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Abstract. Recently multidimensional arrays have received considerable
attention among the database community, applications ranging from GIS to
OLAP. Work on the formalization of arrays frequently focuses on mapping
sparse arrays to ROLAP schemata. Database modeling of further array types,
such as image data, is done differently and with less rigid methods. A unifying
formal framework for general array handling of image, sensor, statistics, and
OLAP data is missing.
We present a cross-dimensional and application-independent algebra for the
high-level treatment of arbitrary arrays. An array constructor, a generalized
aggregate, plus a multidimensional sorter allow to declaratively manipulate
arrays. This algebra forms the conceptual basis of a domain-independent array
DBMS, RasDaMan, which offers an SQL-based query language with extensive
algebraic query and storage optimization. The system is in practical use in neuro
science.
We introduce the algebra and show how the operators transform to the array
query language. The universality of our approach is demonstrated by a number
of examples from imaging, statistics, and OLAP.

1 Introduction

In principle, any natural phenomenon becomes spatio-temporal array data of some
specific dimensionality once it is sampled and quantised for storage and manipulation
in a computer system; additionally, a variety of artificial sources such as simulators,
image renderers, and data warehouse population tools generate array data. The
common characteristic they all share is that a large set of large multidimensional
arrays has to be maintained. We call such arrays multidimensional discrete data
(MDD), expressing the variety of dimensions and separating them from the concep-
tually different multidimensional vectorial data appearing in geo databases.

As arrays obviously form both an important and a very clearly defined information
category, it seems natural to describe them in a uniform manner through a
homogeneous conceptual model. Preferably this is done in a way that the array model
smoothly fits into existing overall models.



From a database perspective (and history), several separate information categories
can be distinguished. Sets comprise the first category, well addressed by relational
algebra and calculus. Semantic nets form the second one, being fundamentally
different in structures and operations, although mappings to the relational model have
been studied extensively. The third fundamental category is text, addressed by infor-
mation retrieval (IR) technology. This distinction is not withstanding the fact that
techniques to map object nets to relations with foreign keys are well-known, that IR
techniques have found their way into relational products (e.g., Oracle8), and that
hypertext combines nets and text into so-called semi-structured data. Arrays represent
a separate fourth category, substantially different from the previous three. Again,
mappings have been developed to the relational model, however, involving a signific-
ant semantic transformation. For sparse business data these are star, galaxy, and
snowflake techniques [1], for image data these are blobs [2] (where a particularly high
loss of semantics is incurred). A clear indicator for the semantic mismatch of SQL-
based multidimensional queries is the resulting lack of functionality and performance,
leading to several suggestions for extending the relational model – e.g., [3, 4, 5].

Multidimensional database research has history, as statistical databases have been
studied since long [6, 7]; more recently, OLAP continues this tradition with a strong
focus on business data [8]. Several proposals exist to formalize array structures and
operations for OLAP [4, 3, 9, 10, 11, 5], for scientific computing [12] and for imaging
[13]. The Discrete Fourier Transform (DFT) has been studied from a database
viewpoint [14]. Often, however, formal concepts have not been implemented in an
operational system and they have not been evaluated in real-life applications.
Moreover, many of the formal models have been designed specifically with the goal of
mapping arrays to relation tuples and in a way that, in practice, makes sense only for
sparse arrays.

In this paper, we propose an algebraic framework (see [15] for a first version)
which allows to express cross-dimensional queries, i.e., operations on arrays of any
number of dimensions, simultaneously in one and the same expression and symmetric
in all dimensions. Essentially, this algebra consists of only three operations: an array
constructor, a generalized aggregation, and a multidimensional sorter. This core model
does not rely on recursion and is safe in evaluation, yet it is sufficient to express a
wide range of imaging, statistical, and OLAP operations. Therefore, our algebra can
be seen as a “universal” framework, independent from the particular application
domain. The concepts are implemented in the domain-independent array DBMS
RasDaMan1 [16, 15, 17], hence the name RasDaMan Array Algebra, or short: Array
Algebra.

The remainder of this paper is organized as follows. In Section 2, Array Algebra is
presented, together with practical examples from diverse application fields to illustrate
its applicability. The step to an SQL-embedded array query language, RasQL, is
shown in Section 3. Section 4 surveys related work, and Section 5 summarizes our
findings.

                                                          
1 Raster Data Manager; see www.forwiss.de/~rasdaman



2 Array Algebra

We treat arrays as functions mapping n-dimensional points (i.e., vectors) from
discrete Euclidean space to values. This is common in imaging for a long time – see,
e.g., [18] – and has been transposed to database terminology in [16, 15]. To smoothly
embed Array Algebra into existing overall algebrae we use a set-oriented basis. Due to
space constraints we have to omit most proofs here.

Operations on such arrays frequently apply a function simultaneously to a set of
cells, requiring second-order functionals in the algebra. In practice they are necessary
to allow for binding variables to points for iterating coordinate sets and also to
aggregate arrays (or part thereof) into scalar values. The latter operation corresponds
very much to relational set aggregators; however, instead of providing a limited list of
aggregation operations as in the relational algebra, a general constructor is introduced
by Array Algebra which is parametrized with the underlying base operation.

2.1 N-Dimensional Interval Arithmetics

We first introduce some notation for n-dimensional integer interval arithmetics. We
call the coordinate set of an array its spatial domain. Informally, a spatial domain is
defined as a set of n-dimensional points (i.e., algebraic vectors) in Euclidean space
forming a finite hypercube with boundaries parallel to the coordinate system axes.

We assume common vector notation. For a natural number d>0, we write

x=(x1,..., xd)∈X ⊆ Zd for some d-dimensional vector x, x+y for vector addition,
etc. The point set forming the geometric extent of an array is called its spatial domain.
A spatial domain X of dimension d spanned by l and h is defined as

X = [l1:h1,...,ld:hd] :=  }:{
1

iiii

d

i

hxlx ≤≤
=
; if ∀1≤i≤d: li≤hi

 :=  {} otherwise.

Functions lo, hi: P(Z
d
)→Z

d (where P is the Powerset) defined as lo(X)=l
and hi(X)=h for some spatial domain X given as before denote the bounding

vectors. We will abbreviate loi(X)=li and hii(X)=hi for the ith component.
Function dim(X)=d denotes the dimension of spatial domain X.

On such hypercubes, point set operations can be defined in a straightforward way.
We admit only those operations which respect closure, such as intersect and
union*, whereby the asterisk “*” denotes the hull operation applied to the result:

intersect*(X,Y) :=

  [ max(low1(X),low1(Y)) : min(hi1(X),hi1(Y)),...,

    max(lowd(X),lowd(Y)) : min(hid(X),hid(Y)) ]



union*( X, Y ) :=

  [ min(low1(X),low1(Y)) : max(hi1(X),hi1(Y)),...,

    min(lowd(X),lowd(Y)) : max(hid(X), hid(Y)) ]

Obviously these operations are commutative, associative, and distributive.
The shift operator allows to change a spatial domain’s position according to a

translation vector t:

shiftt(X) := { x+t: x∈X }

Let X be spanned by d-dimensional vectors l and h. For some integer i with

1≤i≤d and a one-D integer interval I=[m:n] with li≤m≤n≤hi, the trim of X to I in
dimension d is defined as

τi,I(X) := { x∈X: m≤xi≤n } = [ l1:h1,...,m:n,...,ld:hd ]

Intuitively speaking, trimming slices off those parts of an array which are lower
than m and higher than n in the dimension indicated; the dimension is unchanged. As
opposed to this, a section cuts out a hyperplane with dimension reduced by 1. Formal-
ly, for some X as above, an integer p with 1≤p≤d, the section of X at position p in
dimension i is given by

σi,p(X) := { x∈Zd-1
: x=(x1,..., xi-1, xi+1,..., xd),

                   (x1,..., xi-1, p, xi+1,..., xd)∈X }

        =  [ l1:h1,..., li-1:hi-1, li+1:hi+1,..., ld:hd ]

Trimming is commutative and associative, whereas a section changes dimension
numbering and, therefore, has neither of these properties.

2.2 The Core Algebra

Let X⊆Zd
 be a spatial domain and F a homogeneous algebra. Then, an F-valued d-

dimensional array over spatial domain X – or short: (multidimensional) array – is
defined as

a:X→F (i.e., a∈FX),   a = { (x,a(x)): x∈X, a(x)∈F }

Array elements a(x) are referred to as cells. For notational convenience, we also

allow to enumerate the components of a cell coordinate vector, e.g., a(x1,x2,x3).
Auxiliary function sdom(a) denotes the spatial domain of some array a; further, we
lift function dim to arrays. For an array a:X→F, sdom and dim are defined as

sdom(a) := X
dim(a)  := dim( sdom(a) )



The ith dimension range of an array’s spatial domain we will denote by sdomi(a).
Example: For a 1024×768 image a with lower left corner in the origin of the coordi-
nate system, sdom(a)=[0:1023,0:767], dim(a)=2.  

The first functional we introduce is the array constructor MARRAY. It allows to
define arrays by indicating a spatial domain and an expression which is evaluated for
each cell position of the spatial domain. An iteration variable bound to a spatial
domain is available in the cell expression so that a cell’s value can depend on its posi-

tion. Let X be a spatial domain, F a value set, and v a free identifier. Let further ev be
an expression with result type F containing zero or more free occurrences of v as
placeholder(s) for an expression with result type X. Then, an array over spatial
domain X with base type F is constructed through

MARRAYX,v(ev) = { (x,a(x)): a(x)=ex,x∈X }

Example: Consider scaling of a greyscale image a with sdom(a) = [1:m,1:n] by a
factor s∈R. We assume componentwise scalar division and rounding on vectors and
write

MARRAY[1:m*s,1:n*s],v( a( round( v/s ) ) )

For 0<s<1 the image is sized down; the interpolation method then corresponds to
“nearest neighbor”, the simplest interpolation technique used in imaging.

The operation which in some sense is the dual to the MARRAY constructor is the
condenser COND. It takes the values of an array’s cells and combines them through the
operation provided, thereby obtaining a scalar value. Again, an iterator variable is
bound to a spatial domain to address cell values in the condensing expression. Let o be
a commutative and associative operation with signature o: F, F → F, let further v be a

free identifier, X = { x1,..., xn | xi∈Zd} a spatial domain consisting of n points, and

ea,v an expression of result type F containing occurrences of an array a and
identifier v. Then, the condense of a by o is defined as

CONDo,X,v(ea,v) := xaeO ,
Xx∈

 = ea, x1 o ... o ea, xn

Examples: Let a be the image as defined in the above example. Average pixel
intensity is given by

COND+,sdom(a),v(a(v)) / |sdom(a)| = ∑
∈ ]:1,:1[

)*/(][
nmx

nmxa

For color table computation needed, e.g., for generation of a GIF image encoding,
one has to know the set of all values occurring in array a. The condenser allows to
derive this set by performing the union of all cell values:



COND∪,sdom(a),v( { a(v) } )

The third and last operator is an array sorter which proceeds along a selected

dimension to reorder the corresponding hyperslices. Function sorts rearranges a
given array along a specified dimension s without changing its value set or spatial
domain. To this end, an order-generating function is provided which associates a
“sequence position” to each (d-1)-dimensional hyperslice. Let a be a d-dimensional

array, i∈N with 1≤i≤d a dimension number, and fs,a:sdoms(a)→N a total
function which, for a given array a, inspects a in the sorting dimension s and delivers
an ordering measure for each hyperslice. Further, let perm(x,y) be a predicate
indicating that vector x is a permutation of vector y (and vice versa). Then, the two

sorters sorts,f
asc and sorts,f

desc for ascending and descending order, resp., are
given as those arrays which consist of permutations of the hyperslices in the sort
dimension and, additionally, fulfil the sorting criterion given by f:

sorts,f
asc
( a ) :=

{ (y,b(y)): y∈sdoms(a),

          ∀p,q∈sdoms(a): p<q ⇒ fs,b(p)≤fs,b(q),

          perm( ( (b(x1,...,xs-1,sdoms(a).lo,xs+1,...,xd), ...,

                   b(x1,...,xs-1,sdoms(a).hi,xs+1,...,xd) ),

                ( (a(x1,...,xs-1,sdoms(a).lo,xs+1,...,xd), ...,

                   a(x1,...,xs-1,sdoms(a).hi,xs+1,...,xd)) ) }

sorts,f
desc

( a ) :=

{ (y,b(y)): y∈sdoms(a),

          ∀p,q∈sdoms(a): p<q ⇒ fs,b(p)≥fs,b(q),

          perm( ( (b(x1,...,xs-1,sdoms(a).lo,xs+1,...,xd), ...,

                   b(x1,...,xs-1,sdoms(a).hi,xs+1,...,xd) ),

                ( (a(x1,...,xs-1,sdoms(a).lo,xs+1,...,xd), ...,

                   a(x1,...,xs-1,sdoms(a).hi,xs+1,...,xd)) ) }

The resulting array has the same number of dimensions, spatial domain, and base

type as the input array. Note that function fs,a has all degrees of freedom to assess
any of a's cell values for determining the measure value of a hyperslice on hand - it
can be a particular cell value in the current hyperslice, the average of all hyperslice
values, or even neighbored slices (e.g., for relative increases of sales values).



Example: Let a be a 1-D array with spatial domain D=[1:d] where cell values

denote sales figures over time. Let further sorting function fs,a be given as fs,a(p)

= a[p]. Then, sort0,f
desc(a) delivers the ranked sales. 

As an aside we note that the sort operator includes the relational group by. Below
we will demonstrate that slice and roll-up operations arising from array access based
on dimension hierarchies can be expressed, although - not very comfortably - by indi-
cating the cell coordinates pertaining to a particular member set. Concepts for an in-
tuitive, symbolic treatment of dimension hierarchies are currently under investigation.

2.3 Derived Operators

Several useful operations can be derived from the above ones. We present a selec-
tion of those which have turned out particularly important in practical applications.

2.3.1 Trimming and Section
The previously introduced spatial domain operations trimming and section give rise

to corresponding array operations. For some array a, an 1-D interval I, and two natu-

ral numbers 1≤t≤dim(a) and p∈sdomd(a) they are defined as

TRIMt,I(a):= MARRAYX,v(a(v)) for X=τt,I(sdom(a)) and d<dim(a)

SECTt,p(a):= MARRAYX,v(a(v)) for X=σt,p(sdom(a))and d<dim(a)

Example: Slicing of an OLAP cube c with spatial domain sdom(c)=D×R×P to
extract subcube D’ ×R’ ×P’ ⊆ sdom (c ) is denoted as

TRIM1,D’ ( TRIM2,R’ (TRIM3,P’ (c)) )

2.3.2 Induced Operations
A basic set of operations is induced by the algebra of the underlying value sets. If

a,b∈FX are arrays and o is a binary operation on F, then o induces a binary operation

on FX denoted by oind  such that, if c = a oind  b, then c∈FX and, for all x∈X, c(x)
= a(x) o b(x). Along this line, we also allow to induce unary operations. Notably,
these operations are not axiomatic; for a unary function f and a binary function g,

INDf (a)   = MARRAYX,v (f(a(v))) for X=sdom(a)

INDg(a,b) = MARRAYX,v (g(a(v),b(v)))for X=sdom(a)=sdom(b)

Algebraic properties of F transform to corresponding structures on the set FX of in-
duced functions. If F is a field, then FX is a vector space; for a ring F, FX is a module
for suitably defined spatial domains.



Examples: Let a be a grayscale image over spatial domain X. Increasing intensity
by 5 can be accomplished through induction on unary "+5":

IND+5(a) = { (x,b(x)): b(x) = a(x) + 5, x∈X }

Consider now another grayscale image b over the same spatial domain X. Then,
pixel addition can be induced to obtain image addition:

IND+(a,b) = { (x,c(x)): c(x) = a(x) + b(x), x∈X }

When used in a query, binary induction obviously implies a spatial join.
Let now c be a color image where the cell type is a three-integer record of red,

green, and blue intensity, resp. Such a pixel-interleaved image is transformed into a
channel-interleaved representation, i.e., three separate color planes, through induction
on the record access operator “.”, obtaining

< c.red, c.green, c.blue >

The above type of induction is also referred to as pointwise induction, as points
pairwise match for each application of the base function.

2.3.3 Aggregation
Obviously, the condenser provides the appropriate basis for aggregation over

arrays. Table 1 lists some of the most common aggregations and their definition in
Array Algebra.

Table 1: Some possible aggregate operators on arrays. Assumed are array expressions
a (without restriction), b of result type Boolean, and c with a numerical result type.

Array aggregate definition Meaning

Count_cells( a ) The number of cells in a

Some_cells( b ) Is there any cell in b with value true?

All_cells( b ) Do all cells of b have value true?

Sum_cells( c ) The sum of all cells in c

Avg_cells( c ) The average of all cells in c

Max_cells( c ) The maximum of all cells in c

2.4 Further Application Examples

A basic requirement in the development of Array Algebra has been to cover all
applications of arrays in databases, the most important ones being statistics, OLAP,
and imaging. To illustrate applicability of Array Algebra to these areas, we now
present some advanced examples.



2.4.1 Statistics
Example matrix multiplication: Let a be an m×n matrix and b an n×p matrix.

Then, the m×p matrix product

a*b = ∑
=

n

j 1
kj,ji, b * a

in Array Algebra is expressed as

MARRAY[1:m,1:p],(i,k)( COND+,[1:n],j( a(i,j)*b(j,k) ) )

Example auto correlation: For two observation vectors x and y of dimension n,

empirical covariance mx,y is defined as

mx,y = ))((
n

1i1

1
avgiavgi yyxx

n
−−∑

=−

In Array Algebra, the mean is given by xavg = COND+,[1:n],i(x(i)) / n and

yavg = COND+,[1:n],i(y(i)) / n. Then, mx,y is described in a straightforward
manner:

COND+,[1:n],i( (x(i)-xavg)*(y(i)-yavg) ) / (n–1)

Example histogram: A histogram contains, for each possible value, the number of
cells conveying this value. For some n-D one-byte integer array with intensity values
between 0 and 255, the histogram is computed as

MARRAY[0:255],n(

          COND +,sdom(a),v( if a(v)=n then 1 else 0 fi) )

As we can see, the combination of MARRAY and COND appears in quite different
contexts. Indeed, this type of operation forms the basis for an extremely wide range of
analysis functions, such as statistical analyses, advanced OLAP consolidation
operations like roll-up, slice&dice, as well as scaling, convolutions and filtering in
image processing. It is capable of completely changing dimensionality, size, and cell
types of arrays.

2.4.2 OLAP
Example roll-up: Let c  be a sales datacube with D×R×P=[1:d,1:r ,1:p] as spatial

domain where dimension 1 counts days from 1 to today , dimension 2 enumerates
sales regions, and dimension 3 contains products sold; cell values shall represent sales
figures. The weekly average of sales per product and region, then, is expressed as



MARRAY[1:today/7]×R×P,(w,r,p)(

COND+,[0:6],d( c(7*w+d,r,p) / 7 ) )

Aggregating over all products leads only to a slight change in the expression

MARRAY[1:d/7]×R,(w,r)(

COND+,[0:6]×P,(d,p)( c(7*w+d,r,p) / 7 ) )

Notably, such queries can be of considerable length when formulated relationally,
and usually involve several joins.

Example top performers: On the same cube, the top performing weeks are deter-
mined as follows. We use the notation <s:sales,w:week> to describe a two-com-

ponent record with component names sales and week. With function fc given as

fc(i)= c[i].sales, the following expression rolls up this cube from days to weeks
and delivers the accumulated sales over all regions and products of the top 3 weeks:

sort0,fc
desc

( MARRAY[1:d/7],w(

<COND+,[0:6]×R×P,(d,r,p)(c[7*w+d,r,p]):sales, w:week> ) )

[1:3].week 

The last query heavily makes use of the fact that coordinate and cell values (dimen-
sion and measure elements in OLAP terminology) can be used interchangeably.

2.4.3 Imaging
Example skewed section: A skewed section through a 2-D image where the cutting

line is not axis-parallel (Fig. 1) can be described by placing a skew factor s>1 on the

indexing point x, resulting in the shifted point position (s*x1,x1):

MARRAYsdom2(a),v( a(s*v1,v1) )

Using the contents of another (1-D) array for indexing allows to pick arbitrary cells.
Let a have sdom(a)= [1:m,1:n] and s be a 1-D array with spatial domain X=[1:n].
Cell values of array s are used to index a (Fig. 1):

MARRAYsdom1(a),x( a(s(x),x) )

Example filtering: The following expression, parametrized over array a and mask
m (such as the edge detector illustrated in Fig. 2) can be used as a template for general
filtering operations:



f(a,m) = MARRAYsdom(a),x( COND+,sdom(m),y(a(x+y))*m(y)) )

Fig. 1: Skewed section (left)  MARRAY[0:6],x( a(x*2,x) ) of 2-D array a with

sdom(a)=[0:12,0:6] and user-defined section (right) MARRAY[0:6],x( b(s(x),x) )
of 2-D array b with sdom(b)=[0:10,0:6]; selected cells are shaded.

Fig. 2: 2-D Sobel filter mask m = { ((-1,1),1), ((0,1),3), ((1,1),1), ((-1,0),0),
((0,0),0), ((1,0),0), ((-1,-1),-1), ((0,-1),-3), ((1,-1),-1) }.

The spatial domain center (0,0) is marked by a double box.

Through instantiation with mask s1 as given by Fig. 1 and mask s2 as the trans-

pose of s1, we can express the Sobel edge detector (see Fig. 2 for mask definition,
Fig. 3 for an application example):

( | f(a,s1) | + | f(a,s2) | ) / 9

Fig. 3: Sobel filter applied to a 2-D raster image.
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We observe that in many cases operations can be formulated without explicitly re-
ferring to the array dimension, allowing to develop parametrized cross-dimensional,
domain-independent query libraries which go well beyond the capabilities of object-
relational ADTs [19].

3 From Array Algebra to RasQL

In this Section, we sketch how Array Algebra translates to the query language
RasQL. Array Algebra has been developed in the course of implementing this fully-
fledged, domain-independent array DBMS based on an SQL-based query language,
obeying strict data independence. Arrays are embedded as a data abstraction allowing,
e.g., to define array-valued object or tuple attributes, depending on the hosting data
model.

Arrays can be defined either concisely with dimension and extent per dimension
fixed, or with a fixed number of dimensions but free lower or upper bounds in some
dimension(s), or with dimension and boundaries left completely open. Runtime range
checking on instances, then, is performed according to the amount of information
provided in the data dictionnary.

RasDaMan commits itself to the ODMG standard [20], hence the RasDaMan query
language RasQL also follows the flavour of ODMG’s OQL which, in turn, leans itself
on standard SQL-92. Queries range over collections which contain the class extents.
Array expressions can appear both in the select and in the where clause of a
query. The MARRAY equivalent in RasQL has the structure

marray <iterator> in <spatial domain>
values <expression>

The COND statement is somewhat extended. In the syntactic structure

condense <op>
over     <iterator> in <spatial domain>
where    <condition>
using    <expression>

The where condition allows to further restrict the cell set inspected. This makes
thresholding and similar tasks more elegant to phrase and, in particular, supports op-
timization.

Optimizing MARRAY and COND expressions is not easy (although not impossible)
due to the generality of the operators. We therefore continuously investigate on special
cases where particularly efficient solutions exist; a rich set of over 100 rules has been
identified and implemented yet [21]. For optimizability reasons and due to their
practical importance, trimming, section, and induction are supported by special con-
structs; likewise, the condenser specializations mentioned in Table 1 are supported
directly. Table 2 demonstrates some of these constructs with the help of application
examples.



Table 2: Sample RasQL queries. We assume array-valued attributes for 2-D Land-
sat satellite images, 3-D volumetric images, and 3-D OLAP cubes, to be embedded in
object classes (or relations, resp.).

Algebra
operator

RasQL example Explanation

INDf
Select img + 5
from LandsatImages as img

The red channel of all
Landsat images,
intensified by 5

INDg
Select oid(br)
from BrainImages as br,
       BrainAreas as mask
where br * mask > t

OIDs of all brain images
where, in the masked
area, intensity exceeds
threshold value t

TRIM Select w[ *:*, y0:y1, z0:z1 ]
from Warehouse as w

OLAP slicing  (“*:*”
exhausts the dimension)

SECT Select v[ x, *:*, *:* ]
from VolumetricImages as v

A vertical cut through
all volumetric images

MARRAY Select marray n in [0:255]
values
  condense +
  over     x in sdom(v)
  using    v[x]=n

from VolumetricImages as v

For each 3-D image its
histogram 2

COND Select condense +
over     x in sdom(w)
using    w[x] > t

from Warehouse as w

For each datacube in the
warehouse, count all
cells exceeding thres-
hold value t

A trim expression in the left-hand side of an update assignment indicates the array
part to be updated:
update <collection>
set    <array attribute>[<trim expression>]
assign <array expression>
where  ...
Besides updating part of an array, this statement can also be used to extend an array

by appending data (e.g., during periodical warehouse population or slicewise insertion

                                                          
2 RasQL supports the interpretation of Boolean values as numerics as is usual in many

programming languages.



into a 3-D image), provided the affected dimension has been defined variable in the
attribute definition. Formally the process of extending an array a in direction i with
another array b matching a in all dimensions (with a possible exception in dimension
i) and base type is governed by the algebra expression as follows.

Let t=(0,...,0,sdomi(a),0,...,0) be the translation vector consisting of zeros except
for component i≤d. Then,
extend(a,b,i) :=

MARRAYsdom(a)∪shiftt(sdom(b)),v(

                 if v∈sdom(a) then a(v) else b(v-t) fi
                             )

4 Related Work

In this Section we survey related work in formalization of arrays in databases; in
part we rely on the classification published in [22] which gives particular attention to
the independence of array formalisms from their implementation.

Let us start, however, with APL [23,24] as a prominent representative from the pro-
gramming languages area, dedicated to n-dimensional array manipulation. APL basi-
cally has to be compared not with the algebra but with the query language RasQL. On
this level, both share interesting implementation problems which, however, are out of
scope here. Conceptually, Array Algebra functionality has its respective counterparts
in APL: the enclose operator "⊂" corresponds to the MARRAY constructor; the re-
duction operator "/" corresponds to the condenser, but is applied only to the outermost
dimension; the each operator "¨" and, to some extent, scalar functions correspond to
unary and binary induction. As a programming language with procedural constructs
and recursion, APL is more powerful than Array Algebra, but not safe.

In the database world, the algebra underlying the EXTRA/EXCESS database
system supports 1-D, variable-length arrays [25]. As for the operators, there is a
function SUBARR corresponding to the Array Algebra operator SECT, and

ARR_APPLY corresponding to our unary induce INDf. Aggregation is not supported.
Gray et al. [4] propose an SQL cube operator which generalizes group-by. It is

based on a particular mapping of sparse arrays to relations. There is no clear separa-
tion between conceptual (multidimensional) model and the proposed SQL extensions;
specifically, no formal algebra is provided.

In [3] a formal model for sparse array maintenance in relational systems (ROLAP)
is presented. Array data are organized into one or more hypercubes whereby a cell
value can either be an n-tuple (i.e., one nesting level of record elements) or a Boolean
value denoting existence of the respective value combination. The algebra consists of
a set of basic operations which are parametrized by user-defined functions. For
example, operations pull and push increase/decrease, resp., a cube's dimension by
changing coordinate values to cell contents and vice versa; in our example top per-
formers we demonstrate how this is done in Array Algebra. Further, there is a join



operation to combine two arrays sharing k dimensions. The “join partners” are speci-
fied through user-defined functions outside the formalism. The same way aggregation
is handled through functions outside the formalism as opposed to Array Algebra
where the condenser serves to describe aggregation.

Cabibo and Torlone [9] propose a more “cube-oriented” formal multidimensional
model and a corresponding query language based on a logical calculus. The data
model relies on the notion of n-dimensional f-tables, i.e., (mathematical) relations
where each cell is represented by a tuple of n coordinates and the cell value itself,
which must be atomic. Aside of the usual logical quantifiers and connectors there are
scalar and aggregation functions which are user-defined, hence outside the formalism.
The equal treatment of coordinates and cells like in Array Algebra is possible.

Li and Wang [10] formalize a multidimensional model for OLAP. Core is an
algebraic query language called grouping algebra which treats arrays as sets of rela-
tions plus an associated cell value which must be scalar. Operations on arrays are add
dimension, transfer, union, aggregation, rc-join (relation/cube join), and construct
(build array from relation). The algebra includes relations so that it can be seen as an
extension of relational algebra. The model is very powerful, particularly in grouping,
ordering, and aggregation. In [11] an algebra and calculus for multidimensional OLAP
is presented. A multidimensional tabular database is defined as a set of tables. The
model is close to the way OLAP arrays are mapped to relational star schemata. No
direct mechanism is provided for join and aggregation; as by definition all first-order
definable classification and aggregation functions are incorporated, these constructs
can be expressed, too. Implementation of the model relies on an SQL mapping.
Further important recent work in the field is described in [26, 27, 28].

In [12], an array query language, AQL, relying on Lambda calculus is presented
which is geared towards scientific computing. AQL offers powerful operations on
multidimensional arrays, with only slightly less generality in the aggregation mecha-
nism than Array Algebra. The model has been implemented as a front end for query-
ing arrays maintained in files using a geo scientific data exchange format.

An Array Manipulation Language, AML, is introduced in [13]. Two operators
serve to subsample and interleave, resp., arrays based on bit sequences governing cell
selection. The third operator, APPLY, corresponds to induce operations modulo the bit
pattern for cell selection. Bit patterns are modeled in Array Algebra through 1-D bit
arrays executing the same control function. AML is more restricted than Array Alge-
bra in that such control arrays cannot contain arbitrary values (e.g., weights), and
moreover are constrained to 1-D. According to the authors, the main application area
of AML is seen in imaging.

In summary, most array frameworks nowadays are geared towards OLAP tasks,
without regarding, e.g., spatio-temporal array application fields. Conversely, frame-
works such as AML aiming at imaging do not consider OLAP. Sometimes array itera-
tion or aggregation retracts to user-defined functions which, in an implementation,
makes optimization difficult. All operations such as aggregation and spatial join found
in these approaches are expressible in Array Algebra, too, except that dimension hier-
archies usually are supported by convenient mechanisms, a feature still to be included
in Array Algebra.



5 Conclusion

Let us be philosophic for a moment. Loosely speaking, for every data abstraction a
corresponding basic operation exists. For instance, component access by name corre-
sponds with records (in C/C++: “structs”), whereas linear traversal relates to lists and
sets. For arrays, usually (nested) loops are seen as the “natural” operation, exploiting
the per dimension linear ordering of cell indices. Ordering, however, is not the es-
sence. Instead, the neighborhood defined by the indices is the crucial property: con-
solidation of a data warehouse cube, say, to derive weekly figures from daily data,
involves seven neighbored array cells for every derived cell value. Likewise, edge
detection in a 2-D raster image involves an n×n neighborhood of each pixel for com-
putation of the result pixels. Hence, we claim that not iteration is the operation char-
acteristic for arrays, but (conceptually) simultaneous computation of all result array
cells, in general based on the evaluation of some neighborhood for each cell.

RasDaMan Array Algebra has been designed as an algebraic framework for multi-
dimensional arrays of arbitrary dimension and base type. Essentially two functionals
and a sorter are sufficient for a broad range of statistics, OLAP, and imaging opera-
tions. They are declarative by nature and do not prescribe any iteration sequence,
thereby opening up a wide field for query optimization and parallelization. Array
Algebra is minimal in the sense that no subset of its operations exhibits the same ex-
pressive power. It is also closed in application: any expression is either of a scalar or
an array type. Finally, Array Algebra does not rely on any external array handling
functionality (“user-defined functions”) aside of the operations coming with the alge-
braic structure of the cell type. By making all operations explicit, query optimization
is eased considerably.

Array Algebra comprises the formal basis for the domain-independent array DBMS
RasDaMan [17] vendored by Actived Knowledge GmbH3. The query language RasQL
supports declarative array expressions embedded in standard SQL-92. The array query
optimizer relies on about 150 algebraic rewrite rules on logical and physical level [21].
Streamlined storage management allows to distribute arrays across heterogeneous
storage media. RasDaMan is being used, e.g., in the European Human Brain Database4

for WWW-based access to 3-D human brain images.
Future work on the conceptual level will encompass domain–specific features such

as dimension hierarchies for OLAP, including symbolic dimension handling instead of
the pure numbering scheme used now, and vector/raster integration for geo applica-
tions. On the architectural level, extending RasQL functionality based on further
benchmarking [17] will keep us busy for some time.

                                                          
3 See www.active-knowledge.de/
4 see www.dhbr.neuro.ki.se/ECHBD/Database/
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