
Future Generation Computer Systems 16 (2000) 841–850

Dynamic semantics of Java bytecode

Peter Bertelsen
Department of Mathematics and Physics, Royal Veterinary and Agricultural University, Copenhagen, Denmark

Accepted 24 May 1999

Abstract

We give a formal specification of the dynamic semantics of Java bytecode, in the form of an operational semantics for the
Java Virtual Machine (JVM). For each JVM instruction we give a rule describing the instruction’s effect on the machine state
and the conditions under which the instruction will execute without error.

This paper outlines the formalization of the JVM machine state and illustrates our approach for a few select JVM instructions.
Our full specification, covering the entire JVM instruction set except for synchronization instructions, is available in the work
of Bertelsen (Semantics of Java byte code, Technical Report, Department of Mathematics and Physics, Royal Veterinary and
Agricultural University, Copenhagen, Denmark, April 1997). © 2000 Elsevier Science B.V. All rights reserved.

Keywords:Java; Java Virtual Machine; Formal specification; Semantics

1. Introduction

The Java Virtual Machine (JVM) is a virtual ma-
chine for safely implementing object oriented lan-
guages. It is rather complicated because each instruc-
tion must check a number of conditions. For instance,
the getstatic instruction, which accesses a static
field of a class, must check that the class is accessible
to the current method, that the class has been loaded,
that the class declares the requested field, that the field
is accessible to the current method, etc.

The original definition of the JVM was given in
the book by Lindholm and Yellin [10] and refined in
the second edition of the book [11]. To describe the
pre-conditions and the effect of JVM instructions, the
book uses natural language, pseudo-C constructs and
runtime stack pictures. Consequently, Lindholm and
Yellin’s book is rather long (475 pages) and it is hard

∗ E-mail address:pmb@dina.kvl.dk (P. Bertelsen)

to fully understand the semantics of the JVM, e.g. the
precise conditions for executing an instruction.

The objective of the present work was to gain a
thorough understanding of the JVM as described by
Lindholm and Yellin and to express that understand-
ing clearly and compactly. Another goal was that of
uncovering possible omissions and ambiguities in the
JVM specification. Hence, we describe the JVM at a
higher level of abstraction, using ordinary mathemati-
cal concepts, and we use a semi-formal notation rather
than natural language. Our full specification [2] is less
than 80 pages long.

1.1. What is covered by our specification

We formalize the JVM machine state and for ev-
ery JVM instruction, we describe the conditions for its
successful execution and its precise effect on the ma-
chine state. We donot describe the following aspects
of the JVM:

0167-739X/00/$ – see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(99)00094-1



842 P. Bertelsen / Future Generation Computer Systems 16 (2000) 841–850

• class file verification: what checks can or must be
done at class loading time;

• multiple threads, the monitorenter and
monitorexit instructions;

• what happens when a pre-condition of an instruction
fails (e.g. which exception is thrown);

• the Java Class Library, native methods and garbage
collection.
The JVM instruction set does not include any

instructions for starting, suspending, or stopping a
thread; these mechanisms are supported only via meth-
ods in the Java Class Library [4]. Hence, a formaliza-
tion of the JVM semantics covering multi-threading
would have to include the semantics of (parts of) the
Java Class Library as well. In our specification, we
focus solely on the JVM and consider only one single
thread of execution.

1.2. Format of the specification

Our formalization uses ordinary mathematical con-
cepts: partial functions,1 sets, sequences, disjoint
sums, etc. The presentation is, however, semi-formal
in that some details are left undefined, e.g. the precise
semantics of integer operations. As a consequence of
this, our formalization of the JVM semantics has not
been machine checked.

Alternatively, one could use a particular specifica-
tion language, such as VDM [9], or develop a theory
within a theorem prover, such as HOL [8], Isabelle
[13] or PVS [12]. This would make the specification
even more precise and would provide for validation of
the semantics by mechanical proof-checking.

However, the resulting specification would probably
be less accessible to the general reader. The approach
that we have chosen is semi-formal and hence less
precise, but hopefully more comprehensible.

2. Modelling the JVM machine state

In this section we outline a formal specification of
select JVM instructions. The details of our notation
and the precise definition of auxilliary functions used
in the following sections are presented in the full report
[2].

1 We use the notationA
fin→B for a partial function fromA to B.

Our specification is more abstract than that de-
scribed in the ‘official’ JVM specification [10,11], yet
describes the JVM semantics at a level very close to
the actual instruction set, including many details of
the bytecode instructions.

In our model, the run-time state of the JVM consists
of two parts: the global environment, which remains
fixed, and the thread state, which changes during ex-
ecution. Note that we model only a single thread of
execution.

2.1. The global environment

The global environmentmaps class names to class
files. Concretely, the global environment represents
the file system and the network, from which class
files may be loaded. In our modelling, a class file has
eight components:

C =P(Accc) × [Idc] × P(Idc) × FD × CV

×MD × MI × CP

The components of a class or interfaceC are its access
modifiers (P(Accc)), the name of its direct super-
class([Idc]), the names of its direct superinterfaces
(P(Idc)), its field declarations (FD), its constant val-
ues (CV), its method declarations (MD), its method
implementations (MI) and its constant pool (CP). The
constant pool holds string literals, ‘large’ constants
and symbolic references to classes, interfaces and
members.

The precise definitions of the setsP(Accc), [Idc],
etc. are given in the full report [2] in the same style.

2.2. The thread state

The thread stateis the state of an executing thread.
We model the thread statesTSas follows:

TS= Frame∗ × Heap× Env

A thread state consists of a frame stack (Frame∗), a
heap (Heap) and an environment (Env). Each frame
in the frame stack corresponds to a method invoca-
tion. The topmost frame is the frame of the currently
executing method.

A frame f ∈ Frame contains a program counter
pc ∈ PC, an operand stacks ∈ Oper∗, a local variable
tablel ∈ Localsand the current method’s class name



P. Bertelsen / Future Generation Computer Systems 16 (2000) 841–850 843

idc ∈ Idc as well as its signature (method name and
argument types)sig ∈ Sig:

Frame= PC× Oper∗ × Locals× (Idc × Sig)

An operand (Oper) is either a word (W) or a
double-word (DW). A word is either a proper word
(Wv) or a program counter value (PC). A proper word
is either an integer2 (Int), a float (Float) or a refer-
ence (Ref0) which is possibly null. A double-word is
either a long integer (Long) or a double (Double).

A local variable table (Locals) maps a non-negative
integer index to the (one- or two-word) local variable
value (Oper) at that index. A two-word value occupies
two entries in the table.

A heaph ∈ Heapmaps a non-null reference (Ref)
to an object:

Heap = Ref
fin→Obj

Obj = Obju ∪ Obja

Obju = Idc × IV

Objc = Idc × IV

IV = (Idc) × Idf )
fin→V

V = Wv ∪ DW

An object (Obj) is either an instance of a class type
or an instance (Obja) of an array type; we distinguish
between uninitialized (Obju) and initialized (Objc) in-
stances of class types.

An object of class type consists of the name (Idc) of
the class and its instance field values (IV). The latter
maps a class name (Idc) and a field name (Idf ) to the
value (V) of that instance field. The value of a field
must be a proper value (V): it must be either a proper
word (Wv) or a double-word (DW). Hence, a program
counter value (PC) cannot be stored in a field.

Array objects are described as maps from
non-negative indices to proper values (V). A
multi-dimensional array is represented as an array of
references to arrays: each element of the ‘topmost’
array is a reference to an array object at the next level,
etc.

The environmente ∈ Env in a thread state holds
the classes that have been loaded by the JVM from
the global environment (e.g. from the file system). It

2 The JVM uses integers (Int) to represent the Java types
boolean, byte, char, short and int .

maps a class or interface name to its declaration (C)
and static field values table (SV):

Env= Idc
fin→(C × SV)

SV= Idf
fin→V

A table of static field values (SV) maps the field name
(Idf ) of a class or interface field to its value.

3. Formalizing the effect of JVM instructions

The effect of JVM instruction execution on the
thread state is described in the style of small-step
operational semantics [15]. Each JVM instruction is
defined by an inference rule, as illustrated by rule (1)
below. The premises above the line describe the con-
ditions that must hold for the instruction to execute
successfully, that is, without throwing an exception.
The conclusionts ⇒ ts′ below the line states that ex-
ecution of the instruction will change the thread state
from ts to ts′.

In each of the rules, the symbolss, l, m, fr, h

ande refer to the components of the thread statets =
((pc, s, l, m) :: fr, h, e).

By convention, the premises are read from the top
down and from left to right. Although immaterial from
a logical point of view, this suggests a more opera-
tional interpretation of the rules.

3.1. Example 1: thedup instruction

The JVM instructiondup duplicates the topmost
stack operand:

instr(ts) = dup
s = (v : W) :: sr

sizes + sizev ≤ maxs(ts)

succ(ts) = pc′
ts ⇒ ((pc′, v :: v :: sr, l, m) :: f r, h, e)

(1)

If all of the premises above the line hold, then the cur-
rent thread statets will change into the state specified
after the⇒ symbol.

The premiseinstr(ts) = dup states that this rule
applies to thedup instruction.

The premises = (v : W) :: sr asserts that
the operand stacks in ts has top-most elementv



844 P. Bertelsen / Future Generation Computer Systems 16 (2000) 841–850

and remaindersr, and thatv is a word (W), not a
double-word.3

The premisesize(s) + size(v) ≤ maxs(ts) asserts
that the operand stack will not overflow: the combined
sizes of the old stacksand the duplicated valuev does
not exceed the declared maximal size of the operand
stack4 for the current method.

The premisesucc(ts) = pc′ asserts that there is a
successor instruction and that its address ispc′.

For brevity, the rules use a number of semantic util-
ity functions. For instance,instr(ts) finds the current
instruction in the current thread statets, sizecomputes
the size (in words) of a semantic object,maxs(ts) finds
the declared maximal stack size for the method cur-
rently executing,succ(ts) finds the address of the next
bytecode instruction to execute, etc. Formal definitions
of these functions (and other functions used below)
are given in the full report [2].

The notationv : W in the second premise means
that the valuev has typeW. This notation is used in
two ways: (1) to assert a condition and (2) to tag a
value with a given type. For instance, 117:Double is
the number 117 of typeDouble (as opposed to, e.g.
Int or Long).

3.2. Example 2: theistore instruction

The JVM instruction istore j removes the
top-most (integer) operand from the stack and stores
it in local variable numberj:

instr(ts) = istore j

s = (k : Int) :: sr

j < maxl(ts)

succ(ts) = pc′
ts⇒((pc′, sr, rmDW(l, j)+{j 7→k}, m) :: f r, h, e)

(2)

The premises state that this rule concerns theistore
instruction, that the top-most value on the stacksmust
exist and be an integerk, that j must be within the

3 The JVM instructiondup cannot be used for duplicating a
double-word stack operand. Instead, the JVM instructiondup2
must be used.

4 In a Java class file, a maximum operand stack size is given
for each method. For each invocation of the method, the operand
stack cannot exceed the specified limit. The Java class file format
and the JVM do not have special support for recursive methods.

declared range of local variable indices5 and that the
current instruction must have a successor atpc′. If
so, the thread state changes to((pc′, sr, rmDW(l, j)+
{j 7→ k}, m) :: fr, h, e) in which k has been popped
off the stack and local variablej has been changed to
k.

If writing into local variablej happens to destroy
the second half of a double-word value, then the first
half of that double-word must be removed froml. This
is handled by the semantic functionrmDW(l, j).

3.3. Example 3: thebaload instruction

Thebaload instruction loads an element from an
array of element typebyte or boolean :

instr(ts) = baload
s = (k : Int) :: (r : Ref ) :: sr

h(r) = ((1, byte ), k′, av) : Obja

av(k) = k′′ : Int

succ(ts) = pc′
ts ⇒ ((pc′, k′′ :: sr, l, m) :: f r, h, e)

(3)

If the top-most stack operand is an integerk, if the
second top-most stack operand is a referencer to a
one-dimensional array object of element typebyte
or boolean and ifk is a valid index into the array, then
the valuek and the array referencer are popped off
the stack, the array componentk′′ at indexk is pushed
onto the stack and execution continues with the next
instruction.

We model arrays of element typeboolean as hav-
ing element typebyte . This corresponds to the rep-
resentation used in early implementations of the JVM.

The componentk′ of the array object at positionr
in the heaph is the length of the array object. It is
immaterial in the rule forbaload since the premise
av(k) = . . . ensures thatk is in the domain ofav
(which maps an array index to the corresponding array
element).

Note that an integer value (Int) is loaded from the
array. It is assumed that a component of abyte or
boolean array has already been truncated to abyte or
boolean value, respectively, and then expanded back

5 In a Java class file, a maximum number of local variables is
given for each method. A local variable with an index greater than
or equal to the specified limit cannot be used within the method.



P. Bertelsen / Future Generation Computer Systems 16 (2000) 841–850 845

into an integer value. We specify the truncation and ex-
pansion to/frombyte and boolean values in connec-
tion with thebastore instruction (not shown here).
See the full report [2] for details.

3.4. Example 4: thenew instruction

The JVM instructionnew i creates an instance of
the class specified by the constant pool entry at indexi:

instr(ts) = new i

pool(ts)(i) = id ′
c : Idc

e(id ′
c) = ((accc, id

′′
c , is, f d, cv, md, mi, cp), sv)

accc ∩ {interface , abstract } = ∅
access(id ′

c, accc, idc)

r ∈ Ref \dom(h)

f ields(id ′
c, e) = iv

(id ′
c, iv) = o : Obju

size(s) + size(r) ≤ maxs(ts)

succ(ts) = pc′
ts ⇒ ((pc′, r :: s, l, m) :: f r, h + {r 7→ o}, e)

(4)

If it holds that
• i is a valid index into the constant pool of the current

class,
• the constant pool entry at indexi is a class (or in-

terface) referenceid′
c,

• the declaration ofid′
c is in the domain of the envi-

ronmente (i.e., has been loaded),
• id′

c is an instantiable class (notabstract or
interface ),

• the current classidc can access classid′
c, and

• there is an unused locationr in the heap
then the execution of thenew instruction proceeds:
• the instance fields of classid′

c and all its superclasses
are prepared using the auxiliary functionfields;

• an instanceo of classid′
c with instance field values

iv is created;
• the referencer is pushed onto the operand stack;
• o is bound at locationr in the heap; and
• execution continues with the next instruction at ad-

dresspc′.
The new objecto is tagged with typeObju, which

means that it is uninitialized. Members of the object
cannot be accessed until it has been initialized by in-
vocation of an instance initialization method.6

6 An instance initialization method has the special method name
< init >. Such a method corresponds to a constructor in Java.

The above rule does not specify any details with
respect to memory allocation or garbage collection.
Instead, we assume an infinite heap in which a fresh
heap locationr is always available. This is similar
to the JVM specification [10,11], which does not
mandate any particular memory management tech-
nique, but assumes the presence of an automatic
memory management system, e.g. using garbage
collection.

The situation where the classid′
c to be instantiated

by a new instruction has not already been loaded is
described in a separate rule (not shown here). See the
full report [2] for details.

3.5. Example 5: thegetstatic instruction

Thegetstatic instruction pushes the value of a
class or interface field onto the stack:

instr(ts) = getstatic i

pool(ts)(i) = (id ′
c, idf , d) : Constf

e(id ′
c) = ((accc, id

′′
c , is, f d, cv, md, mi, cp), sv)

access(id ′
c, accc, idc)

f d(idf ) = (accf , d ′)
d = d ′
static ∈ (accf )

private ∈ accf ⇒ idc = id ′
c

protected ∈ accf ⇒ id ′
c ∈ supers(idc, e)

sv(idf ) = v : V

size(s) + size(v) ≤ maxs(ts)

succ(ts) = pc′
ts ⇒ ((pc′, v :: s, l, m) :: f r, h, e)

(5)

If it holds that
• i is a valid index into the constant pool of the current

class,
• the constant pool entry at indexi is a symbolic

field reference, referring to a fieldidf with type
descriptord in class or interfaceid′

c,
• the nameid′

c is in the domain of the environmente
(i.e., the declaration of a class or interface of that
name has been loaded),

• the current classidc can access class/interfaceid′
c,

• class/interfaceid′
c declares a fieldidf of the same

type as that specified by the descriptord,
• the field idf is static ,
• the field idf is not private unless the current

class is the same as that declaring the field, and



846 P. Bertelsen / Future Generation Computer Systems 16 (2000) 841–850

• the field idf is notprotected unless the current
class is the same as that declaring the field or a
subclass thereof

then the valuev of the field idf is retrieved from the
static valuessvof class/interfaceid′

c, v is pushed onto
the operand stack and execution proceeds with the next
instruction.

It is possible to get a value from a field before
putting anything into it; the value loaded from the field
will then be the initial (default) value corresponding
to the type of the field.

In our modelling, a field reference must refer
directly to the class or interface that declares the
field. Hence, in the above rule, it is not sufficient
for class/interfaceid′

c to inherit the field idf from
a superclass or superinterface. The specification of
this in the original JVM specification [10] was un-
clear; in the second edition of the JVM specification
[11] it is specified that a field reference may refer
to a class/interface which inherits the field from a
superclass or superinterface.

3.6. Example 6: thegetfield instruction

This example demonstrates one of the object- ori-
ented features of the JVM. Thegetfield instruction
pushes the value of an instance field onto the stack:

instr(ts) = getfieldi

pool(ts)(i) = (id ′
c, idf , d) : Constf

e(id ′
c) = ((accc, id

′′
c , is, f d, cv, md, mi, cp), sv)

interface /∈ accc

access(id ′
c, accc, idc)

f d(idf ) = (accf , d ′)
static /∈ accf

private ∈ accf ⇒ idc = id ′
c

d = d ′
s = (r : Ref ) :: sr

h(r) = (id ′′
c

′, iv) : Objc

id ′
c ∈ supers(id ′′

c
′, e)

protected ∈ accf ⇒ (id ′
c ∈ supers(idc, e)

∧ idc ∈ supers(id ′′
c

′, e))
iv (id ′

c, idf ) = v : V

size(sr) + size(v) ≤ maxs(ts)

succ(ts) = pc′
ts ⇒ ((pc′, v :: sr, l, m) :: f r, h, e)

(6)

The getfield instruction differs from the
getstatic instruction in that the referenced field

must be an instance field (it cannot be an interface
or class field) and that the value of the field is re-
trieved from a specific class instance rather than via
the environmente of the thread state.

If it furthermore holds that
• the top-most stack operand is a non-null reference

r to an initialized object,
• the object is an instance of the classid′

c that declares
the referenced fieldidf , and

• the field is notprotected unless the current class
is the same asid′

c or a subclass thereof and the
object is an instance of the current class,

then the object referencer is popped off the stack, the
valuev of the field idf is retrieved from the instance
valuesiv of the object,v is pushed onto the stack and
execution continues with the next instruction.

3.7. Example 7: theinvokespecial instruction

This example shows one of the four JVM instruc-
tions for method invocation. Theinvokespecial
instruction may be used for invoking a constructor,
a private instance method, or a method of the
current class:

instr(ts) = invokespecial i

pool(ts)(i) = (id ′
c, sig

′, d) : Constm
e(id ′

c) = ((accc, id
′′
c , is, f d, cv, md, mi, cp), sv)

interface /∈ accc

access(id ′
c, accc, idc)

sig′ = (idm, < d1, d2, d3, . . . , dk >)

idm 6=< clinit >

md(sig′) = (accm, d ′, excs)

(idm =< init > ∨ private ∈ accm

∨ idc = id ′
c ∨ id ′

c /∈ supers(idc, e)

∨ super /∈ accc)

accm ∩ {static,abstract,native } = ∅
private ∈ accm ⇒ idc = id ′

c

mi(sig′) = (ns , nl , code′, hdls′)
s = as@sr

(7)
as =< ak, ak−1, ak−2, . . . , a2, a1 > @ < r : Ref >

size(as) ≤ nl

∀1 ≤ j ≤ k.(initialized(aj , h)

∧ compatV al (dj , aj , h, e))

h(r) = o : (Obju ∪ Objc) = (id ′′
c

′, iv)

(idm = < init > ∧ o ∈ Obju) ∨
(idm 6=< init > ∧ o ∈ Objc)

id ′
c ∈ supers(id ′′

c
′, e))

protected ∈ accm ⇒ (id ′
c ∈ supers(idc, e)

∧ idc ∈ supers(id ′′
c

′, e))
(minpc(code′), <>, args(as), (id ′

c, sig
′))

= f ′ : Frame

initObj (id ′
c, sig

′, r, h) = h′

ts ⇒ (f ′ :: (pc, sr, l, m) :: f r, h′, e)



P. Bertelsen / Future Generation Computer Systems 16 (2000) 841–850 847

If it holds that
• i is a valid index into the constant pool of the current

class,
• the constant pool entry at indexi is a symbolic

method reference, referring to a method in classid′
c

with signaturesig′ and return type descriptord,
• the declaration of classid′

c is in the environmente,
• the current class has permission to access classid′

c,
• the referenced method is not a class or interface

initialization method,7

• class id′
c declares and implements a method with

signaturesig′ and the same return type descriptor
as that specified by the symbolic method reference,

• the method is not declared to be eitherstatic,
abstract or native ,

• the method is not declared to beprivate , unless
the current class is the same as that declaring the
method,

• the topmostk stack operands8 are the method ar-
gumentsak, . . . , a1,

• the next stack operandr is a reference to a class
instanceo in the heaph,

• the total size of the stack operandsas is less than
or equal to the local variable limitnl of the invoked
method,

• the method argumentsak, . . . , a1 are assignment
compatible with the correspondingk parameter type
descriptors in the method signaturesig′ and do not
refer to any uninitialized objects,

• the referenced objecto is uninitialized iff the ref-
erenced method is an instance initialization method
<init> ,

• the classid′′
c
′ of the objecto is the same asid′

c or a
subclass thereof, and

• the method is not declared to beprotected un-
less the current class is the same as classid′

c or a
subclass thereof and the classid′′

c
′′ implementing

the method is the same as the current class or a sub-
class thereof

then the method argumentsas are popped from the
operand stack of the current frame, a new framef ′

7 A class or interface initialization method has the special method
name<clinit> and corresponds to one or more static initializers
in Java. Such a method cannot be invoked directly using any of the
JVM method invocation instructions, but is executed automatically
by the JVM when the class or interface is to be initialized.

8 We use the notationas@sr for the concatention of the sequences
as and sr.

representing the invoked method is pushed onto the
frame stack, and execution continues with the first
instruction in the invoked method.

The new framef ′ initially contains an empty
operand stack and the values of the method parame-
ters in the first local variables (initialized by means
of the utility functionargs).

It is unclear from the official JVM specification
[10,11] when an object is considered to have been ini-
tialized. We model this as happening when the instance
initialization method of classjava.lang.Object
(the superclass of all other classes) has been invoked.
To this end the utility functioninitObj, which is used
in the last premise of the above rule, tags the object
referenced by the stack operandr as initialized (that is,
as having typeObjc) in case the method being invoked
is method<init> of classjava.lang.Object .

The invokespecial instruction may also be
used for invoking other kinds of ‘special’ instance
methods than the ones indicated above; this is de-
scribed in a separate rule in our full report [2].

3.8. Other instructions

In the above examples we have demonstrated
our approach for JVM instructions operating on the
stack, the local variables, arrays, the constant pool,
the static fields of a class and the instance fields of
an object. Our full specification comprises 62 rules
of which the most complicated one describes the
method invocation instructioninvokespecial (cf.
Section 3.7).

We do not define separate rules for all of the 201
JVM instructions since many of these areverysimilar
to each other. Instead, we define rules for instructions
representing the different ‘families’ of instructions and
describe (in less formal terms) how the remaining
instructions in the JVM instruction set differ from
those.

4. Problems with the official JVM specification

Based on the insights obtained in the development
of our formal specification of Java bytecode semantics,
a number of errors and ambiguities in the original JVM
specification [10] were discovered.



848 P. Bertelsen / Future Generation Computer Systems 16 (2000) 841–850

For example:
• The necessary integration between the JVM and a

number of important classes in the Java Class Li-
braries [4] was not defined.

• The interface to native methods had not been spec-
ified.9 It was also not specified how a JVM im-
plementation that does not support native methods
is supposed to handle class files that declare native
methods.

• The specified algorithm for class/interface initial-
ization could not handle the very important classes
java.lang.Object andjava.lang.Class
since these classes are mutually dependant.

• It was not specified howboolean values are en-
coded, except that int values are used for this pur-
pose. It was, for example, not defined whether 0
means false and 1 means true or if any other encod-
ing is to be used (e.g. the opposite).

• It was not clear whether the values of fields and
method parameters of typeboolean, byte,
short andchar are guaranteed to be within the

(integer) ranges indicated by these types.
• It was not specified whether a class file may contain

more than one declaration of a member, e.g. two
methods with the same name and argument types.

• It was specified that “execution never falls of the
bottom” of a method. It was, however, not speci-
fied how ‘clever’ a JVM implementation must be in
order to determine whether the last instruction in a
method breaks this requirement.

• It was not clear when an instance of a class is con-
sidered to have been initialized (cf. section 3.7).

• It was unclear which instructions may operate on
references to uninitialized class instances.

• It was not clear whether a JVM implementation
must perform bytecode verification or when this
should happen.

• It was not specified what the semantics of the
aastore, checkcast and instanceof in-
structions is in case the ‘source type’ is an array
type and the ‘target type’ is an interface type.

• It was not specified how initialization ofString
constants is supposed to take place in connection

9 Native methods are methods that are implemented in some other
way than by Java bytecodes; for example, a native method could
be written in C. The JVM loads the code for such a method in a
platform-dependent way.

with execution of theldc andldc w instructions.
This is important in connection with the Java con-
cept of ‘interned’ strings.

• It was not specified whether afinal field may
be stored into by aputstatic or putfield
instruction.

• It was not specified whether the value of an interface
field may be loaded by thegetstatic instruction.

• Dynamic method lookup in connection with the
invokeinterface and invokevirtual in-
structions was only outlined. Details in Sun’s im-
plementation of the JVM were briefly described, but
not detailed enough to determine e.g. the order in
which the relevant classes are searched for an im-
plementation of the method in question.
The above issues — and many more — have been

listed in theJava Spec Report[14]. The purpose of this
web-site is to make unofficial errata for the ‘core’ Java
platform specifications widely available.

Along with issues raised by other people, the above
issues have also served as input to the revision of the
original JVM specification. Many of them appear to
have been solved in the second edition of the JVM
specification [11].

5. Future work

Topics for further work towards a complete JVM
specification include:
• Specifying what happens when a given premise of

a rule fails to hold: which exception is thrown and
at what point in time during execution. For each
instruction, and for each premise that can fail, one
may introduce an additional rule which lists those
premises that do hold, a single premise that fails
and the exception that must be thrown in that case.
However, this will considerably increase the number
of rules. A more suitable approach to describing
the precise semantics of ‘failing’ JVM instructions
should be considered.

• Specifying the bytecode verification conditions.
The informal specification in the JVM specification
[10,11] is rather unclear, especially concerning the
verification conditions for local subroutines (the
jsr and ret instructions), exceptions handlers
and their interaction.

• Finding the ‘early’ premises for each JVM instruc-
tion: those that may be checked by a bytecode veri-



P. Bertelsen / Future Generation Computer Systems 16 (2000) 841–850 849

fier at load-time. Prove that bytecode which passes
such a verifier cannot fail the ‘early’ premises, and
then remove those premises from the rules for the
dynamic semantics.

• Specify the semantics of parallelism (threads). This
would require rethinking the specification, although
many parts of the current specification could be
reused (specifically, all parts not related to field or
method access).

6. Related work

Börger and Schulte give a formal semantics of Java
bytecode, factorized into a number of sub-languages
[3]. Their JVM semantics serves as a basis for defin-
ing a compilation scheme from Java source programs
to Java bytecode. In their specification, Börger and
Schulte assume that the Java bytecodes have already
been verified by a bytecode verifier. Hence, they deal
with fewer details in the JVM instruction set, although
their approach resembles ours to some extent.

Also closely related to our work is Cohen’sDe-
fensive Java Virtual Machine, an executable specifica-
tion expressed in ACL2, developed at Computational
Logic Inc. [5]. Cohen’s specification is fully formal
and hence more precise than ours, but leaves out many
aspects of the JVM, yet is far longer than ours (385
pages). It is probably better suited for machine ma-
nipulation and less suited for human readers.

Stata and Abadi show how to formalize some as-
pects of Java bytecode verification as a type system
[16]. Thus while our work concerns the dynamic se-
mantics of Java bytecode, their work concerns its static
semantics.

We are also aware of other related work, e.g. the
Alves-Foss book on Java semantics [7] and Diehl’s
formalization of Java compilation [6], but have not yet
compared our work to theirs.

7. Conclusion

We have gained a thorough understanding of the
JVM in a relatively short time. This has been an invalu-
able aid when subsequently implementing Java byte-
code generators. More concretely, the present work
has served as a basis for the design of the SML-JVM

Toolkit [1], a toolkit for manipulating Java class files
and Java bytecode.

Furthermore, several ambiguities in the orignal
JVM specification [10] have been revealed, many of
which appear to have been resolved in the second edi-
tion of the JVM specification [11]. These ambiguities
in the informal specification (and more) are listed in
the unofficialJava Spec Report[14], whose section on
the JVM specification owes much to the present work.

The dynamic semantics of Java bytecode presented
here has not been validated formally. It shows, how-
ever, that the JVM can be given a fairly precise yet
comprehensible description using well-known mathe-
matical concepts and notation.

We believe that the standardization of the JVM
would benefit from using a semi-formal specification
style similar to that presented here.

References

[1] P. Bertelsen, The SML-JVM toolkit, version 0.5, Web-pages
at http://www.dina.kvl.dk /∼pmb. A toolkit for
manipulating Java class files and Java byte-code.

[2] P. Bertelsen, Semantics of Java byte code, Technical report,
Department of Mathematics and Physics, Royal Veterinary
and Agricultural University, Copenhagen, Denmark, April
1997, Web pages athttp://www.dina.kvl.dk /∼pmb.

[3] E. Börger, W. Schulte, Defining the Java Virtual Machine
as platform for provably correct Java compilation, MFCS
Proceedings, 1998.

[4] P. Chan, R. Lee, D. Kramer, The Java Class Libraries, 2nd
ed., vol. 1, Addision-Wesley, Reading, MA, 1998, ISBN
0-201-31002-3.

[5] R.M. Cohen, The Defensive Java Virtual Machine, version
0.5, Technical report, Computational Logic Inc., Austin,
Texas, 1997, Web pages athttp://www.cli.com.

[6] S. Diehl, A formal introduction to the compilation of Java,
Software-Practice and Experience 28 (3) (1998) 297–327.

[7] J. Alves-Foss (Ed.), Formal Syntax and Semantics of Java,
Springer, Berlin, 1998.

[8] M.J.C. Gordon, T.F. Melham (Eds.), Introduction to HOL:
A Theorem Proving Environment for Higher Order Logic,
Cambridge University Press, Cambridge, 1993, ISBN
0-521-44189-7.

[9] C.B. Jones, Systematic Software Development using
VDM, Prentice-Hall, Englewood Cliffs, NJ, 1990, ISBN
0-13-880733-7.

[10] T. Lindholm, F. Yellin, The Java Virtual Machine
Specification, Addison-Wesley, Reading, MA, 1996, ISBN
0-201-63452-X.

[11] T. Lindholm, F. Yellin, The Java Virtual Machine
Specification, 2nd ed., Addison-Wesley, Reading, MA, 1999,
ISBN 0-201-43294-3.



850 P. Bertelsen / Future Generation Computer Systems 16 (2000) 841–850

[12] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, M.K. Srivas,
PVS: Combining specification, proof checking, and model
checking, in: R. Alur, T.A. Henzinger (Eds.), Computer-Aided
Verification, CAV ’96, New Brunswick, NJ, July/August 1996,
Lecture Notes in Computer Science, vol. 1102, Springer,
Berlin, pp. 411–414.

[13] L.C. Paulson, Isabelle: A Generic Theorem Prover, Lecture
Notes in Computer Science, Springer, Berlin, 1994, ISBN
3-540-58244-4.

[14] R. Perera, P. Bertelsen, The unofficial Java Spec Report, Web-
pages athttp://www.dina.kvl.dk /∼jsr , September
1998.

[15] D. Gordon, A. Plotkin, A structural approach to operational
semantics, Technical Report FN-19, DAIMI, Aarhus
University, Denmark, 1981.

[16] R. Stata, M. Abadi, A type system for Java bytecode

subroutines, Technical report, Digital Equipment Corporation
Systems Research Center, July 1997.

Peter Bertelsenis a Ph.D. Student at the
Department of Mathematics and Physics
of the Royal Veterinary and Agricultural
University in Copenhagen, Denmark. He
has been investigating Java bytecode and
the semantics of the Java Virtual Machine
for more than two years, and is working
towards automatic partial evaluation (aka
specialization) of Java bytecode programs.
Additionally, Peter Bertelsen is co-author

of the Java Spec Report, an independent Internet site listing un-
official errata for the official Java specifications.


