inspection of transaction files assertions are
generated capturing the input and output requirements of each database operation.

Rugaber and Clayton1993
S. Rugaber and R. Clayton. The representation problem in reverse engineering. In [Waters and Chikofsky1993],
pages 8-16, 1993. Choosing the proper representation to build models describing software entities during reverse
engineering is the representation problem. This paper examines the representation problem by presenting a
taxonomy of models and representations.

Rugaber et al. 1990
S. Rugaber, S.B. Ornburn, and R.J. LeBlanc. Recognizing design decisions in programs. IEEE Software, 7(1):46-54,
1990. In this paper it is advocated that in order to effectively maintain an existing system, the maintenance
programmer must be able to sustain decisions made earlier in the design process. To accomplish this, she/he must be
able to recognize and understand this decisions. A way is given to characterize such decisions.

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (15 von 18) [23.07.1999 11:28:24]

Samuelson1990
P. Samuelson. Reverse-engineering someone else's software: is it legal? IEEE Software, 7(1):90-96, 1990. The legal
issues concerning reverse engineering are discussed: does reverse engineering software infringe intellectual-property
law?.

Schneidewind1987a
N. Schneidewind. Introduction to the special section on software maintenance. IEEE Transactions on Software
Engineering, SE-13(3):301, 1987. This preface introduces a special section on software maintenance.

Schneidewind1987b
N. Schneidewind. The state of software maintenance. IEEE Transactions on Software Engineering,
SE-13(3):303-310, 1987. An overview of the state of the art in software maintenance and criticizes the apparent
disinterest in the research field is provided.

Selfridge et al. 1993
P. Selfridge, R. Waters, and E. Chikofsky. Challenges for the field of reverse engineering. In [Waters and
Chikofsky1993], pages 144-150, 1993. This position paper presents ten challenges for improvement of reverse
engineering research in three areas: (a) avoiding artificial data; (b) focusing on concrete economic and technical
impact; and (c) facilitating researcher communication by establishing standard terminology and selecting standard
data sets.

Sneed1992
H. Sneed. Migration of procedurally oriented COBOL programs in an object-oriented architecture. In
[Kellner1992], pages 105-116, 1992. The subject of this paper is to describe the migration of procedurally structured
COBOL into functionally equivalent object-oriented programs. Their major differences are described together with
an approach to bridge the gap between the two.

Takeshita1992
T. Takeshita. Software Maintenance/Re-engineering and Reuse. Kyoritsu Shuppan, Tokyo, 1992. (In Japanese).

Tan and Ling1995
H.B.T. Tan and T.W. Ling. Recovery of object-oriented design from existing data-intensive business programs.
Information and Software Technology, 37(2):67-77, 1995. A method is given for the recovery of a specification
from an existing data-intensive business program using an augmented model that is proposed in the paper.

Tangorra and Chiarolla1995
F. Tangorra and D. Chiarolla. A methodology for reverse engineering hierarchical databases. Information and
Software Technology, 37(4):225-231, 1995. The steps of a reverse engineering process for translating a hierarchical
data scheme into a conceptual description in the extended entity-relationship model are described. Contains a case
study.

Tilley et al. 1994
S.R. Tilley, K. Wong, M-A.D. Storey, and H.A. Müller. Programmable reverse engineering. International Journal
of Software Engineering and Knowledge Engineering, 4(4):501-520, 1994. This paper argues that most reverse
engineering environments are not flexible enough. They are directed towards the tool builders instead of the users of
the environments. Besides a number of basic facilities, such as parsing, the reverse engineering tool should allow a
high level of extensibility. The authors present an existing scripting language, Tcl, to enable users to develop their
own routines for graph layout, metrics and analysis. Most generic reverse engineering environments break down if
they have to deal with millions of lines of code. The constructed abstract syntax trees contain too much information.
The reverse engineering environment should allow a flexible gathering of information, not only based on abstract
syntax trees. The way the information is gathered should be programmable. The reverse engineering environments
should be reusable in various application domains. The user of the environment should be able to program the the
environment to make it suited for a specific application domain.

Tip1995
F. Tip. A survey of program slicing techniques. Journal of programming languages, 3:121-189, 1995. Surveys the
state-of-the-art in program slicing and gives many references to the literature.

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (16 von 18) [23.07.1999 11:28:24]

http://adam.wins.uva.nl/~x/oniku.html

Urschler1975
G. Urschler. The automatic restructuring of programs. IBM Journal of Research and Development, 19:181-194,
1975. A method is described that allows the translation of an unstructured program into a set of top-down structured,
semantically founded, go-to-free modules. This method leads to a certain amount of code replication.

Vliet1993
J.C. van Vliet. Automatische design recovery: een illusie? Informatie, 35(6):384-389, 1993. (In Dutch.) The
definition of reverse engineering by Chikofski and Cross [Chikofsky and Cross1990] is used to explain some reverse
engineering terminology. The author demonstrates by some examples that domain specific knowledge is essential
for successful design recovery. It is therefore essential that tools for design recovery contain a model of the
application domain, in which concepts of the underlying domain with their relations and dependencies are modeled.
It is not possible to have automatic design recovery because the concepts of the application domain can only be
described by means of informal semantics.

Vogt and Hendriks1994
H.H. Vogt and P.R.H. Hendriks. Code-analyse in de praktijk. Informatie, 36(12):764-770, 1994. (In Dutch.)
Describes the RECALL-project aiming at the analysis of the complex software of telephone exchanges to identify
the components and the interaction between these components. The RECALL reverse engineering prototype tool
consists of a code browser and a CHILL parser, and it offers the following functionality: (a) holophrasting; (b) call
graph view; (c) call sequence view; (d) all calls of a procedure view; and (e) jump history.

Ward and Bennett1993
M. Ward and K. Bennett. A practical program transformation system for reverse engineering. In [Waters and
Chikofsky1993], pages 212-221, 1993. Uses program transformation techniques as a basis for reverse engineering.
Source files are first translated into WSL (wide-spectrum language). By means of a large collection of WSL
transformation and user guidance, the WSL program is simplified. Next it can be translated back into the original
source language or into the specification language Z. The process is supported by the ReForm tool which contains
parsers for IBM assembly language and for a Basic subset. Also see [Bennet et al. 1992].

Waters and Chikofsky1993
R.C. Waters and E.J. Chikofsky, editors. Proceedings of Working Conference on Reverse Engineering. IEEE
Computer Society Press, 1993. All papers in these proceedings are discussed separately in this bibliography.

Waters1988
R.C. Waters. Program translation via abstraction and reimplementation. IEEE Transactions on Software
Engineering, 14(8), 1988. The translation paradigm of abstraction and reimplementation, which is one of the goals
of the Programmer's Apprentice project [Rich and Waters1990] is presented. A translator has been constructed
which translates Cobol programs into Hibol (a very high level, business data processing language).

Weiser1984
M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10(4):352-357, 1984. In this paper some
properties of slices are presented. It is shown that the use of data-flow analysis is sufficient to find approximate
slices of the generally unsolvable problem of finding statement-minimal slices.

Whittle and Ratcliffe1993
B. Whittle and M. Ratcliffe. Software component interface description for reuse. Software Engineering Journal,
8(6):307-318, 1993. The development of a language CIDER, which stands for Component Interface Descriptor is
described. It is an object-oriented language in which it is feasible to integrate and reuse component interfaces based
on a model of the reusable software component.

Wilde and Huitt1991
N. Wilde and R. Huitt. A reusable toolset for software dependency analysis. Journal of Systems and Software,
14(2):97-102, 1991. A general purpose tool set that has been developed to capture and analyse software
dependencies is described. A prototype of this so-called dependency analysis tool set has been implemented to
analyze C code.

Wilde et al. 1992

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (17 von 18) [23.07.1999 11:28:24]

N. Wilde, J. Gomez, T. Gust, and D. Strasburg. Locating user functionality in old code. In [Kellner1992], pages
200-205, 1992. Proposes a probabilistic technique to match expected functionality with the actual functions as
implemented in existing code. An experiment reveals that the method works reasonable but cannot replace human
experts.

Williams and Ossher1978
M. Williams and H. Ossher. Conversion of unstructured flow diagrams into structured form. The Computer Journal,
21(2):161-167, 1978. Various already proposed methods to convert unstructured flow diagrams into equivalent
structured ones are discussed. Moreover a general method for performing such conversions is discussed.

Wills1993
L. Wills. Flexible control for program recognition. In [Waters and Chikofsky1993], pages 134-143, 1993. Uses chart
parsing (a graph-based parsing technique) for recognizing program plans. The GRASPR tool implements this
technique and can be applied to Common Lisp programs (less than 1000 lines).

Withrow1990
C. Withrow. Error density and size in Ada software. IEEE Software, 7(1):26-30, 1990. In this paper we can find an
empirical study of the relation between error density and the length of an Ada module. The results show that there is
an optimal length and that shorter modules and larger ones contain more errors. For reverse engineering such
metrics can give an indication for the status of the software.

Zuylen1993
H. van Zuylen, editor. The ReDo compendium: reverse engineering for software maintenance. Wiley, 1993. Gives
an overview of the results of the REDO project and covers most aspects of reverse engineering. Various approaches
are discussed: (a) compilation of COBOL programs to equational specifications, restructuring and simplification of
these specifications, and regeneration of COBOL code from them; (b) compilation of COBOL to UNIFORM, an
intermediate language supporting all features of both COBOL and JCL; (c) compilation of COBOL to COBOL-IF, a
simplified syntactic representation of COBOL programs; (d) abstraction of the meaning of COBOL code in the form
of Z++ specifications. Various experimental tools providing partial support for the above techniques are discussed.
The results described in this book should be considered as useful experiments. Since the techniques have not been
applied to a number of large scale projects the method does not yet constitute a mature reverse engineering
methodology.

X
Thu Jul 25 18:06:53 MET DST 1996

Reverse Engineering and System Renovation - An Annotated Bibliography -

http://adam.wins.uva.nl/~x/reeng/REanno.html (18 von 18) [23.07.1999 11:28:24]

	adam.wins.uva.nl
	Reverse Engineering and System Renovation - An Annotated Bibliography -

